首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Biodiversity is a major driver of numerous ecosystem functions. However, consequences of changes in forest biodiversity remain difficult to predict because of limited knowledge about how tree diversity influences ecosystem functions. Litter decomposition is a key process affecting nutrient cycling, productivity, and carbon storage and can be influenced by plant biodiversity. Leaf litter species composition, environmental conditions, and the detritivore community are main components of the decomposition process, but their complex interactions are poorly understood. In this study, we tested the effect of tree functional diversity (FD) on litter decomposition in a field experiment manipulating tree diversity and partitioned the effects of litter physiochemical diversity and the detritivore community. We used litterbags with different mesh sizes to separate the effects of microorganisms and microfauna, mesofauna, and macrofauna and monitored soil fauna using pitfall traps and earthworm extractions. We hypothesized that higher tree litter FD accelerates litter decomposition due to the availability of complementary food components and higher activity of detritivores. Although we did not find direct effects of tree FD on litter decomposition, we identified key litter traits and macrodetritivores that explained part of the process. Litter mass loss was found to decrease with an increase in leaf litter carbon:nitrogen ratio. Moreover, litter mass loss increased with an increasing density of epigeic earthworms, with most pronounced effects in litterbags with a smaller mesh size, indicating indirect effects. Higher litter FD and litter nutrient content were found to increase the density of surface‐dwelling macrofauna and epigeic earthworm biomass. Based on structural equation modeling, we conclude that tree FD has a weak positive effect on soil surface litter decomposition by increasing the density of epigeic earthworms and that litter nitrogen‐related traits play a central role in tree composition effects on soil fauna and decomposition.  相似文献   

2.
Ke X  Scheu S 《Oecologia》2008,157(4):603-617
Management practices of arable systems determine the distribution of soil organic matter thereby changing decomposer animal activity and their impact on nutrient mineralization, plant growth and plant-herbivore interactions. Decomposer-mediated changes in plant growth and insect pest performance were investigated in wheat-aphid model systems in the greenhouse. Three types of litter distribution were established: litter patch at the soil surface (simulating mulching), litter patch deeper in soil (simulating ploughing) and litter homogeneously mixed into soil (simulating disk cultivation). The litter was labelled with (15)N to follow the mineralization and uptake of nutrients by the plants. Earthworms (Aporrectodea caliginosa) and Collembola (Protaphorura armata) were included as representatives of major functional groups of decomposers. Wheat (Triticum aestivum) was planted and aphids (Rhophalosiphum padi) were introduced to leaves as one of the most important pests. Earthworms, Collembola and litter distribution affected plant growth, N acquisition and aphid development in an interactive way. Earthworms and Collembola increased biomass of seeds, shoots and roots of wheat. Increased plant growth by earthworms and Collembola was mainly due to increased transfer of N from soil (rather than litter) into plants. Despite increasing plant growth, earthworms reduced aphid reproduction. Aphid reproduction was not correlated closely with plant N concentrations, but rather with the concentration of litter N in wheat. Unexpectedly, both Collembola and earthworms predominantly affected the mobilization of N from soil organic matter, and by altering the distribution of litter earthworms reduced infestation of crops by aphids via reducing plant capture of litter N, in particular if the litter was concentrated deeper in soil. The results suggest that management practices stimulating a continuous moderate increase in nutrient mobilization from soil organic matter rather than nutrient flushes from decomposing fresh organic matter result in maximum plant growth with minimum plant pest infestation.  相似文献   

3.
On alpine pastureland the decline in large-bodied earthworm numbers and biomass after abandonment of management might be the result of a shift from highly palatable grass litter to poorly digestible leaf litter of dwarf shrubs. To test this hypothesis, we analysed nitrogen, phosphorous and total phenolic contents of fresh and aged litter of eight commonly occuring alpine plant species and compared consumption rates of these food sources in a controlled feeding experiment with Lumbricus rubellus (Lumbricidae). Furthermore, we analysed the microbial community structure of aged litter materials to check for a relationship between the microbial characteristics of the different plant litter types and the food choice of earthworms. Plant litters differed significantly in their chemical composition, earthworms, however, showed no preference for any litter species, but generally rejected fresh litter material. Microbial community structures of the litter types were significantly different, but we could find no evidence for selective feeding of L. rubellus. We conclude that L. rubellus is a widespread, adaptable ubiquist, which is able to feed on a variety of food sources differing in quality and palatability, as long as they have been exposed to wheathering.  相似文献   

