首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vasohibin-1 (VASH1) is a VEGF-inducible endothelium-derived angiogenesis inhibitor and VASH2 is its homolog. Our previous analysis revealed that VASH1 is expressed in endothelial cells to terminate angiogenesis, whereas VASH2 is expressed in infiltrating mononuclear cells mobilized from bone marrow to promote angiogenesis in a mouse model of hypoxia-induced subcutaneous angiogenesis. To test the possible involvement of VASH2 in the tumor, we examined human ovarian cancer cells for the presence of VASH2. Immunohistochemical analysis revealed that VASH2 protein was preferentially detected in cancer cells of serous ovarian adenocarcinoma. We then used SKOV-3 and DISS, two representative human serous adenocarcinoma cell lines, and examined the role of VASH2 in the tumor. The knockdown of VASH2 showed little effect on the proliferation of cancer cells in vitro but notably inhibited tumor growth, peritoneal dissemination, and tumor angiogenesis in a murine xenograft model. Next, we stably transfected the human VASH2 gene into two types of murine tumor cells, EL-4 and MLTC-1, in which endogenous VASH2 was absent. When either EL-4 or MLTC-1 cells were inoculated into VASH2 (-/-) mice, the VASH2 transfectants formed bigger tumors when compared with the controls, and the tumor microvessel density was significantly increased. VASH2 stimulated the migration of endothelial cells, and its increased expression in cancer cells is related to the decrease of mir-200b. These results indicate that VASH2 expressed in serous ovarian carcinoma cells promoted tumor growth and peritoneal dissemination by promoting angiogenesis. Mol Cancer Res; 10(9); 1135-46. ?2012 AACR.  相似文献   

2.
Vasohibin‐1 (VASH1) is an angiogenesis‐inhibiting factor synthesized by endothelial cells (ECs) and it also functions to increase stress tolerance of ECs, which function is critical for the maintenance of vascular integrity. Here, we examined whether the expression of VASH1 would be affected by aging. We passaged human umbilical vein endothelial cells (HUVECs) and observed that VASH1 was downregulated in old HUVECs. This decrease in VASH1 expression with aging was confirmed in mice. To explore the mechanism of this downregulation, we compared the expression of microRNAs between old and young HUVECs by performing microarray analysis. Among the top 20 microRNAs that were expressed at a higher level in old HUVECs, the third highest microRNA, namely miR‐22‐3p, had its binding site on the 3′ UTR of VASH1 mRNA. Experiments with microRNA mimic and anti‐miR revealed that miR‐22‐3p was involved at least in part in the downregulation of VASH1 in ECs during replicative senescence. We then clarified the significance of this defective expression of VASH1 in the vasculature. When a cuff was placed around the femoral arteries of wild‐type mice and VASH1‐null mice, neointimal formation was augmented in the VASH1‐null mice accompanied by an increase in adventitial angiogenesis, macrophage accumulation in the adventitia, and medial/neointimal proliferating cells. These results indicate that in replicative senescence, the downregulation of VASH1 expression in ECs was caused, at least in part, by the alteration of microRNA expression. Such downregulation of VASH1 might be involved in the acceleration of age‐associated vascular diseases.  相似文献   

