首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Valinomycin and salinomycin-Na, 2 ionophorous antibiotics, exhibited in vitro antibabesial activities against Babesia gibsoni that infected normal canine erythrocytes containing low potassium (LK) and high sodium concentrations, i.e., LK erythrocytes, which completely lack Na,K-ATPase activity. The level of parasitemia of B. gibsoni was significantly decreased when the parasites were incubated in culture medium containing either 10(-1) ng/ml valinomycin or 10(2) ng/ml salinomycin-Na for 24 hr. Four-hour incubation in the culture medium containing 5 μg/ml salinomycin-Na led to the destruction of most parasites. In contrast, when the parasites infected canine erythrocytes containing high potassium (HK) and low sodium concentrations, i.e., HK erythrocytes, the in vitro antibabesial activities of both ionophorous antibiotics seemed to be weakened, apparently due to the protection by the host cells. Therefore, differential influences of ionophorous antibiotics on LK and HK erythrocytes were observed. In LK erythrocytes, the intracellular concentrations of potassium, sodium, and adenosine triphosphate (ATP) were not modified, and hemolysis was not observed after incubation in the medium containing each ionophorous antibiotic. These results suggested that these ionophorous antibiotics did not affect cells without Na,K-ATPase, and directly affected B. gibsoni. In HK erythrocytes, the ionophorous antibiotics increased the intracellular sodium concentration, and decreased the intracellular potassium and ATP concentrations, causing obvious hemolysis. Additionally, the decrease of the intracellular ATP concentration and the hemolysis in HK erythrocytes caused by valinomycin disappeared when the activity of Na,K-ATPase was inhibited by ouabain. These results indicate that modification of the intracellular cation concentrations by the ionophorous antibiotics led to the activation of Na,K-ATPase and increased consumption of intracellular ATP, and that the depletion of intracellular ATP resulted in hemolysis in HK erythrocytes. Moreover, the antibabesial activity of valinomycin disappeared when B. gibsoni in LK erythrocytes were incubated in culture media containing high potassium concentrations. This showed that the intracellular cation concentration in the parasites was not modified in those media and would remain the same.  相似文献   

2.
High-potassium diets can improve vascular function, yet the effects of potassium supplementation on ischemic stroke have not been studied. We hypothesized that dietary potassium supplementation would reduce ischemic cerebral infarct size by reversing cerebral artery hypertrophy. Six-week-old male stroke-prone spontaneously hypertensive rats (SHRSP) were fed diets containing 0.79% potassium (LK) or 2.11% potassium (HK) for 6 wk; Wistar-Kyoto (WKY) rats were fed the LK diet. The HK diet did not reduce blood pressure, as measured by telemetry, in the SHRSP. Cerebral ischemia was induced by middle cerebral artery (MCA) occlusion. The resultant infarct was smaller in the HK-SHRSP than in the LK-SHRSP: 55.1 +/- 6.3 vs. 71.4 +/- 2.4% of the hemisphere infarcted (P < 0.05). Infarcts were smaller in WKY rats (33.5 +/- 4.8%) than in LK-SHRSP or HK-SHRSP. The vessel wall of MCAs from LK-SHRSP was hypertrophied compared with WKY rats; this was reversed in HK-SHRSP. RT-PCR analysis of the cerebral vessels showed that expression of platelet-derived growth factor receptors-alpha and -beta, epidermal growth factor receptor, and collagen I and III was increased in the vessels from LK-SHRSP compared with WKY rats and reduced in HK-SHRSP. These results suggest that potassium supplementation provides neuroprotection in a model of ischemic stroke independent of blood pressure and possibly through changes in vascular structure.  相似文献   

