首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have used chromosome engineering to replace native centromeric DNA with different test sequences at native centromeres in two different strains of the fission yeast Schizosaccharomyces pombe and have discovered that A + T rich DNA, whether synthetic or of bacterial origin, will function as a centromere in this species. Using genome size as a surrogate for the inverse of effective population size (Ne) we also show that the relative A + T content of centromeric DNA scales with Ne across 43 animal, fungal and yeast (Opisthokonta) species. This suggests that in most of these species the A + T content of the centromeric DNA is determined by a balance between selection and mutation. Combining the experimental results and the evolutionary analyses allows us to conclude that A + T rich DNA of almost any sequence will function as a centromere in most Opisthokonta species. The fact that many G/C to A/T substitutions are unlikely to be selected against may contribute to the rapid evolution of centromeric DNA. We also show that a neo-centromere sequence is not simply a weak version of native centromeric DNA and suggest that neo-centromeres require factors either for their propagation or establishment in addition to those required by native centromeres.  相似文献   

2.
Genomic conflicts arise when an allele gains an evolutionary advantage at a cost to organismal fitness. Oögenesis is inherently susceptible to such conflicts because alleles compete for inclusion into the egg. Alleles that distort meiosis in their favor (i.e., meiotic drivers) often decrease organismal fitness, and therefore indirectly favor the evolution of mechanisms to suppress meiotic drive. In this light, many facets of oögenesis and gametogenesis have been interpreted as mechanisms of protection against genomic outlaws. That females of many animal species do not complete meiosis until after fertilization, appears to run counter to this interpretation, because this delay provides an opportunity for sperm‐acting alleles to meddle with the outcome of female meiosis and help like alleles drive in heterozygous females. Contrary to this perceived danger, the population genetic theory presented herein suggests that, in fact, sperm nearly always evolve to increase the fairness of female meiosis in the face of genomic conflicts. These results are consistent with the apparent sperm dependence of the best characterized female meiotic driversin animals. Rather than providing an opportunity for sperm collaboration in female meiotic drive, the “fertilization requirement” indirectly protects females from meiotic drivers by providing sperm an opportunity to suppress drive.  相似文献   

3.
Centromeres are essential mediators of chromosomal segregation, but both centromeric DNA sequences and associated kinetochore proteins are paradoxically diverse across species. The selfish centromere model explains rapid evolution by both components via an arms-race scenario: centromeric DNA variants drive by distorting chromosomal transmission in female meiosis and attendant fitness costs select on interacting proteins to restore Mendelian inheritance. Although it is clear than centromeres can drive and that drive often carries costs, female meiotic drive has not been directly linked to selection on kinetochore proteins in any natural system. Here, we test the selfish model of centromere evolution in a yellow monkeyflower (Mimulus guttatus) population polymorphic for a costly driving centromere (D). We show that the D haplotype is structurally and genetically distinct and swept to a high stable frequency within the past 1500 years. We use quantitative genetic mapping to demonstrate that context-dependence in the strength of drive (from near-100% D transmission in interspecific hybrids to near-Mendelian in within-population crosses) primarily reflects variable vulnerability of the non-driving competitor chromosomes, but also map an unlinked modifier of drive coincident with kinetochore protein Centromere-specific Histone 3 A (CenH3A). Finally, CenH3A exhibits a recent (<1000 years) selective sweep in our focal population, implicating local interactions with D in ongoing adaptive evolution of this kinetochore protein. Together, our results demonstrate an active co-evolutionary arms race between DNA and protein components of the meiotic machinery in Mimulus, with important consequences for individual fitness and molecular divergence.  相似文献   

