首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanisms by which Venus's Flytrap (Dionaea muscipula Ellis) close are not clearly understood, and several conflicting models have been proposed. We have measured the dynamics of five trap tissues from three trap regions during full closure of young, fully developed, previously unclosed traps. Closure was divided into three distinct stages: 1) Capture–occurred immediately after stimulation of the trigger hairs and involved the rapid inward flexure of the trap margin and tynes. This motion interlocked the tynes, effectively capturing the prey. This was the only rapid movement of the trap; 2) Appression–completed by 30 min poststimulation, was characterized by contact of the margins; and 3) Sealing–completed by 1 hr poststimulation, was characterized by a sealed “digestive” sac formed around the potential prey, also by tight appression and recurved bending of the trap–margins. Major tissue dynamics that facilitated changes in trap morphology (hence, closure) occurred in different regions of the trap during different periods of time. The first regions where activity occurred were the A and C regions (Fig. 1), after approximately 15 min poststimulation; tissues in the C regions were most active followed by those in the B region of the trap (30 min to 1 hr poststimulation). Thus, shape changes during each stage of closure were the result of temporally separated changes in trap tissue volume. The complete sequence of events was elicited by a single 5–sec period of trigger hair stimulation. Our study showed that changes in the curvature of the trap during closure involved the expansion of opposing tissue groups (i.e., on opposite sides of trap medullary tissues). The pressure from contact of opposing trap lobes during the Appression stage may play an important role in regulating further trap closure and morphology.  相似文献   

2.
3.
Intracellular membrane trafficking regulates a wide variety of developmental processes, including cell and tissue morphogenesis. Here we report developmental expression of Drosophila Rab11, a small GTP‐binding protein, required for both endocytic recycling and exocytosis. Rab11 is expressed in the epithelial cell types of diverse lineages at all developmental stages, beginning from the cellular blastoderm in early embryos to adult primordia and adult tissues, like the columnar epithelia lining male ejaculatory bulb. A robust expression of Rab11 is seen both in the amnioserosa and in the lateral epidermis during embryonic dorsal closure, a morphogenetic event that involves spreading and fusion of the contra‐lateral sides of epidermis. Rab11 mutant embryos fail to display the characteristic morphological changes in these two epithelial tissues during dorsal closure, providing a strong basis to dissect the role of Rab11 in coordinated epithelial sheet movements. genesis 47:32–39, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

4.
Developing embryos of the lake chubsucker, Erimyzon sucetta, were analyzed with regard to both gross morphological changes and specific enzymatic changes from the unfertilized egg stage until some 3 weeks posthatching. Total activities of three enzymes—lactate dehydrogenase, glucose-6-phosphate dehydrogenase, and isocitrate dehydrogenase—were determined throughout the course of development. Each of these different enzymes exhibited a different pattern of change during ontogeny. Electrophoretic analysis of qualitative changes in isozyme patterns was accomplished for these three enzymes and for α-amylase, glucosephosphate isomerase, mannosephosphate isomerase, creatine kinase, esterase, glutamate dehydrogenase, alkaline phosphatase, aspartate aminotransferase, malate dehydrogenase, hexose diphosphatase, phosphoglucomutase, and phosphogluconate dehydrogenase. Many of the enzyme systems investigated exhibited rich patterns of ontogenetic change, while a few remained relatively unchanged throughout the interval studied. Several of the enzymes in particular metabolic pathways exhibited coincident changes suggestive of coordinate control. The appearance of several rather “tissue-specific” isozymes was closely correlated with the morphological and functional differentiation of these particular tissues or organs.  相似文献   