3.
Babesia gibsoni multiplies well in canine red blood cells (RBCs) containing high concentrations of potassium (HK), reduced glutathione, and free amino acids as a result of an inherited high Na,K-ATPase activity, i.e., HK RBCs. To determine the role of Na,K-ATPase in the multiplication of B. gibsoni, the effect of ouabain on the proliferation of the parasites in HK RBCs was investigated. To determine the direct effect of ouabain on the parasites, the proliferation of the parasites in normal canine RBCs containing low potassium (LK) and high sodium concentrations, i.e., LK RBCs, which completely lack Na,K-ATPase activity, was observed. Ouabain at 0.1 mM significantly suppressed the multiplication of B. gibsoni in HK RBCs in vitro, whereas it had no effect on the parasites in LK RBCs. The results suggest that the multiplication of B. gibsoni in HK RBCs depends mainly on the presence of Na,K-ATPase in the cells. Therefore, the effects of ouabain on the intracellular cation and free amino acid composition of the HK RBCs were examined. In HK RBCs incubated with ouabain, a marked decrease in the concentration of potassium and an increase in sodium were observed, together with a decrease in the number of parasitized cells. These results suggest that the intracellular cation composition maintained by Na,K-ATPase might be advantageous to the parasites. Moreover, the concentrations of some free amino acids, i.e., asparagine, aspartate, glutamate, glutamine, glycine, and histidine, were markedly decreased in HK RBCs incubated with ouabain. Decreased concentrations of the free amino acids induced by inhibition of Na,K-ATPase seemed to affect the multiplication of B. gibsoni in HK RBCs. Based on these results, it is clear that the high Na,K-ATPase activity in HK RBCs contributes to the proliferation of B. gibsoni by maintaining high potassium and low sodium concentrations, as well as high concentrations of some free amino acids in the cells.  相似文献   

4.
Nystatin is a membrane-active polyene macrolide antibiotic and a channel-forming ionophore. Nystatin exhibits in vitro activity against Babesia gibsoni infecting normal canine erythrocytes containing low potassium (LK) and high sodium concentrations, i.e., LK erythrocytes. The calculated IC(50) value of nystatin against B. gibsoni infecting LK erythrocytes was 31.96 μg/ml. The anti-babesial activity of nystatin disappeared when B. gibsoni in LK erythrocytes were incubated in culture media containing high potassium concentrations (HK). Moreover, when the parasites were harbored in canine HK erythrocytes, which contained high potassium and low sodium concentrations as a result of high Na-K-ATPase activity, the in vitro anti-babesial activities of nystatin also disappeared, apparently due to protection by HK erythrocytes. This suggested that nystatin could show in vitro anti-babesial activity against B. gibsoni by its ionophorous activity, the same as other ionophores such as valinomycin. Subsequently, the effects of nystatin on the host cells were observed. Nystatin could not modify the intracellular concentrations of potassium, sodium, adenosine triphosphate, or glucose in either LK or HK erythrocytes, although it caused weak hemolysis in HK erythrocytes. In addition, nystatin did not affect the survival of canine peripheral polymorphonuclear leukocytes. In conclusion, nystatin destroyed B. gibsoni by ionophorous activity but did not affect either canine erythrocytes or leukocytes in vitro.  相似文献   

5.
Base-line urinary potassium secretion in the distal nephron is mediated by small conductance rat outer medullary K (ROMK)-like channels. We used the patch clamp technique applied to split-open cortical collecting ducts (CCDs) isolated from rats fed a normal potassium (NK) or low potassium (LK) diet to test the hypothesis that AngII directly inhibits ROMK channel activity. We found that AngII inhibited ROMK channel activity in LK but not NK rats in a dose-dependent manner. The AngII-induced reduction in channel activity was mediated by AT1 receptor (AT1R) binding, because pretreatment of CCDs with losartan but not PD123319 AT1 and AT2 receptor antagonists, respectively, blocked the response. Pretreatment of CCDs with U73122 and calphostin C, inhibitors of phospholipase C (PLC) and protein kinase C (PKC), respectively, abolished the AngII-induced decrease in ROMK channel activity, confirming a role of the PLC-PKC pathway in this response. Studies by others suggest that AngII stimulates an Src family protein-tyrosine kinase (PTK) via PKC-NADPH oxidase. PTK has been shown to regulate the ROMK channel. Inhibition of NADPH oxidase with diphenyliodonium abolished the inhibitory effect of AngII or the PKC activator phorbol 12-myristate 13-acetate on ROMK channels. Suppression of PTK by herbimycin A significantly attenuated the inhibitory effect of AngII on ROMK channel activity. We conclude that AngII inhibits ROMK channel activity through PKC-, NADPH oxidase-, and PTK-dependent pathways under conditions of dietary potassium restriction.  相似文献   