4.
Glyphosate N-(phosphonomethyl) glycine is a widely-used herbicide in agriculture. The anecic earthworm, Lumbricus terrestris feeds and forages for surface plant materials meaning that this species has a unique and direct exposure to agrichemicals. At the recommended product rates, significantly (F1,44 = 8.67, p = .005) higher numbers of L. terrestris middens were found in the glyphosate treated areas of an arable crop field. Laboratory feeding assays using field aged plant materials indicated that previous glyphosate treatment was a statistically significant factor affecting earthworm L. terrestris biomass (F1,12 = 5.75, p = .03). Negligible glyphosate residues were detectable, and the field aged plant materials were encrusted with fungal hyphae. This suggests that glyphosate influences the colonisation of plant material by a litter-fungus complex which improves the food quality to earthworms. Concentrations of epoxiconazole, a fungicide, were detected in some plant materials and may influence overall food quality to earthworms. Glyphosate treatment on fresh volunteer plant leaves (unwanted crop seedlings) was not a statistically significant factor affecting earthworm L. terrestris biomass (F1,6 = 0.16, p = .92). These results indicate fungal communities influence feeding behaviours, and plant materials are a direct source of agrichemicals to anecic earthworms.  相似文献   

5.
Ants (Hymenoptera: Formicidae) and earthworms (Oligochaeta) are considered ecosystem engineers because they form biogenic structures in the soil that influence resource supply. The objectives of this study were to quantify recovery dynamics of these invertebrate groups across a chronosequence of restored prairies and elucidate whether changes in the abundance and biomass of ants and earthworms were related to key plant and ecosystem properties. We sampled ants and earthworms from cultivated fields, grasslands restored from 1 to 21 years, and native prairie. Ant abundance and biomass peaked between 5 and 8 years of restoration and abundance was 198 times greater than cultivated fields. Earthworm abundance increased linearly across the chronosequence and became representative of native prairie, but all earthworm populations were dominated by European species. Ant abundance and biomass were positively correlated with plant diversity and plant richness, whereas earthworm abundance biomass was only related to surface litter. These results demonstrate that earthworm abundance increases with time since cessation of cultivation and concomitant with prairie establishment, whereas the abundance and biomass of ants are more related to the structure of restored plant communities than time. The dominance of exotic earthworms in these restorations, coupled with their capacity to alter soil properties and processes may represent novel conditions for grassland development.  相似文献   

6.
Secondary production is an important parameter for the study of population dynamics and energy flow through animal communities. Secondary production of earthworm communities has been determined with the size-frequency and instantaneous growth rate methods, whereby earthworm populations are repeatedly sampled at regular intervals and the change in biomass of cohorts or individuals between sampling dates is determined. The major disadvantage of repeated sampling is that it disturbs the soil and permanently removes earthworms from the study area. The “deduction” approach is a theoretical model that partitions individuals into defined pools and makes assumptions about the growth, recruitment and mortality of each pool. In 2004 and 2005, earthworms were added to undisturbed field enclosures and the “deduction” approach was used to estimate secondary production of the indigenous and added earthworm populations during the crop growing period (17–18 weeks) in each year. Secondary production estimates made by the “deduction” approach were similar to estimates from direct earthworm sampling in temperate agroecosystems. The “deduction” approach is an indirect method that estimates population dynamics and secondary production, and is appropriate for manipulation experiments where removal of organisms and physical disturbance of the habitat by repeated sampling could bias results.  相似文献   

7.
蚯蚓-秸秆及其交互作用对黑麦草修复Cu污染土壤的影响   总被引:3,自引:1,他引:3  
王丹丹  李辉信  胡锋  王霞 《生态学报》2007,27(4):1292-1299
以高沙土为供试土壤,加入Cu^2+以模拟成:0,100,200,400mg/kgCu^2+的Cu污染土壤,设置接种蚯蚓(E)、表施秸秆(M),同时加入蚯蚓和秸秆(ME)及不加蚯蚓和秸秆的对照(CK)4个处理,并种植黑麦草。研究蚯蚓、秸秆相互作用对黑麦草吸收、富集铜的影响。结果表明:加入秸秆显著提高了蚯蚓的生物量,一定程度上缓解了重金属对蚯蚓的毒害,同时蚯蚓显著提高了秸秆的分解率,较无蚯蚓对照提高了58.11%~77.32%。接种蚯蚓(E,ME)还提高了土壤有效态重金属(DTPA-Cu)含量,秸秆处理(M)则降低了土壤有效态重金属含量。研究还发现,E处理促进了黑麦草地上部生长,而M和ME处理均显著提高了黑麦草地下部的生物量。E和ME处理同时提高了植物地上部和地下部的Cu浓度及Cu吸收量,M处理则只对植物的地下部Cu浓度和Cu吸收量有显著促进作用。总体来看,E处理、M处理及ME处理分别使黑麦草地上部Cu富集系数提高了31.22%~121.07%.2.12%~61.28%和25.56%~132.64%。  相似文献   