5.
The rat’s ability to vary its whisking “strategies” to meet the functional demands of a discriminative task suggests that whisking may be characterized as a “voluntary” behavior—an operant—and like other operants, should be modifiable by appropriate manipulations of response–reinforcer contingencies. To test this hypothesis we have used high-resolution, optoelectronic “real-time” recording procedures to monitor the movements of individual whiskers and reinforce specific movement parameters (amplitude, frequency). In one operant paradigm (N = 9) whisks with protractions above a specified amplitude were reinforced (Variable Interval 30?s) in the presence of a tone, but extinguished (EXT) in its absence. In a second paradigm (N = 3), rats were reinforced on two different VI schedules (VI-20s/VI-120s) signaled, respectively, by the presence or absence of the tone. Selective reinforcement of whisking movements maintained the behavior over many weeks of testing and brought it under stimulus and schedule control. Subjects in the first paradigm learned to increase responding in the presence of the tone and inhibit responding in its absence. In the second paradigm, subjects whisked at significantly different rates in the two stimulus conditions. Bilateral deafferentation of the whisker pad did not impair conditioned whisking or disrupt discrimination behavior. Our results confirm the hypothesis that rodent whisking has many of the properties of an operant response. The ability to bring whisking movement parameters under operant control should facilitate electrophysiological and lesion/behavioral studies of this widely used “model” sensorimotor system.  相似文献   

6.
7.
Chimaera (Holocephali) are cartilaginous fishes with flexible operculi rather than external gill slits, suggesting ventilation occurs in a manner different from other fishes. We examined holocephalan ventilation morphology, behavior, and performance by anatomical investigations, high‐speed video, and in vivo pressure measurements from the buccal and parabranchial cranial cavities in Hydrolagus colliei and Callorhinchus callorynchus. Ventilatory modes ranged from quiet resting breathing to rapid “active” breathing, yet external cranial movements—excepting the passive movement of the opercular flap—were always extremely subtle, and pressures generated were one to two orders of magnitude lower than those of other fishes. To explain ventilation with such minimal pressure generation and cranial motion, we propose an “accordion” model, whereby rostrocaudal movement of the visceral arches drives pressure differentials, albeit with little lateral or ventral movement. Chimaeroids have comparatively large oropharyngeal cavities, which can move fluid with a smaller linear dimension change than the comparatively smaller cavities of other fishes. Orobranchial pressures are often less than parabranchial pressures, suggesting flow in the “wrong” direction; however, the long gill curtains of chimaeroids may passively restrict backflow. We suggest that constraints on holocephalan jaw and hyoid movements were compensated for evolutionarily by novel visceral arch mechanics and kinematics. J. Morphol., 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

8.
Changes in the sea level during the Holocene are regarded as one of the most prevalent drivers of the diversity and distribution of macroalgae in Brazil, influenced by the emergence of the Vitória-Trindade seamount chain (VTC). Gracilariopsis tenuifrons has a wide geographic distribution along the Brazilian coast, from Maranhão state (2°48′64.3" S) to Santa Catarina state (27.5°73′83" S). The knowledge of historical processes affecting diversity may allow the development of conservation strategies in environments against anthropogenic influence. Therefore, knowledge about phylogeography and populational genetic diversity in G. tenuifrons is necessary. Six populations were sampled along the northeastern tropical (Maranhão—MA, Rio Grande do Norte—RN, Alagoas—AL, and Bahia—BA States) and southeastern subtropical (São Paulo “Ubatuba”—SP1 and São Paulo “Itanhaém”—SP2 States) regions along the Brazilian coast. The genetic diversity and structure of G. tenuifrons were inferred using mitochondrial (COI-5P and cox2-3 concatenated) DNA markers. Gracilariopsis tenuifrons populations showed an evident separation between the northeast (from 2°48′64.3" S to 14°18′23" S; 17 haplotypes) and the southeast (from 23°50′14.9" S to 24°20′04.7" S; 10 haplotypes) regions by two mutational steps between them. The main biogeographical barrier to gene flow is located nearby the VTC. The southeast region (São Paulo State) is separated by two subphylogroups (SP1, three haplotypes and SP2, six haplotypes), and Santos Bay (estuary) has been considered a biogeographical barrier between them. The presence of genetic structure and putative barriers to gene flow are in concordance with previous studies reporting biogeographic breaks in the southwest Atlantic Ocean, including the genetic isolation between northeast and southeast regions for red and brown algae in the vicinity of the VTC.  相似文献   