6.
We have shown previously that raising extracellular Ca(2)+ inhibited the apical 70-pS K channel in the thick ascending limb (TAL; Wang, W.H., M. Lu, and S.C. Hebert. 1996. Am. J. Physiol. 270:C103-C111). We now used the patch-clamp technique to study the effect of increasing the extracellular Ca(2)+ on the 70-pS K channel in the mTAL from rats on a different K diet. Increasing the extracellular Ca(2)+ from 10 microM to 0.5, 1, and to 1.5 mM in the mTAL from rats on a K-deficient (KD) diet inhibited the channel activity by 30, 65, and 90%, respectively. In contrast, raising the extracellular Ca(2)+ to 1.5 mM had no significant effect on channel activity in the mTAL from animals on a high K (HK) diet and further increasing the extracellular Ca(2)+ to 2.5, 3.5, and 5.5 mM decreased the channel activity by 29, 55, and 90%, respectively. Inhibition of the cytochrome P450 monooxygenase completely abolished the effect of the extracellular Ca(2)+ on channel activity in the mTAL from rats on a different K diet. In contrast, blocking cyclooxygenase did not significantly alter the responsiveness of the 70-pS K channel to the extracellular Ca(2)+. Moreover, addition of sodium nitropruside, a nitric oxide (NO) donor, not only increased the channel activity, but also blunted the inhibitory effect of the extracellular Ca(2)+ on the 70-pS K channel and decreased 20-hydroxyeicosatetraenoic acid (20-HETE) concentration in the mTAL from rats on a KD diet. In contrast, inhibiting NOS with L-NAME enhanced the inhibitory effect of the extracellular Ca(2)+ on the channel activity and increased 20-HETE concentration in the mTAL from rats on a high K diet. Western blot has further shown that the expression of inducible NO synthase (iNOS) is significantly higher in the renal medulla from rats on an HK diet than that on a KD diet. Also, addition of S-nitroso-N-acetylpenicillamine abolished the inhibitory effect of arachidonic acid on channel activity in the mTAL, whereas it did not block the inhibitory effect of 20-HETE. We conclude that a low dietary K intake increases the sensitivity of the 70-pS K channel to the extracellular Ca(2)+, and that a decrease in NOS activity is involved in enhancing the inhibitory effect of the extracellular Ca(2)+ on channel activity in the mTAL during K depletion.  相似文献   

7.
1. The potassium concentration in red cells of 21 Barbary sheep showed a bimodal distribution, with five animals of LK type (K+ conc. 30-45 mM) and 16 of HK type (K+ conc. 80-95 mM). 2. Evidence is presented that both Lp and Ll antigens are present on LK Barbary sheep red cells. 3. Active K+ transport in LK Barbary sheep red cells was stimulated 3-5 fold by sheep and goat anti-L. 4. Active K+ transport in HK Barbary sheep red cells was higher than in LK red cells. Five out of six HK animals tested showed no stimulation of active K+ transport with anti-L. One HK animal (2BA2) showed some stimulation of active K+ transport, and also absorbed some anti-L from antisera, suggesting that Lp antigen is present on these red cells. 5. Ouabain-sensitive ATPase in membranes from HK and LK Barbary sheep red cells showed kinetics characteristic of HK and LK membranes of domestic goats and sheep; the ATPase of LK Barbary sheep membranes sensitized with anti-L was stimulated 2-fold due to an alteration in the internal sodium and potassium affinities in favour of sodium.  相似文献   

8.
Fibre diameter and medullation percentage in the wool of 474 adult ewes of 3 breeds, belonging to high (HK) and low (LK) blood potassium type have been determined (Marwari 78 LK/198 HK; Chokla 42 LK/56 HK and Russian Merino × Marwari 66 LK/34 HK). No significant difference between potassium types within any of the breeds was observed in medullation percentage. While no significant relationship between potassium type and fibre diameter was observed in individual breeds, least square analysis of the pooled data for the three breeds indicated that there is a possibility of such an association approaching significance, the LK type animal having the potentiality of yielding finer wool than the HK.  相似文献   