3.
4.
Vasohibin1 (VASH1) is a kind of vasopressor, produced by negative feedback from vascular endothelial growth factor A (VEGFA). Anti-angiogenic therapy targeting VEGFA is currently the first-line treatment for advanced ovarian cancer (OC), but there are still many adverse effects. Regulatory T cells (Tregs) are the main lymphocytes mediating immune escape function in the tumor microenvironment (TME) and have been reported to influence the function of VEGFA. However, whether Tregs are associated with VASH1 and angiogenesis in TME in OC is unclear. We aimed to explore the relationship between angiogenesis and immunosuppression in the TME of OC. We validated the relationship between VEGFA, VASH1, and angiogenesis in ovarian cancer and their prognostic implications. The infiltration level of Tregs and its marker forkhead box protein 3 (FOXP3) were explored in relation to angiogenesis-related molecules. The results showed that VEGFA and VASH1 were associated with clinicopathological stage, microvessel density and poor prognosis of ovarian cancer. Both VEGFA and VASH1 expression were associated with angiogenic pathways and there was a positive correlation between VEGFA and VASH1 expression. Tregs correlated with angiogenesis-related molecules and indicated that high FOXP3 expression is harmful to the prognosis. Gene set enrichment analysis (GSEA) predicted that angiogenesis, IL6/JAK/STAT3 signaling, PI3K/AKT/mTOR signaling, TGF-β signaling, and TNF-α signaling via NF-κB may be common pathways for VEGFA, VASH1, and Tregs to be involved in the development of OC. These findings suggest that Tregs may be involved in the regulation of tumor angiogenesis through VEGFA and VASH1, providing new ideas for synergistic anti-angiogenic therapy and immunotherapy in OC.  相似文献   

5.
Angiogenesis, a formation of neo-vessels from pre-existing ones, is regulated by the local balance between its stimulators and inhibitors. Vasohibin-1 (VASH1) was originally identified as an endothelium-derived vascular endothelial growth factor (VEGF)-inducible angiogenesis inhibitor that acts in a negative feedback manner. The expression of VASH1 has been shown in endothelial cells (ECs) in both physiological and pathological conditions associated with angiogenesis. However, recent reports indicate that VASH1 is expressed not only in ECs but also in other cell types including haematopoietic cells. The function of VASH1 may not be restricted to angiogenesis inhibition.  相似文献   

6.
Vasohibin-1 (VASH1) is a key inhibitor of vascular endothelial growth factor-induced angiogenesis. Although the involvement of VASH1 in various pathological processes has been extensively studied, its role in periodontal disease (PD) remains unclear. We aimed to investigate the role of VASH1 in PD by focusing on osteoclastogenesis regulation. We investigated VASH1 expression in PD by analyzing data from the online Gene Expression Omnibus (GEO) database and using a mouse ligature-induced periodontitis model. The effects of VASH1 on osteoclast differentiation and osteoclastogenesis-supporting cells were assessed in mouse bone marrow-derived macrophages (BMMs) and human gingival fibroblasts (GFs). To identify the stimulant of VASH1, we used culture broth from Porphyromonas gingivalis (Pg), a periopathogen. The GEO database and mouse periodontitis model revealed that VASH1 expression was upregulated in periodontitis-affected gingival tissues, which was further supported by immunohistochemistry and qRT-PCR analyses. VASH1 expression was significantly stimulated in GFs after treatment with the Pg broth. Direct treatment with recombinant VASH1 protein did not stimulate osteoclast differentiation in BMMs but did contribute to osteoclast differentiation by inducing RANKL expression in GFs through a paracrine mechanism. Small interfering RNA-mediated silencing of VASH1 in GFs abrogated RANKL-mediated osteoclast differentiation in BMMs. Additionally, VASH1-activated RANKL expression in GFs was significantly suppressed by MK-2206, a selective inhibitor of AKT. These results suggest that Pg-induced VASH1 may be associated with RANKL expression in GFs in a paracrine manner, contributing to osteoclastogenesis via an AKT-dependent mechanism during PD progression.  相似文献   

