首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 913 毫秒
1.
Heat activation (70 degrees C for 20 min) resulted in alteration in structural proteins and enzymes found in Bacillus cereus spore coats. The three notable changes were increased glycosylation of coat proteins, alteration in polypeptide pattern on sodium dodecyl sulfate - polyacrylamide gels, and an increase in free SH groups of proteins. About three polypeptides leaked out in small quantities from the spore coats during heat activation. The extraction of five spore coat associated enzyme activities was followed during the coat stripping procedures, which left the cortex and core intact. Two of these activities, L-alanine dehydrogenase and purine nucleoside hydrolase, were solubilized when the undercoat was extracted by 1,4-dithioerythritol (DTE) at pH 9.8. Three other activities, a protease, a corticolytic enzyme, and purine nucleoside phosphorylase, were solubilized by both DTE alone and DTE plus urea at pH 9.8. The DTE plus urea extraction removed the two more insoluble coat layers, the outer cross-patch, and the inner pitted layers. Mutants deficient in the cross-patch layer contained normal amounts of the protease, corticolytic, and purine nucleoside phosphorylase activities suggesting their association with the pitted layer. In intact spores all five enzymes were found to be stable to the heat activation treatment. However, extracted and partially purified preparations of protease, purine nucleoside phosphorylase, and L-alanine dehydrogenase were heat sensitive. Similar preparations of corticolytic enzyme and purine nucleoside hydrolase were stable to the heat activation conditions.  相似文献   

2.
Phenotypes of eight red cell enzymes at nine genetic loci were determined in the semi-free-ranging population of rhesus macaques; Macaca mulatta, that inhabit Cayo Santiago. The following enzymes were examined electrophoretically: adenosine deaminase, glucose-6-phosphate dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase, indophenol oxidase, lactate dehydrogenase, malate dehydrogenase, phosphoglucomutase-1, phosphoglumutase-2, and purine nucleoside phosphorylase. Hemolysates from at least 372 animals were analyzed, and no variants of the enzymes were observed with the exception of malate dehydrogenase. Three animals displaying a variant form of malate dehydrogenase were found.  相似文献   

3.
Reserpine, a Rauwolfia alkaloid, was shown to increase activity of the hepatic nitrogen metabolizing enzymes xanthine dehydrogenase, purine nucleoside phosphorylase, and tyrosine aminotransferase, when administered orally to young chicks. Using immunochemical techniques, this increase in xanthine dehydrogenase was shown to result from an enhanced de novo enzyme synthesis. The response pattern of the three enzymes to reserpine follows the same pattern to induction by high dietary protein suggesting that a common mode of action may be involved in the regulation of these enzymes. α-Adrenergic blockers, phentolamine and phenoxybenzamine, effectively prevented the increased enzyme activities caused by administration of reserpine.  相似文献   

4.
An optimized multilocus enzyme electrophoresis method, which involves polyacrylamide-agarose gel electrophoresis followed by electrophoretic transfers on nitrocellulose sheets, was developed for the analysis of enzyme polymorphism in several aerobic and anaerobic bacterial species including Staphylococcus aureus, Streptococcus pneumoniae, S. agalactiae, Klebsiella pneumoniae and K. oxytoca, Clostridium bifermentans and C. sordellii, and Prevotella bivia. Serial electrophoretic transfers (during 5-15 min each) from a single polyacrylamide gel could be achieved for most enzymes studied, and allowed an increased definition of enzyme bands on nitrocellulose as compared to migration gels. Four enzymes, which could not be blotted in such conditions, could still be stained in gels after blotting. Thus, the method allowed the combined analysis of several enzymes after a single gel electrophoresis separation. The analysis of enzyme polymorphism in the various species studied raised the interest of polymorphic loci such as esterase or glutamic-oxaloacetic transaminase for epidemiologic studies. The method characterized a genetic diversity of enzyme loci of S. pneumoniae higher than previously reported, and is thus convenient for the analysis of genetic relationships between related isolates. Since the present method reduces the tediousness of multilocus enzyme electrophoresis and requires experimental conditions that are not specific for the bacterial population studied, it may be proposed for rapid population genetics analysis of a wide variety of bacteria.  相似文献   