8.
Earthworms provide a major potential source of alternative food for polyphagous predators, such as carabid beetles, that are natural enemies of slugs, aphids and other agricultural pests. Non-pest prey may foster larger numbers of natural enemies, which then help to control pests, or alternatively may help to divert the predators away from pest control. An earthworm-specific monoclonal antibody was developed to study carabid-earthworm interactions in the field and assess the role of earthworms as alternative prey. The antibody could identify as little at 7 ng of earthworm protein in an ELISA, and could detect earthworm remains in the foregut of the carabid beetle Pterostichus melanarius for 64 h after consumption. Thirty-six per cent of field-collected beetles contained earthworm remains. Quantities of earthworm proteins in the beetle foreguts were negatively related to total foregut biomass, suggesting that earthworm consumption increased as total prey availability declined. There was also a negative relationship between foregut biomass and beetle numbers, but both quantities and concentrations of earthworm proteins in beetle foreguts were positively related to beetle numbers. This suggests that as beetle activity-density increased, total prey availability declined, or, as prey availability declined, beetles spent more time searching. In these circumstances, beetles fed to a greater extent on earthworms, an acceptable but nonpreferred food item. Earthworms may, therefore, provide an ideal alternative prey for P. melanarius, helping to sustain it when pest numbers are low but allowing it to perform a 'lying-in-wait' strategy, ready to switch back to feeding on pests when they become available.  相似文献   

9.
Tiunov AV  Scheu S 《Oecologia》2004,138(1):83-90
Activity of soil decomposer microorganisms is generally limited by carbon availability, but factors controlling saprophagous soil animals remain largely unknown. In contrast to microorganisms, animals are unable to exploit mineral nutrient pools. Therefore, it has been suggested that soil animals, and earthworms in particular, are limited by the availability of nitrogen. In contrast to this view, a strong increase in density and biomass of endogeic earthworms in response to labile organic carbon addition has been documented in field experiments. The hypothesis that the growth of endogeic earthworms is primarily limited by carbon availability was tested in a laboratory experiment lasting for 10 weeks. In addition, it was investigated whether the effects of earthworms on microbial activity and nutrient mineralization depend on the availability of carbon resources. We manipulated food availability to the endogeic earthworm species Octolasion tyrtaeum by using two soils with different organic matter content, providing access to different amounts of soil, and adding labile organic carbon (glucose) enriched in 13C.Glucose addition strongly increased the growth of O. tyrtaeum. From 8 to 17% of the total C in earthworm tissue was assimilated from the glucose added. Soil microbial biomass was not strongly affected by the addition of glucose, though basal respiration was significantly increased and up to 50% of the carbon added as glucose was incorporated into soil organic matter. The impact of earthworms on the mineralization and leaching of nitrogen depended on C availability. As expected, in C-limited soil, the presence of earthworms strongly increased nitrogen leaching. However, when C availability was increased by the addition of glucose, this pattern was reversed, i.e. the presence of O. tyrtaeum decreased nitrogen leaching and its availability to soil microflora. We conclude that irrespective of the total carbon content of soils, O. tyrtaeum was primarily limited by carbon, and that increased carbon availability allowed earthworms to be more effective in mobilizing N. The presence of earthworms increases C limitation of soil microorganisms, due to increased availability of N and P in earthworm casts or a direct depletion of easily available carbon resources by earthworms.  相似文献   

