首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
1. The binding of triethyltin to rat liver mitochondria is unaffected by the nature of the predominant anion in the incubation medium. 2. With chloride, bromide or iodide as the predominant anion, ATP synthesis linked to the oxidation of pyruvate or succinate and ATP hydrolysis stimulated by 2,4-dinitrophenol are much more sensitive to triethyltin than they are when nitrate or isethionate is the predominant anion. 3. When nitrate or isethionate is the predominant anion, oxygen uptake stimulated by 2,4-dinitrophenol is not inhibited by triethyltin. 4. In the presence of nitrate or isethionate anions, inhibition of ATP synthesis is directly related to the binding of triethyltin to mitochondria. 5. The relationship of the above effects to the anion–hydroxide ion exchange mediated by triethyltin and the relevance of this to published arrangements for coupling of electron transport to ATP synthesis are discussed.  相似文献   

4.
Hampp R 《Plant physiology》1985,79(3):690-694
The effect of TP (triosephosphates:glyceraldehyde-3 phosphate, GAP, +dihydroxyacetone phosphate, DHAP) on respiration, phosphorylation and matrix ATP/ADP ratios of isolated oat mesophyll mitochondria was investigated. With both malate and NADH, a 50% inhibition of state 3-phosphorylation was induced by about 15 to 20 millimolar GAP and 30 to 40 millimolar DHAP. However, the nature of the inhibition appeared to be different with the two respiratory substrates. In the presence of NADH, TP did not inhibit the rate of state 3 (addition of ADP) O2 consumption. In fact, depending on concentration, TP gradually increased the rates measured without ADP towards those seen under state 3, acting as uncouplers. When malate was the substrate for respiration, state 3 rates were decreased. The effect was comparable to that of rotenone and could be abolished by the addition of NADH. These observations indicate a dual action of TP: inhibition of electron transport around site I and uncoupling. In any case, the intramitochondrial ATP/ADP ratio decreased upon addition of TP. The effective TP concentrations as well as the changes in mitochondrial ATP/ADP ratios were comparable to results on changes of compartmental pool sizes of adenylates and other metabolites during dark/light transition of oat mesophyll protoplasts (R. Hampp, M. Goller, H. Füllgraf, and I. Eberle 1985 Plant Cell Physiol 24: 99). The possible role of TP in the regulation of mitochondrial respiration in the light, as well as modes of interference, are discussed.  相似文献   

5.
The inhibition of oxidative phosphorylation   总被引:16,自引:11,他引:5  
  相似文献   

6.
7.
8.
9.
10.
1. The concentration of specific oligomycin-binding sites in rat-liver mitochondria is 0.12 nmole/mg protein, whereas at least 10-times more oligomycin can be bound non-specifically.

2. The activity of oligomycin-inhibited processes in intact mitochondria and submitochondrial particles cannot be restored by treatment with egg lecithin or mitochondrial phospholipids.

3. Analysis of the kinetics of inhibition of State-3 respiration by oligomycin reveals that (i) after a certain lag period the inhibition by oligomycin is pseudo-first order with respect to the respiratory-control ratio, defined as the ratio of the respiratory rate at time t to that of the final inhibited site, (ii) the value of the pseudo-first-order rate constant (k0) is dependent on the oligomycin: protein ratio, phospholipid: protein ratio, pH and temperature, (iii) the effects of various substrates and inhibitors of electron transfer on the kinetics of oligomycin inhibition can be explained by their effects on respiratory control.

4. A detailed model is proposed for the interaction of oligomycin with mitochondria. It is proposed that two conformations of the oligomycin-sensitive site are present, and that oligomycin specifically binds to the conformation that is involved in the induction of respiratory control.  相似文献   


11.
12.
The effect of methyl parathion (metacid-50), an organophosphorous insecticide, on the Hill reactions of isolated mesophyll chloroplasts ofSorghum vulgare was studied. The pesticide was found to inhibit the Hill reaction with all the Hill oxidants tested, namely potassium ferricyanide,2,6-dichlorophenol indophenol and para-benzoquinone. The concentration of the pesticide required to inhibit 50% of the control Hill activity (I50value) was found to vary with the different Hill oxidants.  相似文献   

13.
Abstract

Induction of DNA damage by pyrogallol has been shown at physiological pH, but mutagenesis data also suggest there is inhibition in acidic media. In the present work, the plasmid pBSK was incubated with pyrogallol, under aerobic conditions at 37°C, at pH 7.4, 4.5 or 3.5, for 1, 3 or 5 h, in the absence or presence of Cu2+. Cleavage of the supercoiled DNA form was analyzed through topology modifications by agarose gel electrophoresis and quantified by densitometry. Independently of the presence of Cu2+ , DNA cleavage at pH 7.4 was significantly (P < 0.001) induced and occurred extensively after 1-h incubation. At pH 4.5, the cleavage was significantly (P < 0.05) induced only after 5 h incubation in the absence of Cu2+ , but was extensive (P < 0.001) after 1-h incubation when the metal ion was present. At pH 3.5, DNA cleavage was inhibited (P > 0.05), after 5-h incubation, even in the presence of Cu2+. Our results provide evidence that DNA cleavage by pyrogallol is pH-dependent, catalyzed by Cu2+ , and extensively decreased in acidic pH. Due to the abundant presence of the pyrogallate ion in physiological media, we suggest that this conjugate base form is responsible for DNA cleavage.  相似文献   