5.
The use of L-glutamate dehydrogenase (GLUD) as a reagent in staining mixtures to detect the isozymes of enzymes which catalyze the production of ammonia has been investigated. Methods have been devised for the electrophoresis and detection, using GLUD, of seven enzymes: cytidine deaminase, adenosine deaminase, adenosine monophosphate deaminase, arginase, argininosuccinase, D-amino acid oxidase, and D-aspartate oxidase. GLUD-linked staining methods appear to be sensitive, specific, and of general application.  相似文献   

6.
Purine nucleoside phosphorylase (EC 2.4.2.1; purine nucleoside:orthophosphate ribosyltransferase) from fresh human erythrocytes has been purified to homogeneity in two steps with an overall yield of 56%. The purification involves DEAE-Sephadex chromatography followed by affinity chromatography on a column of Sepharose/formycin B. This scheme is suitable for purification of the phosphorylase from as little as 0.1 ml of packed erythrocytes. The native enzyme appears to be a trimer with native molecular weight of 93,800 and the subunit molecular weight of 29,700 +/- 1,100. Two-dimensional gel electrophoresis of the purified enzyme under denaturing conditions revealed four major separable subunits (numbered 1 to 4) with the same molecular weight. The apparent isoelectric points of subunits 1 to 4 in 9.5 M urea are 6.63, 6.41, 6.29, and 6.20, respectively. The different subunits are likely the result of post-translational modification of the enzyme and provide an explanation of the complex native isoelectric focusing pattern of purine nucleoside phosphorylase from erythrocytes. Three of the four subunits are detectable in two-dimensional electrophoretic gels of crude hemolysates. Knowing the location of the subunits of purine nucleoside phosphorylase in a two-dimensional electropherogram allows one to characterize the purine nucleoside phosphorylase in crude cell extracts from individuals with variant or mutant purine nucleoside phosphorylase as demonstrated in a subsequent communication. Partial purification of the phosphorylase from 1 ml of erythrocytes on DEAE-Sephadex increases the sensitivity of detection of the subunits to the 0.3% level.  相似文献   

7.
Three invertase isozymes extracted from derepressed yeast cell membranes with 1% deoxycholate (0.5 mg/mg protein) were separated on sodium dodecyl sulfate (0.25%)-polyacrylamide gels (Babczinski, P., and Tanner, W., 1978, Biochim. Biophys. Acta538, 426–434; Babczinski, P., 1980, Biochim. Biophys. Acta, in press). A dye-producing method for the location of isozymes after gel electrophoresis has been developed by using a coupled enzymatic reaction including the formazan reaction. By the incorporation of β-d-glucose dehydrogenase as the d-glucose-utilizing auxiliary enzyme into the test system the problem of contaminating sucrase activities in commercial glucose oxidase preparations has been overcome (the latter enzyme had often been used earlier in activity-staining procedures of glycosidases). Production of formazan dye is dependent on the presence of sucrose in the test system. By quantitative densitometry proportionality of dye intensity with incubation time, amount of deoxycholate extract, and amount of protein applied onto the gel were determined.  相似文献   

8.
A new method for multilocus enzyme electrophoresis, based on electrophoretic transfers to nitrocellulose after polyacrylamide-agarose gel electrophoresis was explored. Electrophoretic separation was performed on 1-mm-thick slab gels with 6-μl samples of bacterial extracts and was followed by serial 5-min consecutive transfers. The transferability of 19 metabolic enzymes of Klebsiella strains was studied and allowed the simultaneous examination of one enzyme in the separation gel and at least five enzymes on nitrocellulose sheets. The resolution of enzyme bands was increased on nitrocellulose; thus, well-separated bands were recorded for nucleoside phosphorylase, peptidase, and phosphoglucose isomerase whereas their mobility variants could not be clearly distinguished in the separation gel because of stain diffusion. The study of genetic relationships of 42 strains of Klebsiella pneumoniae and 24 strains of Klebsiella oxytoca demonstrated the reliability of the method, since clustering analysis of electrophoretic types, based on electrophoretic polymorphism of 10 metabolic enzymes, showed two main clusters well correlated with the two species. The 57 electrophoretic types described confirm the usefulness of the method for the study of genetic relationships between closely related strains.  相似文献   

9.
Adenylosuccinase catalyses the conversion of adenylosuccinic acid to AMP and fumarate. We have developed a coupled enzyme staining procedure applicable to nitrocellulose blots after agarose gel isoelectrofocusing of rat muscle adenylosuccinase. The coupling enzymes, fumarase (fumarate to L-malate) and malic enzyme (L-malate to pyruvate and NADPH), are adsorbed to nitrocellulose prior to blotting. The NADPH, mediated by phenazine methosulfate, converts a tetrazolium salt to its blue formazan. This procedure demonstrated that rat muscle adenylosuccinase consists of three isomeric forms present in similar amounts.  相似文献   