10.
王笑  王帅  滕明姣  林小芬  吴迪  孙静  焦加国  刘满强  胡锋 《生态学报》2017,37(15):5146-5156
不同生态型蚯蚓的取食偏好和生境有所差异,因此蚯蚓的生态型差异可能关乎其对土壤性质的不同影响;有关不同生态型蚯蚓对土壤性质尤其是微生物学性质影响的研究有助于了解蚯蚓生态功能的作用机制。在野外调控试验的第4年采集土壤,研究了牛粪混施和表施处理下内层种威廉腔环蚓(Metaphire guillelmi)和表层种赤子爱胜蚓(Eisenia foetida)对设施菜地土壤微生物群落结构和主要理化性质的影响。结果表明,土壤微生物群落结构同时受到蚯蚓种类和牛粪施用方式的影响。牛粪表施时,两种蚯蚓均显著降低了菌根真菌、真菌生物量和原生动物生物量(P0.05);牛粪混施时,不同蚯蚓的影响有所差异,威廉腔环蚓明显增加了菌根真菌、真菌生物量和放线菌生物量,而赤子爱胜蚓的作用不明显。此外,两种蚯蚓均提高了土壤孔隙度、团聚体稳定性和土壤p H、矿质氮以及微生物生物量碳氮水平,但提高幅度取决于蚯蚓种类和牛粪施用方式。冗余分析表明蚯蚓影响下土壤微生物群落结构的变化与团聚体稳定性、p H、速效磷、矿质氮呈正相关,而与土壤容重呈负相关。  相似文献   

11.
Wang D D  Li H X  Hu F  Wang X 《农业工程》2007,27(4):1292-1298
It is well known that the earthworm's activities can increase the availability of soil nutrients, improve soil structure, and enhance the biomass of plants in uncontaminated soil. Recently, many researchers found that some metal-tolerant earthworms can survive and even change the fractional distribution of heavy metals in contaminated soil. Furthermore, it has been revealed that earthworms are able to increase metal availability, and therefore, accumulate more metals in plants through their burrowing and casting activity. It is clear that the influence of soil animals is an important factor for phyto-remedation that must be taken into account. ~In this article, the authors studied some effects of addition of earthworms (Metaphire guillelmi), corn straw, and in combinations of earthworms and corn straw on the growth and Cu uptake by ryegrass in Cu contaminated pot soils. The experiment consisted of four levels of Cu addition (0, 100, 200, 400 mg·kg?1) and four treatments. The treatments were 1. control (CK); 2.straw mulching only (M); 3. earthworm additions to soil only (E); and 4.straw mulching plus earthworm additions (ME). Each treatment had three replicates. 10 seeds of ryegrass (Lolium multiflorum) were sowed in each pot and harvested after 30 days. After 30 days of incubation, all earthworms were found to be alive and the pot soils were burrowed through by earthworms. Results showed that the biomass of earthworm declined with the increase of the dosage of Cu additions. The biomass of earthworm increased significantly in treatment 4 (ME) as compared with treatment 3 (E). Not only the earthworms could get more food from the straw, but also could counteract some negative effects of Cu on the earthworms. The rates of straw decomposition in ME treatment increased by about 58.11% ?77.32%. The earthworm activities increased root biomass of ryegrass significantly, but did not show the effect on plant root growth. On the contrary, straw enhanced roots biomass significantly instead of shoots biomass. It was also found that the concentration of Cu in the plant shoot and the plant root, as well as plant Cu uptake were enhanced by earthworm's activities and straw mulching. The increased amount by straw mulching was lower than that of earthworms (E). The treatment of the earthworm–straw mulching combinations enhanced plant Cu concentration, and the amount increased by it was lower than that of the earthworm treatment (E) but higher than that of straw mulching treatment (M). The accumulation factors of copper in the shoots of ryegrass were increased by 31.22% ?121.07%, 2.12% ?61.28% and 25.56% ?132.64%, respectively, in treatment 3(E), 2(M), and 4(ME), respectively. In conclusion, the earthworm activities, straw-mulching and their interactions may have potential roles in elevating phyto-extraction efficiency in low to medium level Cu contaminated soil.  相似文献   