9.
Kinetics and mechanism of Dionaea muscipula trap closing   总被引:1,自引:0,他引:1  
  相似文献   

10.
Analyses were made of subfossil Eubosmina remains from the Lake Neuendorfer See, a lake in the middle part of the river Spree in the “Urstromtal” of Baruth situated in the eastern part of Germany. In addition to Bosmina (Bosmina) longirostris (O. F. M., 1785) Bosmina (Eub.) longicornis longicornis Schoedler, 1866 occured in the lake from the Boreal (sediment depth 15.85 m) to the recent surface layers of the core. Other eubosminids did not occur during the history of the Lake Neuendorfer See with the exception of few remains of B. (Eub.) longispina, which were detected in the lowermost layers of the core during the late Pleistocene. In the present-day plankton, Bosmina (Eub.) l. longicornis was the only eubosminid found in the Lake Neuendorfer See. During the long period between colonization during the Boreal to the present, no changes were detected in typical morphological features of B. (Eub.) l. longicornis. All remains of Eubosmina in the layers above 15.85 m belong undoubtedly to the same taxon. No signs of any morphological instability (other then ontogenetic and cyclomorphic formchanges) or “morphological transition” (Hofmann, 1977) to other taxa could be found. By using paleolimnological analyses, the named taxon has proven to be a “good” entity within the group of long-spined taxa of the subgenus Eubosmina.  相似文献   

11.
Helices are the most common elements of RNA secondary structure. Despite intensive investigations of various types of RNAs, the evolutionary history of the formation of new helices (novel helical structures) remains largely elusive. Here, by studying the nuclear ribosomal Internal Transcribed Spacer 2 (ITS2), a fast-evolving part of the eukaryotic nuclear ribosomal operon, we identify two possible types of helix formation: one type is “dichotomous helix formation”—transition from one large helix to two smaller helices by invagination of the apical part of a helix, which significantly changes the shape of the original secondary structure but does not increase its complexity (i.e., the total length of the RNA). An alternative type is “lateral helix formation”—origin of an extra helical region by the extension of a bulge loop or a spacer in a multi-helix loop of the original helix, which does not disrupt the pre-existing structure but increases RNA size. Moreover, we present examples from the RNA sequence literature indicating that both types of helix formation may have implications for RNA evolution beyond ITS2.  相似文献   

12.
Several flatfish species exhibit the unusual feature of bilateral asymmetry in prey capture kinematics. One species, Pleuronichthys verticalis, produces lateral flexion of the jaws during prey capture. This raises two questions: 1) How are asymmetrical movements generated, and 2) How could this unusual jaw mechanism have evolved? In this study, specimens were dissected to determine which cephalic structures might produce asymmetrical jaw movements, hypotheses were formulated about the specific function of these structures, physical models were built to test these hypotheses, and models were compared with prey capture kinematics to assess their accuracy. The results suggest that when the neurocranium rotates dorsally the premaxillae slide off the smooth, rounded surface of the vomer (which is angled toward the blind, or eyeless, side) and are “launched” anteriorly and laterally. The bilaterally asymmetrical trajectory of the upper jaw is determined by the orientation of the “launch pad,” the vomer. During lower jaw depression, the mandibles rotate about their articulations with the quadrate bones of the suspensoria. The quadrato‐mandibular joint is positioned farther anteriorly on the eye side than on the blind side, and this asymmetry deflects the lower jaw toward the blind side. Asymmetry in the articular surfaces of the lower jaw augments this effect. Thus, it appears that fish with intermediate forms of this asymmetrical movement could have evolved from symmetrical ancestors via a few key morphological changes. In addition, similar morphological modifications have been observed in other fish taxa that also produce jaw flexion during feeding, which suggests that there may be convergence in the basic mechanism of asymmetry. J. Morphol. 256:1–12, 2003. © 2003 Wiley‐Liss, Inc.  相似文献   