10.
Two-dimensional gel electrophoresis is a powerful tool for identification of proteins that differ between patients with qualitatively or quantitatively different disease states. Further characterization of these protein differences would be greatly facilitated by the availability of antibodies that could be used to detect and quantitate the temporo-spatial pattern and cellular and tissue location of the different proteins. To generate such antibodies, methods were developed which permit the successful selection of monoclonal phage antibodies from phage display libraries against antigens blotted from SDS-PAGE gels onto nitrocellulose. First, it was determined that nitrocellulose and PVDF membranes gave significantly lower levels of background phage binding than two other membranes studied. Next, it was determined that blocking with fish gelatin and binding in the presence of 0.5 M NaCl could reduce nonspecific binding 10,000-fold and result in enrichment ratios greater than 500-fold with antigen concentrations as low as 1 ng/mm(2). When optimized conditions were applied to phage antibody libraries, panels of monoclonal phage antibodies were generated against the proteins ErbB2 and bovine serum albumin electroblotted from SDS-PAGE gels onto nitrocellulose. Antibodies were obtained with as little as 10 to 1 ng of antigen, depending on whether the libraries displayed single or multiple copies of antibody per phage. The antibodies worked as reagents in both ELISA and Western blotting.  相似文献   

11.
The activities of purine salvage enzymes in tachyzoites from a cyst-forming strain of Toxoplasma gondii were determined using HPLC. Six enzymes were assayed both in vitro and in vivo: adenosine deaminase, guanine deaminase, purine nucleoside phosphorylase, xanthine oxidase, hypoxanthine-guanine phosphoribosyltransferase and adenine phosphoribosyltransferase. In vitro, the tachyzoites were cultured in the human myelomonocytic cell line THP-1, for 24 h to 96 h. Neither guanine deaminase nor hypoxanthine-guanine phosphoribosyltransferase activity was detected in 24 and 96 h cultures. In vivo, in controls and infected animals, the purine nucleoside phosphorylase and adenosine deaminase activities were the most important activities both in sera and cerebral tissue in comparison with the other activities. It was also noted that the infection modified the enzymatic activities of this purine salvage pathway, in particular, the guanine deaminase cerebral activity of infected mice was 20-fold lower than the value of controls. The treatment of mice with 2',3'-dideoxyinosine, a purine analog, at the dose of 100 mg.kg(-1).d for 30 days, induced an important increase of all enzymatic activities in the brains in comparison with control animals. These data suggest that one target of 2',3'-dideoxyinosine is the purine metabolism.  相似文献   

12.
5'-Nucleotidase, adenosine phosphorylase, adenosine deaminase and purine nucleoside phosphorylase, four enzymes involved in the utilization of exogenous compounds in Bacillus cereus, were measured in extracts of this organism grown in different conditions. It was found that adenosine deaminase is inducible by addition of adenine derivatives to the growth medium, and purine, nucleoside phosphorylase by metabolizable purine and pyrimidine ribonucleosides. Adenosine deaminase is repressed by inosine, while both enzymes are repressed by glucose. Evidence is presented that during growth of B. cereus in the presence of AMP, the concerted action of 5'-nucleotidase and adenosine phosphorylase, two constitutive enzymes, leads to formation of adenine, and thereby to induction of adenosine deaminase. The ionsine formed would then cause induction of the purine nucleoside phosphorylase and repression of the deaminase. Taken together with our previous findings showing that purine nucleoside phosphorylase of B. cereus acts as a translocase of the ribose moiety of inosine inside the cell (Mura, U., Sgarrella, F. and Ipata, P.L. (1978) J. Biol Chem. 253, 7905-7909), our results provide a clear picture of the molecular events leading to the utilization of the sugar moiety of exogenous AMP, adenosine and inosine as an energy source.  相似文献   