12.
接种蚯蚓对秸秆还田土壤碳、氮动态和作物产量的影响   总被引:31,自引:1,他引:31  
通过为期 2年的小区 (2 .8m× 1.0m)试验 ,研究了旱作水稻 小麦轮作条件下接种蚯蚓对施用玉米秸秆 (第一季用量 15 0 0g·m-2 ,以后各季为 75 0g·m-2 )农田土壤碳、氮动态和作物产量的影响 .结果表明 ,接种 10条·m-2 或 2 0条·m-2 环毛蚓 (Pheretimasp .)对土壤有机碳和全氮含量无显著影响 ,蚯蚓活动未造成土壤C库的衰减 ,土壤碳、氮基本维持平衡 .接种蚯蚓处理土壤N的矿化作用增强 ,矿质N含量提高 ,NO3 - N含量增加 ,而且稻季比麦季增加更为明显 .接种蚯蚓在稻、麦季均能提高微生物量碳、氮含量 ,蚯蚓具有扩大土壤微生物量N库和促进有机N矿化的双重作用 .这种作用在有效C源供应丰富的作物生长发育旺盛期更为明显 .接种蚯蚓对旱作水稻和小麦有一定的增产作用 ,其中水稻的增产幅度达 9.3% ,小麦为 5 .1% .接种蚯蚓后土壤容重明显降低 ,孔隙度显著增加 .蚯蚓在保持土壤C库平衡的同时 ,对于促进秸秆有机肥N素养分的再循环和作物生产力的提高具有重要的生态学意义 .  相似文献   

13.
Dominant tree species influence community and ecosystem components through the quantity and quality of their litter. Effects of litter may be modified by activity of ecosystem engineers such as earthworms. We examined the interacting effects of forest litter type and earthworm presence on invasibility of plants into forest floor environments using a greenhouse mesocosm experiment. We crossed five litter treatments mimicking historic and predicted changes in dominant tree composition with a treatment of either the absence or presence of nonnative earthworms. We measured mass loss of each litter type and growth of a model nonnative plant species (Festuca arundinacea, fescue) sown into each mesocosm. Mass loss was greater for litter of tree species characterized by lower C:N ratios. Earthworms enhanced litter mass loss, but only for species with lower C:N, leading to a significant litter × earthworm interaction. Fescue biomass was significantly greater in treatments with litter of low C:N and greater mass loss, suggesting that rapid decomposition of forest litter may be more favorable to understory plant invasions. Earthworms were expected to enhance invasion by increasing mass loss and removing the physical barrier of litter. However, earthworms typically reduced invasion success but not under invasive tree litter where the presence of earthworms facilitated invasion success compared to other litter treatments where earthworms were present. We conclude that past and predicted future shifts in dominant tree species may influence forest understory invasibility. The presence of nonnative earthworms may either suppress of facilitate invasibility depending on the species of dominant overstory tree species and the litter layers they produce.  相似文献   

14.
过量施用氮肥不仅导致严重的生态环境问题, 还会限制土壤生物驱动的生态系统服务功能。蚯蚓的取食和掘穴等活动可以促进土壤肥力和植物生长, 进而影响植物与病虫害的关系。了解氮肥与害虫作用下蚯蚓对植物抗虫性的影响, 有助于揭示土壤动物的生态功能调控机制。采用蚯蚓(威廉腔环蚓Metaphire guillelmi)、西花蓟马(Frankliniella occidentalis)和氮肥用量的三因子完全交互设计, 利用番茄(Lycopersicon esculentum)盆栽实验探索了不同氮水平下蚯蚓对番茄生长及对植食者抗性的影响。结果表明, 在低氮条件下蚯蚓显著降低了番茄茎叶干生物量、根系干生物量及茎叶可溶性糖含量, 而茎叶的茉莉酸和水杨酸含量分别是无蚯蚓对照的6倍和3倍, 且伴随着西花蓟马数量下降了58%。在高氮水平时, 蚯蚓未影响番茄茎叶茉莉酸、茎叶水杨酸含量及西花蓟马数量。蚯蚓介导的番茄营养物质(茎叶可溶性糖和茎叶全氮)和防御信号物质(茎叶茉莉酸和茎叶水杨酸)含量分别与西花蓟马数量呈显著的正相关和负相关。总之, 氮肥施用改变的土壤氮有效性通过改变植物资源和防御物质含量转变了蚯蚓介导的植物抗虫性响应; 全面了解土壤生物对植物生长的影响需要综合考虑土壤管理-土壤动物-植物病原物三者之间的关系。  相似文献   