4.
Brandvain Y  Coop G 《Genetics》2012,190(2):709-723
Theories to explain the prevalence of sex and recombination have long been a central theme of evolutionary biology. Yet despite decades of attention dedicated to the evolution of sex and recombination, the widespread pattern of sex differences in the recombination rate is not well understood and has received relatively little theoretical attention. Here, we argue that female meiotic drivers--alleles that increase in frequency by exploiting the asymmetric cell division of oogenesis--present a potent selective pressure favoring the modification of the female recombination rate. Because recombination plays a central role in shaping patterns of variation within and among dyads, modifiers of the female recombination rate can function as potent suppressors or enhancers of female meiotic drive. We show that when female recombination modifiers are unlinked to female drivers, recombination modifiers that suppress harmful female drive can spread. By contrast, a recombination modifier tightly linked to a driver can increase in frequency by enhancing female drive. Our results predict that rapidly evolving female recombination rates, particularly around centromeres, should be a common outcome of meiotic drive. We discuss how selection to modify the efficacy of meiotic drive may contribute to commonly observed patterns of sex differences in recombination.  相似文献   

5.
Although centromeres have conserved function, centromere-specific histone H3 (CenH3) and centromeric DNA evolve rapidly. The centromere drive model explains this phenomenon as a consequence of the conflict between fast-evolving DNA and CenH3, suggesting asymmetry in female meiosis as a crucial factor. We characterized evolution of the CenH3 protein in three closely related, polyploid mitotic parthenogenetic species of the Meloidogyne incognita group, and in the distantly related meiotic parthenogen Meloidogyne hapla. We identified duplication of the CenH3 gene in a putative sexual ancestral Meloidogyne. We found that one CenH3 (αCenH3) remained conserved in all extant species, including in distant Meloidogyne hapla, whereas the other evolved rapidly and under positive selection into four different CenH3 variants. This pattern of CenH3 evolution in Meloidogyne species suggests the subspecialization of CenH3s in ancestral sexual species. Immunofluorescence performed on mitotic Meloidogyne incognita revealed a dominant role of αCenH3 on its centromere, whereas the other CenH3s have lost their function in mitosis. The observed αCenH3 chromosome distribution disclosed cluster-like centromeric organization. The ChIP-Seq analysis revealed that in M. incognita αCenH3-associated DNA dominantly comprises tandem repeats, composed of divergent monomers which share a completely conserved 19-bp long box. Conserved αCenH3-associated DNA is also confirmed in the related mitotic Meloidogyne incognita group species suggesting preservation of both centromere protein and DNA constituents. We hypothesize that the absence of centromere drive in mitosis might allow for CenH3 and its associated DNA to achieve an equilibrium in which they can persist for long periods of time.  相似文献   

6.
Carl Veller 《Heredity》2022,129(1):48
Mendel’s First Law requires explanation because of the possibility of ‘meiotic drivers’, genes that distort fair segregation for selfish gain. The suppression of drive, and the restoration of fair segregation, is often attributed to genes at loci unlinked to the drive locus—such genes cannot benefit from drive but do suffer its associated fitness costs. However, selection can also favour suppressors at loci linked to the drive locus, raising the question of whether suppression of drive usually comes from linked or unlinked loci. Here, I study linked and unlinked suppression in a two-locus model with initial stable polymorphism at the drive locus. I find that the invasion rate of suppressors is a decreasing function of the recombination fraction between the drive and suppressor loci. Surprisingly, the relative likelihood of unlinked vs. linked suppression increases with the strength of drive and is insensitive to the fitness costs of the driver allele. I find that the chromosomal position of the driver influences how rapidly it is suppressed, with a driver in the middle of a chromosome suppressed more rapidly than a driver near the tip. When drive is strong, only a small number of chromosomes are required for suppression usually to derive from unlinked loci. In contrast, when drive is weak, and especially when suppressor alleles are associated with fitness costs, suppression will usually come from linked loci unless the genome comprises many chromosomes.Subject terms: Evolutionary genetics, Population genetics  相似文献   