14.
Although dietary copper deficiency causes physiological, morphological, and biochemical abnormalities in cardiac mitochondria, the relationship observed between abnormalities of mitochondrial structure and function have been inconsistent in previous studies. The purpose of the present study was to re-evaluate the respiration rates of cardiac mitochondria from copper-deficient rats and to use several drugs that uncouple and inhibit mitochondrial respiration in order to clarify the mechanisms of mitochondrial dysfunction found in several laboratories. Copper deficiency reduced state 4 and state 3 cardiac mitochondrial respiration rates with all substrates tested. However, neither the ratio of ADP/oxygen consumed nor the acceptor control index was affected by copper deficiency. Cardiac mitochondria of copper-deficient rats showed a resistance to respiratory blockade by oligomycin and an increased ability to hydrolyze ATP in the presence of oligomycin compared with mitochondria of copper-adequate rats. This suggests that copper deficiency affects the function of the cardiac mitochondrial ATP synthase.  相似文献   

15.
Induction of DNA damage by pyrogallol has been shown at physiological pH, but mutagenesis data also suggest there is inhibition in acidic media. In the present work, the plasmid pBSK was incubated with pyrogallol, under aerobic conditions at 37 degrees C, at pH 7.4, 4.5 or 3.5, for 1, 3 or 5 h, in the absence or presence of Cu(2+). Cleavage of the supercoiled DNA form was analyzed through topology modifications by agarose gel electrophoresis and quantified by densitometry. Independently of the presence of Cu(2+), DNA cleavage at pH 7.4 was significantly (P < 0.001) induced and occurred extensively after 1-h incubation. At pH 4.5, the cleavage was significantly (P < 0.05) induced only after 5 h incubation in the absence of Cu(2+), but was extensive (P < 0.001) after 1-h incubation when the metal ion was present. At pH 3.5, DNA cleavage was inhibited (P > 0.05), after 5-h incubation, even in the presence of Cu(2+). Our results provide evidence that DNA cleavage by pyrogallol is pH-dependent, catalyzed by Cu(2+) , and extensively decreased in acidic pH. Due to the abundant presence of the pyrogallate ion in physiological media, we suggest that this conjugate base form is responsible for DNA cleavage.  相似文献   

16.
17.
Gladiolic acid (GA, 4-methoxy-5-methyl-0-phthalaldehyde-3-carboxylic acid), an antifungal aromatic ortho dialdehyde produced by Penicillium gladioli was found to be a potent inhibitor of electron transport and oxidative phosphorylation reactions in sweet potato and mung bean mitochondria. Similar results were also found with the naturally occurring ortho dialdehydes, cyclopaldic acid, quadrilineatin, and flavipin as well as the synthetic dialdehydes, 3-formyl opianic acid and 0-phthalaldehyde. Because of their highly reactive ortho-diformyl grouping, GA and structurally related dialdehydes apparently act as multisite inhibitors affecting electron transport and oxidative phosphorylation (at each coupling site). Gladiolic acid has no uncoupling effect like 2,4-dinitrophenol and does not have the same point of interaction in the energy transfer process as oligomycin. Several "partial" reactions of phosphorylation (Mg+2-DNP-stimulated ATPase; ATP-Pi exchange) were strongly inhibited by the various dialdehydes. Flavipin and quadrilineatin are potent inhibitors (80% at a concentration of 25 microM) of site III phosphorylation. Gladiolic acid and related ortho dialdehydes inactivate the catalytic activity of native cytochrome c in vitro. Lysyl epsilon-NH2 rich cytochrome c may be a major site of GA action in the intact mitochondrion. In view of the high chemical reactivity of the orthodiformyl group, it is suggested that mitochondrial function may be affected by aromatic ortho dialdehydes through a combination of reactions involving cross-linking of amino groups on membrane polypeptides and monofunctional reaction with free amino groups important for enzyme function, including epsilon-NH2 groups on cytochrome c. Cross-linking in mitochondrial membrane systems might affect function by interfering with molecular motion in the operation of the terminal portion of the electron-transport chain. The primary toxicological mode of action of GA and related dialdehydes appears to be due to inhibition of mitochondrial function.  相似文献   

18.
The effect of thylakoid phosphorylation on noncyclic electron transport in spinach chloroplasts was investigated by measuring both the reduction of nicotinamide adenine dinucleotide phosphate (NADP) and the steady-state redox level of the primary electron acceptor quinone of photosystem II (Q) during electron flow to NADP. These data are compared with the theoretical predictions for an electron transport model which relates both the redox levels of Q and the photosystem II optical cross section to the overall velocity of noncyclic electron flow. It is demonstrated that transfer of 15-20% of the photosystem II antenna to photosystem I may stimulate electron flow to NADP only if Q is less than 60-70% oxidized (this condition exists with our thylakoids, even at extremely low absorption fluxes, when the illumination is not specifically enriched in photosystem I absorbed wavelengths); in phosphorylated thylakoids the steady-state redox level Q is substantially shifted to a more oxidized one (measurements of this parameter using light of different wavelengths quantitatively support the idea that thylakoid phosphorylation leads to increased photosystem I and decreased photosystem II cross sections); thylakoid phosphorylation leads to stimulated noncyclic electron flow to NADP only when the increased photosystem I antenna is able to bring about large increases in the steady-state level of oxidized Q.  相似文献   

19.
In chloroplasts, tetramethyl-p-hydroquinone supports high rates of phosphorylation-coupled, noncyclic electron flow through Photosystem I to methylviologen. The reaction is totally sensitive to dibromothymoquinone, indicating an electron donation to the plastoquinone region of the photosynthetic chain. The uncoupled electron flow rate exceeds 1000 μequivalents per hour per mg chlorophyll. The phosphorylation efficiency (Pe2) at the optimal pH of 8 is 0.6–0.65. Presumably this ratio represents the efficiency of energy coupling in the electron transfer step plastoquinone → cytochrome f.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号