13.
The Diastoporidan colony consists of three zones: The marginal common bud, a narrow middle zone with erect peristomes and active polypides nourishing the whole colony, and a large central zone where the erect peristomes are detached, the secondary orifices thus formed are closed by terminal diaphragms, and the feeding polypides have degenerated. In many Diastoporidae the terminal closure is complete, but in several species the diaphragm is raised into a narrow, open tubule. In the latter type a dwarfed polypide with one tentacle only is regenerated: The autozooid is transformed into a heterozooid (“secondary nanozooid”), a unique phenomenon. Its function is unknown. The single tentacle of the “true nanozooids” of Diplosolen performs sweeping movements indicating a cleaning function. In two Plagioecia species “occasional nanozooids” were found, induced by disturbances of the colony growth. The function, if any, is unknown.  相似文献   

14.
Alternative metrics exist for representing variation in plant body size, but the vast majority of previous research for herbaceous plants has focused on dry mass. Dry mass provides a reasonably accurate and easily measured estimate for comparing relative capacity to convert solar energy into stored carbon. However, from a “plant's eye view”, its experience of its local biotic environment of immediate neighbors (especially when crowded) may be more accurately represented by measures of “space occupancy” (S–O) recorded in situ—rather than dry mass measured after storage in a drying oven. This study investigated relationships between dry mass and alternative metrics of S–O body size for resident plants sampled from natural populations of herbaceous species found in Eastern Ontario. Plant height, maximum lateral canopy extent, and estimated canopy area and volume were recorded in situ (in the field)—and both fresh and dry mass were recorded in the laboratory—for 138 species ranging widely in body size and for 20 plants ranging widely in body size within each of 10 focal species. Dry mass and fresh mass were highly correlated (r2 > .95) and isometric, suggesting that for some studies, between‐species (or between‐plant) variation in water content may be unimportant and fresh mass can therefore substitute for dry mass. However, several relationships between dry mass and other S–O body size metrics showed allometry—that is, plants with smaller S–O body size had disproportionately less dry mass. In other words, they have higher “body mass density” (BMD) — more dry mass per unit S–O body size. These results have practical importance for experimental design and methodology as well as implications for the interpretation of “reproductive economy”—the capacity to produce offspring at small body sizes—because fecundity and dry mass (produced in the same growing season) typically have a positive, isometric relationship. Accordingly, the allometry between dry mass and S–O body size reported here suggests that plants with smaller S–O body size—because of higher BMD—may produce fewer offspring, but less than proportionately so; in other words, they may produce more offspring per unit of body size space occupancy.  相似文献   

15.
How carnivorous plants outsmart their prey The non‐muscular movements of plants, especially the fast traps of carnivorous plants, might appear as natural “wonders”, but they are all evoked by the interplay of functional morphological structures developed during evolution with well‐described biophysical and chemical processes. Hydraulic “motors”, which are based on water displacement in the respective cells and tissues, entail rather slow motions. Large and fast structures, as e.g., the snap‐traps of the carnivorous Venus flytrap, often depend on the release of stored elastic energy (relaxation) which acts as a speed boost and significantly speeds up the motion. The fast traps presented here and the deformation principles involved, including some mechanical “tricks”, can be rebuild in simple and low‐cost physical models which are especially useful for an application in teaching.  相似文献   

16.
Under appropriate experimental conditions, phytochrome controls leaflet closure in Albizzia by regulating differential turgor changes in motor cells of the pulvinule. Closure occurs when subepidermal dorsal cells expand and ventral cells become compressed; reopening involves the reverse changes. The internal cells surrounding the vascular core remain relatively unchanged during leaflet movement. Fine structural studies revealed several unusual features of the motor cells including: (1) fibrils oriented parallel to one another in the cytoplasmic matrix; (2) numerous spherosomes that appear to coalesce and enlarge to form vacuoles; and (3) a multivacuolate condition.  相似文献   