7.
Meiotic drive, the class of meiotic mechanisms that drive unequal segregation of alleles among gametes, may be an important force in karyotype evolution. Its role in holocentric organisms, whose chromosomes lack localized centromeres, is poorly understood. We crossed two individuals of Carex scoparia (Cyperaceae) with different chromosome numbers (2n = 33II = 66 × 2n = 32II = 64) to obtain F1 individuals, which we then self‐pollinated to obtain second‐generation (F2) crosses. RAD‐seq was performed for 191 individuals (including the parents, five F1 individuals and 184 F2 individuals). Our F2 linkage map based on stringent editing of the RAD‐seq data set yielded 32 linkage groups. In the final map, 865 loci were located on a linkage map of 3966.99 cM (linkage groups ranged from 24.39 to 193.31 cM in length and contained 5–51 loci each). Three linkage groups exhibit more loci under segregation distortion than expected by chance; within linkage groups, loci exhibiting segregation distortion are clustered. This finding implicates meiotic drive in the segregation of chromosome variants, suggesting that selection of chromosome variants in meiosis may contribute to the establishment and fixation of chromosome variants in Carex, which is renowned for high chromosomal and species diversity. This is an important finding as previous studies demonstrate that chromosome divergence may play a key role in differentiation and speciation in Carex.  相似文献   

8.
Simon EM 《Genetics》1980,94(1):93-113
Subspecies 6 and 8 of T. pigmentosa (formerly syngens 6 and 8 of T. pyriformis) share a mating-type system controlled by three alleles with "peck-order" dominance at a single locus. The system is apparently closed and limited to three mating types that are homologous, but not identical, in the subspecies. These relationships are reflected in new mating-type designations.—The viability in some intersyngenic crosses is excellent, and the inheritance of major mating types in first-generation hybrids and their progeny follows the pattern of subspecies 8.—The period of immaturity is shorter than that previously reported for subspecies 8, with 50% of the subclones maturing between 46 and 100 fissions after conjugation. Maturity curves are generally sigmoid, but some are apparently biphasic. The onset of maturity in triplicate sublines from the same synclone is usually highly correlated.  相似文献   

9.
Segregation distorters located on sex chromosomes are predicted to sweep to fixation and cause extinction via a shortage of one sex, but in nature they are often found at low, stable frequencies. One potential resolution to this longstanding puzzle involves female multiple mating (polyandry). Because many meiotic drivers severely reduce the sperm competitive ability of their male carriers, females are predicted to evolve more frequent polyandry and thereby promote sperm competition when a meiotic driver invades. Consequently, the driving chromosome's relative fitness should decline, halting or reversing its spread. We used formal modeling to show that this initially appealing hypothesis cannot resolve the puzzle alone: other selective pressures (e.g., low fitness of drive homozygotes) are required to establish a stable meiotic drive polymorphism. However, polyandry and meiotic drive can strongly affect one another's frequency, and polyandrous populations may be resistant to the invasion of rare drive mutants.  相似文献   

10.
There is mounting evidence consistent with a general role of positive selection acting on the Drosophila melanogaster X-chromosome. However, this positive selection need not necessarily arise from forces that are adaptive to the organism. Nonadaptive meiotic drive may exist on the X-chromosome and contribute to forces of selection. Females from a reference D. melanogaster line, containing the X-linked marker white, were crossed to males from 49 isofemale lines established from seven African and five non-African natural populations to detect naturally occurring meiotic drive. Several lines exhibited a departure from expected Mendelian transmission of X-chromosomes to the third generation (F2) offspring, particularly those from hybrid African male parents. F2 viability was not correlated with skewed chromosomal inheritance. However, a significant difference in viability between cosmopolitan and tropical African crosses was observed. Recombination analysis supports the presence of a male-acting meiotic drive element near the centromeric region of the X-chromosome and putative recessive autosomal drive suppression. There is also evidence of another female-acting drive element linked to white. The possible role meiotic drive may contribute in shaping levels of genetic variation in D. melanogaster, and additional ways to test this hypothesis are discussed.  相似文献   