9.
Mineral (phosphorus, sulfur, potassium, calcium, magnesium, iron, zinc, copper, and manganese) concentrations were measured in plasma, and several tissues from female Wistar rats (young: 3-wk-old; mature: 6-mo-old) were fed on a dietary regimen designed to study the combined or singular effects of age and dietary protein on mineral status. Three diets, respectively, contained 5, 15, and 20% of bovine milk casein. Nephrocalcinosis chemically diagnosed by increased calcium and phosphorus in kidney was prevented in rats fed a 5% protein diet. Renal calcium and phosphorus were more accumulated in young rats than mature rats. A 5% protein diet decreased hemoglobin and blood iron. The hepatic and splenic iron was increased by a 5% protein diet in mature rats but was not altered in young rats. Mature rats had higher iron in brain, lung, heart, liver, spleen, kidney, muscle, and tibia than young rats. A 5% protein diet decreased zinc in plasma and liver. Zinc in tibia was increased with dietary protein level in young rats but was not changed in mature rats. A 5% protein diet decreased copper concentration in plasma of young rats but not in mature rats. Mature rats had higher copper in plasma, blood, brain, lung, heart, liver, spleen, and kidney than young rats. With age, manganese concentration was increased in brain but decreased in lung, heart, liver, kidney, and muscle. These results suggest that the response to dietary protein regarding mineral status varies with age.  相似文献   

10.
Concentrations of potassium (K) and sodium (Na) were determined in the erythrocytes of 28 members of an interbreeding herd of Speke's gazelle. The distribution of K concentrations and Na/K concentration ratios suggested the presence of the high-K/low-K (HK/LK) polymorphism known in erythrocytes of domestic bovids. The pedigree of the herd of gazelles is known completely, permitting examination of the inheritance of HK/LK polymorphism by overlaying the distribution of phenotypes on the pedigree. Statistical analyses clearly indicate a strong genetic component in the phenotypic variability that is entirely consistent with a single autosomal locus, two-allele mode of inheritance, with the LK allele being dominant. This is the first demonstration of HK/LK polymorphism in a wild bovid species. The evidence indicates that HK/LK polymorphism is of considerable evolutionary age, is of monophyletic origin, and is maintained by selection.  相似文献   

11.
The preparation and properties of an antibody (anti-L) against low potassium type (LK) goat red cells raised in a high potassium type (HK) goat are described. This reagent stimulated active potassium transport, but showed only weak serological activity against low potassium type (LK) sheep and goat red cells. The results are discussed in relation to the hypothesis that anti-L antibody has two specificities--a sodium pump-stimulating activity (anti-Lp) and a serological activity (anti-L1y).  相似文献   

12.
We studied the changes in calcium-induced vasoconstriction in isolated tail arteries from young (2 months) and old (12 months) normotensive, and young renovascular hypertensive rats (3 months old, with unilateral renal artery clipping at 6 weeks), pretreated with reserpine. The tail artery was removed and perfused/superfused with either a high potassium Krebs depolarizing solution or Krebs solution plus phenylephrine. Concentration-response curves to calcium were produced. Old rats had a low plasma renin activity and their depolarized tail arteries showed a weak vasoconstrictor response to calcium. Renovascular hypertensive rats had a high mean blood pressure and plasma renin activity. Responses of their depolarized tail arteries to calcium were greater. Responses to calcium in tail arteries perfused with phenylephrine were similar in all groups. We conclude that age and renovascular hypertension produce opposite changes in vasoconstriction induced by calcium in depolarized tail arteries.  相似文献   

13.
In dissociated cultures of cerebellar granule cells, extracellular high potassium (HK) and low potassium (LK) concentrations control cell survival and apoptosis, respectively. Apoptosis-associated tyrosine kinase (AATYK) is up-regulated during the LK-induced apoptosis. Overexpression of wild-type AATYK, but not its kinase-deficient mutant, stimulates apoptosis in LK. In this study, we analyzed the relationship between the phosphorylation states of AATYK and the survival of granule cells. AATYK was hypophosphorylated in HK, whereas it was hyperphosphorylated in apoptotic LK. HK-dependent hypophosphorylation of AATYK was controlled by L-type voltage-dependent calcium channel-mediated Ca2+ influx followed by Ca2+-dependent protein phosphatase activity. However, LK-induced hyperphosphorylation of AATYK at multiple sites was blocked by kainate, lithium, and protein kinase C-delta inhibitor. AATYK phosphorylation was concurrent with c-Jun phosphorylation. In addition, mutations of AATYK on either the kinase domain or Ser-480, Ser-558, and Ser-566 residues suppressed the LK-induced hyperphosphorylation and apoptosis, suggesting the involvement of self-kinase activity and these Ser residues in this process. Our data therefore indicate that the phosphorylation states of AATYK are closely related to the HK-induced survival and LK-induced apoptosis of cerebellar granule cells.  相似文献   