17.
Recent advances in the ventilation of patients with acute respiratory distress syndrome (ARDS), including ventilation at low lung volumes, have resulted in a decreased mortality rate. However, even low-lung volume ventilation may exacerbate lung injury due to the cyclic opening and closing of fluid-occluded airways. Specifically, the hydrodynamic stresses generated during airway reopening may result in epithelial cell (EpC) injury. We utilized an in vitro cell culture model of airway reopening to investigate the effect of reopening velocity, airway diameter, cell confluence, and cyclic closure/reopening on cellular injury. Reopening dynamics were simulated by propagating a constant-velocity air bubble in an adjustable-height parallel-plate flow chamber. This chamber was occluded with different types of fluids and contained either a confluent or a subconfluent monolayer of EpC. Fluorescence microscopy was used to quantify morphological properties and percentage of dead cells under different experimental conditions. Decreasing channel height and reopening velocity resulted in a larger percentage of dead cells due to an increase in the spatial pressure gradient applied to the EpC. These results indicate that distal regions of the lung are more prone to injury and that rapid inflation may be cytoprotective. Repeated reopening events and subconfluent conditions resulted in significant cellular detachment. In addition, we observed a larger percentage of dead cells under subconfluent conditions. Analysis of this data suggests that in addition to the magnitude of the hydrodynamic stresses generated during reopening, EpC morphological, biomechanical, and microstructural properties may also be important determinants of cell injury.  相似文献   

18.
Spermatogenesis and sperm ultrastructure were studied by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) in the longidorid Xiphinema theresiae. All germ cell stages, except spermatogonia, are present in the testes of young adult males. The nonflagellated, slightly elongated sperm displays little intraspecific variation and, although never polarized into a head and tail region, has a remarkably precise form, with a high degree of internal organization. Incipient fingerlike pseudopodia appear in the young spermatid and increase to such an extent that the adult sperm has a conspicuous “woolly” appearance. Microfilament bundles encircle the perinuclear mitochondria in the spermatid, and seem to be closely associated with the evaginated plasma membrane, especially in the spermatozoon. A large nucleus with nuclear envelope is prominent in the spermatocyte, but the envelope is absent in the young spermatid. Mitochondria are present in all germ cell stages and undergo certain morphological changes (e.g., in size and number, presence or absence of cristae), as well as changes in intracellular movements during spermatogenesis. Membranous organelles are prominent in the spermatocyte, but disappear in the older spermatid. Annulate lamellae and a residual body (i.e., cytophore) are conspicuous in the spermatocyte and spermatid, respectively; the spermatozoon clearly lacks a refringent body (i.e., acrosome).  相似文献   

19.
Molecular dynamics simulations of the catalytic subunit of cAMP dependent protein kinase (cAPK) have been performed in an aqueous environment. The relations among the protein hydrogen‐bonding network, secondary structural elements, and the internal motions of rigid domains were examined. The values of fluctuations of protein dihedral angles during dynamics show quite distinct maxima in the regions of loops and minima in the regions of α‐helices and β‐strands. Analyses of conformation snapshots throughout the run show stable subdomains and indicate that these rigid domains are constrained during the dynamics by a stable network of hydrogen bonds. The most stable subdomain during the dynamics was in the small lobe including part of the carboxy‐terminal tail. The most significant flexible region was the highly conserved glycine‐rich loop between β strands 1 and 2 in the small lobe. Many of the main chain dihedral angle changes measured in a comparison of the crystallographic structures of “open” and “closed” conformations of cAPK correspond to the highly flexible residues found during dynamics. © 1999 John Wiley & Sons, Inc. Biopoly 50: 513–524, 1999  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号