7.
Quadruplex structures that result from stacking of guanine quartets in nucleic acids possess such thermodynamic stability that their resolution in vivo is likely to require specific recognition by specialized enzymes. We previously identified the major tetramolecular quadruplex DNA resolving activity in HeLa cell lysates as the gene product of DHX36 (Vaughn, J. P., Creacy, S. D., Routh, E. D., Joyner-Butt, C., Jenkins, G. S., Pauli, S., Nagamine, Y., and Akman, S. A. (2005) J. Biol Chem. 280, 38117-38120), naming the enzyme G4 Resolvase 1 (G4R1). G4R1 is also known as RHAU, an RNA helicase associated with the AU-rich sequence of mRNAs. We now show that G4R1/RHAU binds to and resolves tetramolecular RNA quadruplex as well as tetramolecular DNA quadruplex structures. The apparent K(d) values of G4R1/RHAU for tetramolecular RNA quadruplex and tetramolecular DNA quadruplex were exceptionally low: 39 +/- 6 and 77 +/- 6 Pm, respectively, as measured by gel mobility shift assay. In competition studies tetramolecular RNA quadruplex structures inhibited tetramolecular DNA quadruplex structure resolution by G4R1/RHAU more efficiently than tetramolecular DNA quadruplex structures inhibited tetramolecular RNA quadruplex structure resolution. Down-regulation of G4R1/RHAU in HeLa T-REx cells by doxycycline-inducible short hairpin RNA caused an 8-fold loss of RNA and DNA tetramolecular quadruplex resolution, consistent with G4R1/RHAU representing the major tetramolecular quadruplex helicase activity for both RNA and DNA structures in HeLa cells. This study demonstrates for the first time the RNA quadruplex resolving enzymatic activity associated with G4R1/RHAU and its exceptional binding affinity, suggesting a potential novel role for G4R1/RHAU in targeting in vivo RNA quadruplex structures.  相似文献   

8.
Vasohibin-1 (VASH1) and vasohibin-2 (VASH2), the 2 members of the vasohibin family, have been identified as novel regulators of angiogenesis. VASH1 ceases angiogenesis, whereas VASH2 stimulates sprouting. Here we characterized their functional role in the placenta. Immunohistochemical analysis of human placental tissue clarified their distinctive localization; VASH1 in endothelial cells and VASH2 in trophoblasts. We then used a mouse model to explore their function. Wild-type, Vash1(−/−), and Vash2(−/−) mice on a C57BL6 background were used in their first pregnancy. As expected, the fetal vascular area was increased in the Vash1(−/−) mice, whereas it was decreased in the Vash2(−/−) mice relative to wild-type. In addition, we noticed that the Vash2(−/−) mice at 18.5dpc displayed thinner villi of the labyrinth and larger maternal lacunae. Careful observation by an electron microscopy revealed that the syncytiotrophoblast formation was defective in the Vash2(−/−) mice. To test the possible involvement of VASH2 in the syncytiotrophoblast formation, we examined the fusion of BeWo cells, a human trophoblastoid choriocarcinoma cell line. The forskolin treatment induced the fusion of BeWo cells, and the knockdown of VASH2 expression significantly inhibited this cell fusion. Conversely, the overexpression of VASH2 by the infection with adenovirus vector encoding human VASH2 gene significantly increased the fusion of BeWo cells. Glial cell missing-1 and endogenous retrovirus envelope glycoprotein Syncytin 1 and Syncytin 2 are known to be involved in the fusion of trophoblasts. However, VASH2 did not alter their expression in BeWo cells. These results indicate that VASH1 and VASH2 showed distinctive localization and opposing function on the fetoplacental vascularization. Moreover, our study shows for the first time that VASH2 expressed in trophoblasts is involved in the regulation of cell fusion for syncytiotrophoblast formation.  相似文献   