13.
Xanthine oxidase from human liver: purification and characterization   总被引:7,自引:0,他引:7  
Xanthine oxidase [EC 1.2.3.2] was purified 2000-fold from human liver. The last step of the procedure involved affinity chromatography. The resulting preparation showed two closely migrating bands of enzyme activity after gel electrophoresis under nondenaturing conditions. No other proteins were detected on these gels. The average particle mass of the enzyme was 300 kDa as determined by size-exclusion chromatography. This together with results of gel electrophoresis under denaturing conditions suggested that the native enzyme was composed of two subunits of approximately 150 kDa each. The electrophoretic patterns also indicated that a portion of these subunits had undergone partial proteolysis. The substrate specificity of the purified human enzyme was studied using an assay in which phenazine ethosulfate coupled the transfer of electrons from the reduced enzyme to cytochrome c. Hypoxanthine, 2-hydroxypurine, xanthine, 2-aminopurine, and adenine were among the most efficient purine substrates studied. Most purine nucleosides tested were oxidized at detectable rates, but with relatively high Km values. The 2'-deoxyribonucleosides were more efficient substrates than were the corresponding ribonucleosides or arabinonucleosides. In a direct comparison with xanthine oxidase from bovine milk, the human enzyme showed a similar specificity toward purine substrates. However, considerable differences between the bovine and human enzymes were observed with nucleoside substrates. With xanthine as the substrate for the human enzyme, 20% of the total electron flow was univalently transferred to oxygen to produce superoxide radicals.  相似文献   

14.
The activities of purine-metabolizing enzymes, 5'-nucleotidase, adenosine deaminase, and purine nucleoside phosphorylase in microdissected rat nephron segments were measured. The specific activity of 5'-nucleotidase was highest in the proximal tubules and the cortical collecting duct, but low in the glomerulus. In contrast, the highest activity of adenosine deaminase was found in the glomerulus. The distribution pattern of purine nucleoside phosphorylase was similar to that of adenosine deaminase. These results suggest that various nephron segments can form adenosine and that the glomerulus exhibits highest capacities to metabolize this nucleoside.  相似文献   

15.
Nucleotide-metabolizing enzymes and lymphocyte differentiation   总被引:3,自引:0,他引:3  
Summary Inherited deficiencies of adenosine deaminase and purine nucleoside phosphorylase have been found to be associated with certain immunodeficiency syndromes which are characterized by deficiencies of mature peripheral lymphocytes. The immunodeficiency states associated with these enzyme deficiencies are thought to arise from blocks in lymphocyte differentiation. Deficiencies of these enzymes have profound and apparently selective effects on lymphocyte differention. Their discovery has focused attention on previously unknown relationships between purine nucleotide metabolism and lymphocyte development and function. In this article three aspects of nucleotide-metabolizing enzymes and lymphocyte differentiation will be discussed: 1) the distribution of the enzymes among lymphocyte populations at differing stages of differentiation; 2) the possible biochemical mechanisms which give rise to the immunodeficiencies; 3) the stages of lymphocyte differentiation which are affected by the enzyme deficiencies.  相似文献   

16.
5′-Nucleotidase, adenosine phosphorylase, adenosine deaminase and purine nucleoside phosphorylase, four enzymes involved in the utilization of exogenous purine compounds in Bacillus cereus, were measured in extracts of this organism grown in different conditions. It was found that adenosine deaminase is inducible by addition of adenine derivatives to the growth medium, and purine nucleoside phosphorylase by metabolizable purine and pyrimidine ribonucleosides. Adenosine deaminase is repressed by inosine, while both enzymes are repressed by glucose. Evidence is presented at during growth of B. cereus in the presence of AMP, the concerted action of 5′-nucleotidase and adenosine phosphorylase, two constitutive enzymes, leads to formation of adenine, and thereby to induction of adenosine deaminase. The ionsine formed would then cause induction of the purine nucleoside phosphorylase and repression of the deaminase. Taken together with our previous findings showing that purine nucleoside phosphorylase of B cereus acts as a translocase of the ribose moiety of ionsine inside the cell (Mura, U., Sgarrella, F. and Ipata, P.L. (1978) J. Biol. Chem. 253, 7905–7909), our results provide a clear picture of the molecular events leading to the utilization of the sugar moiety of exogenous AMP, adenosine and inosine as an energy source.  相似文献   