11.
Centromeres are composed of long arrays of satellite repeats in most multicellular eukaryotes investigated to date. The satellite repeat–based centromeres are believed to have evolved from “neocentromeres” that originally contained only single- or low-copy sequences. However, the emergence and evolution of the satellite repeats in centromeres has been elusive. Potato (Solanum tuberosum) provides a model system for studying centromere evolution because each of its 12 centromeres contains distinct DNA sequences, allowing comparative analysis of homoeologous centromeres from related species. We conducted genome-wide analysis of the centromeric sequences in Solanum verrucosum, a wild species closely related to potato. Unambiguous homoeologous centromeric sequences were detected in only a single centromere (Cen9) between the two species. Four centromeres (Cen2, Cen4, Cen7, and Cen10) in S. verrucosum contained distinct satellite repeats that were amplified from retrotransposon-related sequences. Strikingly, the same four centromeres in potato contain either different satellite repeats (Cen2 and Cen7) or exclusively single- and low-copy sequences (Cen4 and Cen10). Our sequence comparison of five homoeologous centromeres in two Solanum species reveals rapid divergence of centromeric sequences among closely related species. We propose that centromeric satellite repeats undergo boom-bust cycles before a favorable repeat is fixed in the population.  相似文献   

12.
Most meiotic drivers, such as the t‐haplotype in Mus and the segregation distorter (SD) in Drosophila, act in a sex‐specific manner, gaining a transmission advantage through one sex although suffering only the fitness costs associated with the driver in the other. Their inheritance is thus more likely through one of the two sexes, a property they share with sexually antagonistic alleles. Previous theory has shown that pairs of linked loci segregating for sexually antagonistic alleles are more likely to remain polymorphic and that linkage disequilibrium accrues between them. I probe this similarity between drive and sexual antagonism and examine the evolution of chromosomes experiencing these selection pressures simultaneously. Reminiscent of previous theory, I find that: the opportunity for polymorphism increases for a sexually antagonistic locus that is physically linked to a driving locus; the opportunity for polymorphism at a driving locus also increases when linked to a sexually antagonistic locus; and stable linkage disequilibrium accompanies any polymorphic equilibrium. Additionally, I find that drive at a linked locus favours the fixation of sexually antagonistic alleles that benefit the sex in which drive occurs. Further, I show that under certain conditions reduced recombination between these two loci is selectively favoured. These theoretical results provide clear, testable predictions about the nature of sexually antagonistic variation on driving chromosomes and have implications for the evolution of genomic architecture.  相似文献   

13.
Evolutionary dynamics at the population level play a central role in creating the diversity of life on our planet. In this study, we sought to understand the origins of such population-level variation in mating systems and defensive acylsugar chemistry in Solanum habrochaites—a wild tomato species found in diverse Andean habitats in Ecuador and Peru. Using Restriction-site-Associated-DNA-Sequencing (RAD-seq) of 50 S. habrochaites accessions, we identified eight population clusters generated via isolation and hybridization dynamics of 4–6 ancestral populations. Detailed characterization of mating systems of these clusters revealed emergence of multiple self-compatible (SC) groups from progenitor self-incompatible populations in the northern part of the species range. Emergence of these SC groups was also associated with fixation of deleterious alleles inactivating acylsugar acetylation. The Amotape-Huancabamba Zone—a geographical landmark in the Andes with high endemism and isolated microhabitats—was identified as a major driver of differentiation in the northern species range, whereas large geographical distances contributed to population structure and evolution of a novel SC group in the central and southern parts of the range, where the species was also inferred to have originated. Findings presented here highlight the role of the diverse ecogeography of Peru and Ecuador in generating population differentiation, and enhance our understanding of the microevolutionary processes that create biological diversity.  相似文献   