9.
Vasohibin-1 (VASH1) is a unique endogenous inhibitor of angiogenesis that is induced in endothelial cells by pro-angiogenic factors. We previously reported renoprotective effect of adenoviral delivery of VASH1 in diabetic nephropathy model, and herein investigated the potential protective role of endogenous VASH1 by using VASH1-deficient mice. Streptozotocin-induced type 1 diabetic VASH1 heterozygous knockout mice (VASH1+/−) or wild-type diabetic mice were sacrificed 16 weeks after inducing diabetes. In the diabetic VASH1+/− mice, albuminuria were significantly exacerbated compared with the diabetic wild-type littermates, in association with the dysregulated distribution of glomerular slit diaphragm related proteins, nephrin and ZO-1, glomerular basement membrane thickning and reduction of slit diaphragm density. Glomerular monocyte/macrophage infiltration and glomerular nuclear translocation of phosphorylated NF-κB p65 were significantly exacerbated in the diabetic VASH1+/− mice compared with the diabetic wild-type littermates, accompanied by the augmentation of VEGF-A, M1 macrophage-derived MCP-1 and phosphorylation of IκBα, and the decrease of angiopoietin-1/2 ratio and M2 macrophage-derived Arginase-1. The glomerular CD31+ endothelial area was also increased in the diabetic VASH1+/− mice compared with the diabetic-wild type littermates. Furthermore, the renal and glomerular hypertrophy, glomerular accumulation of mesangial matrix and type IV collagen and activation of renal TGF-β1/Smad3 signaling, a key mediator of renal fibrosis, were exacerbated in the diabetic VASH1+/− mice compared with the diabetic wild-type littermates. In conditionally immortalized mouse podocytes cultured under high glucose condition, transfection of VASH1 small interfering RNA (siRNA) resulted in the reduction of nephrin, angiopoietin-1 and ZO-1, and the augmentation of VEGF-A compared with control siRNA. These results suggest that endogenous VASH1 may regulate the development of diabetic renal alterations, partly via direct effects on podocytes, and thus, a strategy to recover VASH1 might potentially lead to the development of a novel therapeutic approach for diabetic nephropathy.  相似文献   

10.
Fragile X syndrome (FXS) is the most common inherited form of intellectual disability caused by the CGG trinucleotide expansion in the 3′-untranslated region of the FMR1 gene on the X chromosome, that silences the expression of the Fragile X mental retardation protein (FMRP). FMRP has been shown to bind to a G-rich region within the PSD-95 mRNA which encodes for the postsynaptic density protein 95 (PSD-95), and together with the microRNA miR-125a, to play an important role in the reversible inhibition of the PSD-95 mRNA translation in neurons. The loss of FMRP in Fmr1 KO mice disables this translation control in the production of the PSD-95 protein. Interestingly, the miR-125a binding site on PSD-95 mRNA is embedded in the G-rich region bound by FMRP and postulated to adopt one or more G quadruplex structures. In this study, we have used different biophysical techniques to validate and characterize the formation of parallel G quadruplex structures and binding of miR-125a to its complementary sequence located within the 3′ UTR of PSD-95 mRNA. Our results indicate that the PSD-95 mRNA G-rich region folds into alternate G quadruplex conformations that coexist in equilibrium. miR-125a forms a stable complex with PSD-95 mRNA, as evident by characteristic Watson–Crick base-pairing that coexists with one of the G quadruplex forms, suggesting a novel mechanism for G quadruplex structures to regulate the access of miR-125a to its binding site.  相似文献   

11.
12.
13.
14.
15.
Vasohibins (VASH1 and VASH2) are recently identified regulators of angiogenesis and cancer cell functions. They are secreted proteins without any classical secretion signal sequences, and are thought to be secreted instead via an unconventional protein secretion (UPS) pathway in a small vasohibin‐binding protein (SVBP)‐dependent manner. However, the precise mechanism of SVBP‐dependent UPS is poorly understood. In this study, we identified a novel UPS regulatory system in which essential domain architecture (VASH‐PS) of VASHs, comprising regions VASH191–180 and VASH280–169, regulate the cytosolic punctate structure formation in the absence of SVBP. We also demonstrate that SVBP form a complex with VASH1 through the VASH1274–282 (SIa), VASH1139‐144 (SIb), and VASH1133–137 (SIc), leading to the dispersion in the cytosol and extracellular release of VASH1. The amino acid sequences of VASH‐SIa and VASH‐PS, containing SIb and SIc, are highly conserved among VASH family members in vertebrates, suggesting that SVBP‐dependent UPS may be common within the VASH family. This novel UPS regulatory system may open up new avenues for understanding fundamental protein secretion in vertebrates.  相似文献   