17.
Alterations of inosinate branchpoint enzymes in cultured human lymphoblasts   总被引:2,自引:0,他引:2  
The specific activities of the three enzymes of the inosinate branchpoint are independently regulated when lymphoblasts are grown under various tissue culture conditions. In comparison to rapidly dividing cells, lymphoblasts at high cell density with no cellular division have decreased activity of the enzymes which commit inosinate to adenylate or guanylate, while cytoplasmic 5'-nucleotidase is relatively preserved. A linear relationship between inosinate dehydrogenase activity and growth rate (r = 0.92) exists in lymphoblasts with slowed growth rates. In contrast, in dividing cells adenylosuccinate synthetase and 5'-nucleotidase do not vary with growth rate. Adenylosuccinate synthetase and inosinate dehydrogenase activities appear to be related to the presence or rate of cellular division, as opposed to the presence or degree of neoplastic transformation. Lymphoblast lines with alterations of specific purine metabolic enzymes have characteristic alteration of the inosinate utilizing enzymes. Deficiencies of purine nucleoside phosphorylase or hypoxanthine phosphoribosyltransferase, abnormalities which render the cell unable to salvage purine effectively, are associated with depressed inosinate dehydrogenase activity. Insertion of the hypoxanthine phosphoribosyltransferase gene into hypoxanthine phosphoribosyltransferase-deficient cells normalizes inosinate dehydrogenase activity, while a hypoxanthine phosphoribosyltransferase-deficient mutant selected from a hypoxanthine phosphoribosyltransferase-containing line has depressed inosinate dehydrogenase activity. In contrast, overactivity of phosphoribosylpyrophosphate synthetase, with enhanced excretion of purines due to excessive production, is associated with elevated inosinate dehydrogenase activity. Inosinate dehydrogenase appears to be regulated according to the availability of purine nucleotides. Patients who overproduce uric acid and potentially have undescribed purine metabolic defects are now being screened for abnormalities in the inosinate branchpoint enzymes.  相似文献   

18.
Previously it has been shown that the levels of xanthine dehydrogenase in chick liver can be increased by feeding high-protein diets, adenine, and allopurinol (a xanthine dehydrogenase inhibitor). Also, it has been shown that starvation increases the level of xanthine dehydrogenase in chick liver and that unsaturated fatty acids in the diet suppress the levels of xanthine dehydrogenase in the liver. Results reported here show that starvation and high-protein diets enhance the levels of purine nucleoside phosphorylase and that unsaturated fatty acids suppress the level of this enzyme. In contrast with xanthine dehydrogenase, adenine and allopurinol have no effect on purine nucleoside phosphorylase levels. These results suggest that dietary protein and unsaturated fatty acids regulate more than one enzyme involved in the production of uric acid.Levels of xanthine dehydrogenase in the pancreas can be increased by feeding and decreased by starvation or feeding unsaturated fatty acids. None of these procedures has any effect on the level of pancreatic purine nucleoside phosphorylase.  相似文献   

19.
From Escherichia coli B, mutants were prepared that lacked the enzymes adenosine deaminase, cytidine deaminase, and purine nucleoside phosphorylase. In each case, the mutant lacked enzyme activity for both ribonucleoside and deoxyribonucleoside. Mutants lacking purine nucleoside phosphorylase lost the capacity to cleave the nucleosides of adenine, guanine, and hypoxanthine.  相似文献   

20.
Summary A quantitative histochemical procedure was developed for the demonstration of purine nucleoside phosphorylase in rat liver using unfixed cryostat sections and the auxiliary enzyme xanthine oxidase. The optimum incubation medium contained 18% (w/v) poly(vinyl alcohol), 100 mM phosphate buffer, pH 8.0, 0.5 mm inosine, 0.47 mm methoxyphenazine methosulphate and 1 mm Tetranitro BT. An enzyme film consisting of xanthine oxidase was brought onto the object slides before the section was allowed to adhere. The specificity of the reaction was proven by the low amount of final reaction product generated when incubating in the absence of inosine. Moreover, 1 mm p-chloromercuribenzoic acid, a non-specific inhibitor of purine nucleoside phosphorylase, inhibited the specific reaction by 90%. The specific reaction defined as the test reaction, in the presence of substrate, minus the control reaction, in the absence of substrate was linear with incubation time at least up to 30 min as measured cytophotometrically. A high activity was observed in endothelial cells and Kupffer cells of rat liver and a lower activity in liver parenchymal cells. Pericentral hepatocytes showed an activity higher than that of periportal hepatocytes. In human liver, purine nucleoside phosphorylase activity was also high in endothelial cells and Kupffer cells, but the activity in liver parenchymal cells was only slightly lower than it was in non-parenchymal cells. The localization of the enzyme is in agreement with earlier ultrastructural findings using fixed liver tissue and the lead salt procedure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号