14.
The zebra finch has long been an important model system for the study of vocal learning, vocal production, and behavior. With the imminent sequencing of its genome, the zebra finch is now poised to become a model system for population genetics. Using a panel of 30 noncoding loci, we characterized patterns of polymorphism and divergence among wild zebra finch populations. Continental Australian populations displayed little population structure, exceptionally high levels of nucleotide diversity (π = 0.010), a rapid decay of linkage disequilibrium (LD), and a high population recombination rate (ρ ≈ 0.05), all of which suggest an open and fluid genomic background that could facilitate adaptive variation. By contrast, substantial divergence between the Australian and Lesser Sunda Island populations (KST = 0.193), reduced genetic diversity (π = 0.002), and higher levels of LD in the island population suggest a strong but relatively recent founder event, which may have contributed to speciation between these populations as envisioned under founder-effect speciation models. Consistent with this hypothesis, we find that under a simple quantitative genetic model both drift and selection could have contributed to the observed divergence in six quantitative traits. In both Australian and Lesser Sundas populations, diversity in Z-linked loci was significantly lower than in autosomal loci. Our analysis provides a quantitative framework for studying the role of selection and drift in shaping patterns of molecular evolution in the zebra finch genome.  相似文献   

15.
A way to identify loci subject to positive selection is to detect the signature of selective sweeps in given chromosomal regions. It is revealed by the departure of DNA polymorphism patterns from the neutral equilibrium predicted by coalescent theory. We surveyed DNA sequence variation in a region formerly identified as causing "sex-ratio" meiotic drive in Drosophila simulans. We found evidence that this system evolved by positive selection at 2 neighboring loci, which thus appear to be required simultaneously for meiotic drive to occur. The 2 regions are approximately 150-kb distant, corresponding to a genetic distance of 0.1 cM. The presumably large transmission advantage of chromosomes carrying meiotic drive alleles at both loci has not erased the individual signature of selection at each locus. This chromosome fragment combines a high level of linkage disequilibrium between the 2 critical regions with a high recombination rate. As a result, 2 characteristic traits of selective sweeps--the reduction of variation and the departure from selective neutrality in haplotype tests--show a bimodal pattern. Linkage disequilibrium level indicates that, in the natural population from Madagascar used in this study, the selective sweep may be as recent as 100 years.  相似文献   