16.
Angiogenesis in vitro, the formation of capillary-like structures by cultured endothelial cells, is associated with changes in the expression of several extracellular matrix proteins. The expression of SPARC, a secreted collagen-binding glycoprotein, has been shown to increase significantly during this process. We now show that addition of purified SPARC protein, or an N-terminal synthetic peptide (SPARC4-23), to strains of bovine aortic endothelial cells undergoing angiogenesis in vitro resulted in a dose-dependent decrease in the synthesis of fibronectin and thrombospondin-1 and an increase in the synthesis of type 1-plasminogen activator inhibitor. SPARC decreased fibronectin mRNA by 75% over 48 h, an effect that was inhibited by anti-SPARC immunoglobulins. Levels of thrombospondin-1 mRNA were diminished by 80%. Over a similar time course, both mRNA and protein levels of type 1-plasminogen activator inhibitor (PAI-1) were enhanced by SPARC and the SPARC4-23 peptide. The effects were dose-dependent with concentrations of SPARC between 1 and 30 micrograms/ml. In contrast, no changes were observed in the levels of either type I collagen mRNA or secreted gelatinases. Half-maximal induction of PAI-1 mRNA or inhibition of fibronectin and thrombospondin mRNAs occurred with 2-5 micrograms/ml SPARC and approximately 0.05 mM SPARC4-23. Strains of endothelial cells that did not form cords and tubes in vitro had reduced or undetectable responses to SPARC under identical conditions. These results demonstrate that SPARC modulates the synthesis of a subset of secreted proteins and identify an N-terminal acidic sequence as a region of the protein that provides an active site. SPARC might therefore function, in part, to achieve an optimal ratio among different components of the extracellular matrix. This activity would be consistent with known effects of SPARC on cellular morphology and proliferation that might contribute to the regulation of angiogenesis in vivo.  相似文献   

17.
Mouse capillary endothelial cells (1G11 cell line) embedded in type I collagen gels undergo in vitro angiogenesis. Cells rapidly reorganize and form capillary-like structures when stimulated with serum. Transforming growth factor beta1 (TGF-beta1) alone can substitute for serum and induce cell survival and tubular network formation. This TGF-beta1-mediated angiogenic activity depends on phosphatidylinositol 3-kinase (PI3K) and p42/p44 mitogen-activated protein kinase (MAPK) signaling. We showed that specific inhibitors of either pathway (wortmannin, LY-294002, and PD-98059) all suppressed TGF-beta1-induced angiogenesis mainly by compromising cell survival. We established that TGF-beta1 stimulated the expression of TGF-alpha mRNA and protein, the tyrosine phosphorylation of a 170-kDa membrane protein representing the epidermal growth factor (EGF) receptor, and the delayed activation of PI3K/Akt and p42/p44 MAPK. Moreover, we showed that all these TGF-beta1-mediated signaling events, including tubular network formation, were suppressed by incubating TGF-beta1-stimulated endothelial cells with a soluble form of an EGF receptor (ErbB-1) or tyrphostin AG1478, a specific blocker of EGF receptor tyrosine kinase. Finally, addition of TGF-alpha alone poorly stimulated angiogenesis; however, by reducing cell death, it strongly potentiated the action of TGF-beta1. We therefore propose that TGF-beta1 promotes angiogenesis at least in part via the autocrine secretion of TGF-alpha, a cell survival growth factor, activating PI3K/Akt and p42/p44 MAPK.  相似文献   

18.
19.
20.
Regulation of hypoxia inducible factor (HIF)-1α stabilization, which in turn contributes to adaptation of tumor cells to hypoxia has been highlighted as a promising therapeutic target in angiogenesis-related diseases. We have identified a new small molecule, G0811, as a potent angiogenesis inhibitor that targets HIF-1α signal transduction. G0811 suppressed HIF-1α stability in cancer cells and inhibited in vitro and in vivo angiogenesis, as validated by tube formation, chemoinvasion, and chorioallantoic membrane (CAM) assays. In addition, G0811 effectively decreased the expression of vascular endothelial growth factor (VEGF), which is one of target genes of HIF-1α. However, G0811 did not exhibit anti-proliferative activities or toxicity in human umbilical vein endothelial cells (HUVECs) at effective doses. These results demonstrate that G0811 could be a new angiogenesis inhibitor that acts by targeting HIF-1α signal transduction pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号