14.
The preparation and properties of an antibody (anti-L) against low potassium type (LK) goat red cells raised in a high potassium type (HK) goat are described. This reagent stimulated active potassium transport, but showed only weak serological activity against low potassium type (LK) sheep and goat red cells. The results are discussed in relation to the hypothesis that anti-L anti-body has two specificities — a sodium pump-stimulating activity (anti-Lp) and a serological activity (anti-Lly.  相似文献   

15.
1. We studied the effects of selective chronic dietary sodium, chloride, or potassium depletion in young rats on vasopressin mRNA levels in the supraoptic and paraventricular nuclei, an index of vasopressin formation, and in plasma vasopressin levels, an index of vasopressin release. 2. All diets significantly increased plasma renin activity, contracted the extracellular fluid volume, and decreased serum osmolarity. 3. In the supraoptic nucleus, vasopressin mRNA levels were significantly decreased in the low-sodium group but were not significantly affected by chloride depletion. 4. There were no significant changes in vasopressin mRNA in the paraventricular nucleus after sodium or chloride dietary depletion. 5. After 2 weeks of potassium depletion, vasopressin mRNA levels were decreased in the supraoptic nucleus. When potassium depletion was prolonged for 3 weeks, vasopressin mRNA levels increased in both supraoptic and paraventricular nuclei. 6. Plasma vasopressin levels were high in animals subjected to dietary chloride depletion or to 3 weeks of potassium depletion. Dietary sodium depletion or 2 weeks of dietary potassium depletion did not significantly affect plasma vasopressin. 7. Our results show that chronic sodium, chloride, or potassium depletion differentially affect brain vasopressin mRNA and vasopressin release in young rats. 8. The effect of these diets may be mediated through changes in the extracellular fluid volume, serum osmolarity, and/or renin angiotensin system.  相似文献   

16.
Negative potassium balance during hypokinesia (decreased number of kilometers taken/day) is not based on the potassium shortage in the diet, but on the impossibility of the body to retain potassium. To assess this hypothesis, we study the effect of potassium loading on athletes during prolonged hypokinesia (HK). Studies were done during 30 d of a pre-HK period and during 364 d of an HK period. Forty male athletes aged 23–26 yr were chosen as subjects. They were divided equally into four groups: unloaded ambulatory control subjects (UACS), unloaded hypokinetic subjects (UHKS), loaded hypokinetic subjects (LHKS), and loaded ambulatory control subjects (LACS). For the simulation of the hypokinetic effect, the LHKS and UHKS groups were kept under an average running distance of 1.7 km/d. In the LACS and LHKS groups, potassium loading tests were done by administering 95.35 mg KC1 per kg body weight. During the pre-HK and HK periods and after KC1 loading tests, fecal and urinary potassium excretion, sodium and chloride excretion, plasma potassium, sodium and chloride concentration, and potassium balance were measured. Plasma renin activity (PRA) and plasma aldosterone concentration was also measured. Negative potassium balance increased significantly (p < -0.01) in the UHKS and LHKS groups when compared with the UACS and LACS groups. Plasma electrolyte concentration, urinary electrolyte excretion, fecal potassium excretion, PRA, and PA concentration increased significantly (p ≤ 0.01) in the LHKS and UHKS groups when compared with LACS and UACS groups. Urinary and fecal potassium excretion increased much more and much faster in the LHKS group than in the UHKS group. By contrast, the corresponding parameters change insignificantly in the UACS and LACS groups when compared with the base line control values. It was concluded that urinary and fecal potassium excretion increased significantly despite the presence of negative potassium balance; thus, negative potassium balance may not be based on potassium shortage in the diet because of the impossibility of the body to retain potassium during HK.  相似文献   