16.
Sisters and brothers are completely unrelated with respect to the sex chromosomes they inherit from their heterogametic parent. This has the potential to result in a previously unappreciated form of genetic conflict between the sex chromosomes, called sexually antagonistic zygotic drive (SA-ZD). SA-ZD can arise whenever brothers and sisters compete over limited resources or there is brother–sister mating coupled with inbreeding depression. Although theory predicts that SA-ZD should be common and influence important evolutionary processes, there is little empirical evidence for its existence. Here we discuss the current understanding of SA-ZD, why it would be expected to elude empirical detection when present, and how it relates to other forms of genetic conflict.When a diploid individual reproduces sexually, the two alleles at heterozygous loci are necessarily in competition because reproduction by one allele must be at the expense of the other. Such competition is an inescapable component of the organismal level of evolution that was originally advanced by Darwin and later integrated with the field of genetics during the modern synthesis of the early 20th century (Huxley 1942). If the competition is mediated by Mendelian segregation followed by (1) differences in the Darwinian fitness (i.e., survival and fecundity) that each allele produces in offspring, (2) random sampling (genetic drift), and/or (3) differences in the alleles’ mutation or migration rates, then no genetic conflict exists and only canonical evolution at the organismal level occurs. But alleles can also compete outside the context of organismal evolution via diverse mechanisms of selection at the level of the gene that are collectively called genomic conflict (or selfish, ultraselfish, and parasitic DNA). These mechanisms can be divided into three general classes (Burt and Trivers 2006): (1) gonotaxis (in which the selfish elements bias Mendelian segregation by moving away from dead-end polar bodies and into the functional egg during oogenesis, i.e., meiotic or centromeric drive), (2) interference (in which the selfish element kills or debilitates noncarrier gametes or offspring, i.e., segregation distortion and zygotic drive), and (3) overreplication (in which the selfish element increases its copy number in the genome, e.g., biased gene conversion, transposable elements, and homing endonucleases). De novo mutations can also gain a transmission advantage by increasing the rate of stem cell division in the germ line (germline drive) (e.g., Yoon et al. 2013). All of these genomic conflict mechanisms have been described in detail in Burt and Trivers (2006).Genomic conflict frequently leads to reduced fitness at the organismal level. Meiotic drive can harm the organism as a whole because the attributes that provide a segregation advantage in oogenesis (e.g., the structure of the centromere and neighboring heterochromatin) can be maladaptive during spermatogenesis and contribute to male sterility (see, for review, Elde et al. 2011). Segregation distorters and zygotic drivers can substantially reduce a carrier male’s fitness because they kill up to half of his sperm (leading to reduced fertility) and offspring, respectively. Sex-linked, meiotic drivers in WZ females (like birds) and segregation distorters and zygotic drivers in XY males (like insects and mammals) cause biased sex ratios that reduce fitness with respect to Fisherian sex ratio selection and can also reduce population growth and potentially drive species to extinction. Biased gene conversion and germline drive (Yoon et al. 2013) reduce organismal fitness when harmful mutations accumulate to elevated levels (i.e., beyond the conventional values predicted by mutation-selection balance) because they have a molecular drive advantage over an allele that is more beneficial at the organismal level. Transposable elements insert at new places in the genome where they can disrupt gene function and thereby reduce their carrier’s fitness.Zygotic drive is an unusual form of genetic conflict because it directly reduces Darwinian fitness by killing or debilitating offspring. It is favored by gene-level selection when there is competition among siblings for limiting resources. By killing or weakening noncarrier competitor siblings, the gene(s) coding for zygotic drive gain a selective advantage because their survival is increased at the expense of siblings carrying alleles that are not identical by descent—despite any fitness loss to the parents, siblings, or other parts of the genome.Zygotic drive of the autosomes has been observed in a wide diversity of model organisms (e.g., worms, beetles, and mice) (reviewed in Burt and Trivers 2006) in which it can be efficiently detected because of the availability of numerous genetic markers. In general, an autosomal zygotic driver must have both a driver allele at one locus and a protective allele at a responder locus. In worms (Caenorhabditis elegans), a molecular mechanism leading to zygotic drive was recently discovered. Here a zygotic driver is coded by a pair of tightly linked genes, in which an allele at one gene (peel-1) produces a toxin, the driver locus, which is packaged in the sperm and transmitted to the zygote, whereas an allele at another gene (zeel-1) produces an antidote (the protective allele, which is expressed very early in development) that rescues only those embryos that inherit zeel-1 (and usually also the tightly linked driver, peel-1) (Seidel et al. 2011). Zygotic drive on the autosomes is expected to be difficult to evolve—and therefore to be relatively rare in genomes—because it requires an improbable phenotype (i.e., a functionally coupled driver gene product and a responder gene sequence or product) and genotype (i.e., very close linkage between the loci coding for the driver and responder).  相似文献   

17.
Much attention is paid in conservation planning to the concept of a species, to ensure comparability across studies and regions when classifying taxa against criteria of endangerment and setting priorities for action. However, various jurisdictions now allow taxonomic ranks below the level of species and nontaxonomic intraspecific divisions to be factored into conservation planning—subspecies, key populations, evolutionarily significant units, or designatable units. Understanding patterns of genetic diversity and its distribution across the landscape is a key component in the identification of species boundaries and determination of substantial geographic structure within species. A total of 12,532 reliable polymorphic SNP loci were generated from 63 populations (286 individuals) covering the distribution of the Australian eastern three‐lined skink, Bassiana duperreyi, to assess genetic population structure in the form of diagnosable lineages and their distribution across the landscape, with particular reference to the recent catastrophic bushfires of eastern Australia. Five well‐supported diagnosable operational taxonomic units (OTUs) existed within B. duperreyi. Low levels of divergence of B. duperreyi between mainland Australia and Tasmania (no fixed allelic differences) support the notion of episodic exchange of alleles across Bass Strait (ca 60 m, 25 Kya) during periods of low sea level during the Upper Pleistocene rather than the much longer period of isolation (1.7 My) indicated by earlier studies using mitochondrial sequence variation. Our study provides foundational work for the detailed taxonomic re‐evaluation of this species complex and the need for biodiversity assessment to include an examination of cryptic species and/or cryptic diversity below the level of species. Such information on lineage diversity within species and its distribution in the context of disturbance at a regional scale can be factored into conservation planning regardless of whether a decision is made to formally diagnose new species taxonomically and nomenclaturally.  相似文献   

18.
We have mapped the positions of topoisomerase II binding sites at the centromere of the human Y chromosome using etoposide-mediated DNA cleavage. A single region of cleavage is seen at normal centromeres, spanning ~50 kb within the centromeric alphoid array, but this pattern is abolished at two inactive centromeres. It therefore provides a marker for the position of the active centromere. Although the underlying centromeric DNA structure is variable, the position of the centromere measured in this way is fixed relative to the Yp edge of the array, and has retained the same position for >100 000 years.  相似文献   

19.
Disentangling the factors underlying the diversification of geographically variable species with a wide geographical range is essential to understanding the initial stages and drivers of the speciation process. The Amazilia Hummingbird, Amazilis amazilia, is found along the Pacific coast from northern Ecuador down to the Nazca Valley of Peru, and is currently classified as six phenotypically differentiated subspecies. We aimed to resolve the evolutionary relationships of the six subspecies, to assess the geographical pattern and extent of evolutionary divergence, and to test for introgression using both a mtDNA marker and a genome‐by‐sequencing dataset from 86 individuals from across the species range. The consensus phylogenetic tree separated the six subspecies into three distinct clades, corresponding with the Ecuador lowlands (Aamazilia dumerilii), the Ecuador highlands (Aamazilia alticola and A. amazilia azuay), and the Peruvian coast (Aamazilia leucophoea, Aamazilia amazilia, and A. amazilia caeruleigularis). However, an unresolved mtDNA network suggests that the diversification of the subspecies was recent and rapid. We found evidence of gene flow among the subspecies Aamazilia dumerilii, Aamazilia alticola, and Aamazilia leucophoea, with strong genetic isolation of the subspecies Aamazilia azuay in the isolated Yunguilla Valley of Ecuador. Finally, environmental data from each subspecies’ capture locations were concordant with the three distinct clades. Overall, our results suggest that both expansions into new habitats and geographic isolation shaped the present‐day phylogeny and range of the Aamazilia subspecies, and that Aamazilia azuay may be genetically divergent enough to be considered a separate species.  相似文献   

20.
We use three allopatric populations of the stalk-eyed fly Teleopsis dalmanni from Southeast Asia to test two predictions made by the sex chromosome drive hypothesis for Haldane’s rule. The first is that modifiers that suppress or enhance drive should evolve rapidly and independently in isolated populations. The second is that drive loci or modifiers should also cause sterility in hybrid males. We tested these predictions by assaying the fertility of 2066 males derived from backcross experiments involving two pairs of populations and found that the proportion of mated males that fail to produce any offspring ranged from 38 to 60% among crosses with some males producing strongly female-biased or male-biased sex ratios. After genotyping each male at 25–28 genetic markers we found quantitative trait loci (QTL) that jointly influence male sterility, sperm length, and biased progeny sex ratios in each pair of populations, but almost no shared QTL between population crosses. We also discovered that the extant XSR chromosome has no effect on sex ratio or sterility in these backcross males. Whether shared QTL are caused by linkage or pleiotropy requires additional study. Nevertheless, these results indicate the presence of a “cryptic” drive system that is currently masked by suppressing elements that are associated with sterility and sperm length within but not between populations and, therefore, must have evolved since the populations became isolated, i.e., in <100,000 years. We discuss how genes that influence sperm length may contribute to hybrid sterility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号