17.
Both arginine and silicon affect collagen formation and bone mineralization. Thus, an experiment was designed to determine if dietary arginine would alter the effect of dietary silicon on bone mineralization and vice versa. Male weanling Sprague-Dawley rats were assigned to groups of 12 in a 2×2 factorially arranged experiment. Supplemented to a ground corn/casein basal diet containing 2.3 μg Si/g and adequate arginine were silicon as sodium metasilicate at 0 or 35 μg/g diet and arginine at 0 or 5 mg/g diet. The rats were fed ad libitum deionized water and their respective diets for 8 wk. Body weight, liver weight/body weight ratio, and plasma silicon were decreased, and plasma alkaline phosphatase activity was increased by silicon deprivation. Silicon deprivation also decreased femoral calcium, copper, potassium, and zinc concentrations, but increased the femoral manganese concentration. Arginine supplementation decreased femoral molybdenum concentration but increased the femoral manganese concentration. Vertebral concentrations of phosphorus, sodium, potassium, copper, manganese, and zinc were decreased by silicon deprivation. Arginine supplementation increased vertebral concentrations of sodium, potassium, manganese, zinc, and iron. The arginine effects were more marked in the silicon-deprived animals, especially in the vertebra. Germanium concentrations of the femur and vertebra were affected by an interaction between silicon and arginine; the concentrations were decreased by silicon deprivation in those animals not fed supplemental arginine. The change in germanium is consistent with a previous finding by us suggesting that this element may be physiologically important, especially as related to bone DNA concentrations. The femoral and vertebral mineral findings support the contention that silicon has a physiological role in bone formation and that arginine intake can affect that role. The U.S. Department of Agriculture, Agricultural Research Service, Northern Plains Area is an equal opportunity/affirmative action employer, and all agency services are available without discrimination. Mention of a trademark or proprietary product does not constitute a guarantee or warranty of the product by the U.S. Department of Agriculture and does not imply its approval to the exclusion of other products that may be suitable.  相似文献   

18.
Interaction of HK and LK Goat Red Blood Cells with Ouabain   总被引:1,自引:0,他引:1       下载免费PDF全文
The characteristics of the interaction of Na-K pumps of high potassium (HK) and low potassium (LK) goat red blood cells with ouabain have been determined. The rate of inhibition by ouabain of the pump of HK cells is greater than the rate of inhibition of the pumps of LK cells. Treatment of LK cells with an antibody (anti-L) raised in HK sheep by injecting LK sheep red cells increases the rate of inhibition of the LK pumps by ouabain to that characteristic of HK pumps; reduction of intracellular K (Kc) in LK cells increases the rate at which ouabain inhibits their pumps and exposure of these low Kc cells to anti-L does not affect the rate of inhibition. There is considerable heterogeneity in the pumps of both HK and LK cells in the rate at which they interact with ouabain or the rate at which they pump or both. LK pumps which are sensitive to stimulation by anti-L bind ouabain less rapidly than the remainder of the LK pumps and exposure to antibody increases the rate at which ouabain binds to the sensitive pumps; the difference between the two types of pumps disappears if intracellular K is very low. The calculated number of ouabain molecules bound at 100% inhibition of the pump is about the same for HK and LK cells. Although exposure to anti-L increases the apparent number of ouabain binding sites in LK cells at normal Kc, it does not alter the apparent number of sites in LK cells when Kc has been reduced.  相似文献   

19.
Binding of 3H-ouabain was studied in high potassium (HK) and low potassium (LK) sheep red cells. In particular, we investigated the effect of anti-L, an antibody raised in HK sheep against L-positive LK sheep red cells, on 3H-oubain binding and its relation to K+ -pump flux inhibition in LK cells. HK cells were found to have about twice as many 3H-ouabain binding sites and a higher association rate for 3H-ouabain than homozygous LL-type LK cells. The number of 3H-ouabain molecules bound to heterozygous LM-type LK cells is lower than that on LL cells, but the rate of ouabain binding is between that of HK and LL red cells. A close correlation was observed between the rates of 3H-oubain binding and fraction K+-pump inhibition. Exposure of LM and LL cells to anti-L did not affect the number of 3H-ouabain molecules bound at saturation, but increased the rates of glycoside binding and K+ -pump inhibition proportionately, so that for LK cells in the presence of anti-L, the rates of the two processes approximate those of HK cells. These data exclude the possibility that anti-L generates entirely new pump sites in LK sheep cells, but suggest that the antibody increases the affinity of the existing -a+ -K+ pumps for the glycoside.  相似文献   

20.
In a study with rats it was determined whether dietary magnesium concentration affects plasma esterase activities. The feeding of a diet with 0.01% (w/w) instead of 0.04% magnesium reduced plasma magnesium concentration by 50%. Plasma total esterase, arylesterase and butyrylcholinesterase activities were significantly decreased in the magnesium-deficient rats. In rats fed a diet containing 0.02% magnesium, plasma magnesium concentration was lowered by 30%, and group mean plasma total esterase activity was decreased, but not the activities of arylesterase and butyrylcholinesterase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号