15.
Schmidt  Olaf  Curry  James P. 《Plant and Soil》1999,214(1-2):187-198
The effects of earthworms (Lumbricidae) on plant biomass production and N allocation in model intercropping systems of winter wheat and white clover were evaluated in two pot experiments. Wheat and wheat-clover mixtures were grown in a low-organic loam soil, earthworms were added at densities comparable to field population densities and the experiments were terminated 48 and 17 d after earthworm introductions. In both experiments, earthworms significantly increased the biomass and N uptake of wheat while they had generally no effects on clover. As a result, earthworm activity increased the proportion of wheat biomass in the total plant biomass of the mixture. Nitrogen budgets of the experiment lasting 48 d indicated that additional N in the system made available by earthworm activity was primarily taken up by the wheat. Earthworms also affected intra-plant N allocation in wheat which had significantly higher shoot:root N ratios when earthworms were present. When clover was labelled with 15N in the experiment which lasted 17 d, endogeic earthworms significantly reduced the amounts of 15N excess transferred from living or decomposing clover roots to accompanying wheat plants. Earthworms assimilated small quantities of 15N tracer from decomposing clover roots but not from living clover roots. The results of these model experiments suggest that earthworms can affect the balance between intercropped cereals and legumes by altering intra- and inter-plant N allocation. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
Earthworms increase growth of most plant species through a number of poorly investigated mechanisms. We tested the hypothesis that earthworm modifications of soil structure and the resulting changes in water availability to plants explain this positive effect. Addition of endogeic earthworms Millsonia anomala induced a 40% increase in shoot biomass production and a 13% increase in CO2 assimilation rate of well watered rice plants grown in pots. Conversely, when plants were subjected to water deficit, presence of earthworms had no effect on shoot biomass production and a negative impact on CO2 assimilation rate (−21%). Early stomatal closure in presence of earthworms indicated lower water availability. The hypothesis that earthworms improve plant biomass production through soil physical structure modification was thus rejected. Three hypotheses were tested to explain this decrease in water availability: (i) a decrease in soil water retention capacity, (ii) an increase in evaporation from the soil or/and (iii) an increase in plant transpiration. Results showed that earthworms significantly reduced soil water retention capacity by more than 6%, but had no effect on evaporation rate. Water losses through transpiration were greater in the presence of earthworms when the soil was maintained at field capacity, but this was not the case under drought conditions. This experiment showed that the endogeic compacting earthworm M. anomala significantly increased plant photosynthesis by an undetermined mechanism under well-watered conditions. However, photosynthesis was reduced under drought conditions due to reduced soil water retention capacity.  相似文献   

17.
A previously undocumented association between earthworms and red wood ants (Formicaaquilonia Yarr.) was found during an investigation of the influence of wood ants on the distribution and abundance of soil animals in boreal forest soil. Ant nest mounds and the surrounding soil of the ant territories were sampled. The ant nest mound surface (the uppermost 5-cm layer) harboured a much more abundant earthworm community than the surrounding soil; the biomass of the earthworms was about 7 times higher in the nests than in the soil. Dendrodrilusrubidus dominated the earthworm community in the nests, while in soils Dendrobaenaoctaedra was more abundant. Favorable temperature, moisture and pH (Ca content), together with abundant food supply (microbes and decomposing litter) are likely to make a nest mound a preferred habitat for earthworms, provided that they are not preyed upon by the ants. We also conducted laboratory experiments to study antipredation mechanisms of earthworms against ants. The experiments showed that earthworms do not escape predation by avoiding contact with ants in their nests. The earthworm mucus repelled the ants, suggesting a chemical defence against predation. Earthworms probably prevent the nest mounds from becoming overgrown by moulds and fungi, indicating possible mutualistic relationships between the earthworms and the ants. Received: 21 November 1996 / Accepted: 3 April 1997  相似文献   

18.
The important role of soil carbon (C) in the global C cycle has stimulated interest in better understanding the mechanisms regulating soil C storage and its stabilization. Exotic earthworm invasion of northern forest soils in North America can affect soil C pools, and we examined their effects on these mechanisms by adding 13C labeled leaf litter to adjacent northern hardwood forests with and without earthworms. Two types of labeled litter were produced, one with the 13C more concentrated in structural (S) components and the other in non-structural (NS) components, to evaluate the role of biochemical differences in soil C stabilization. Earthworm invasions have reduced soil C storage in the upper 20 cm of the soil profile by 37 %, mostly by eliminating surface organic horizons. Despite rapid mixing of litter into mineral soil and its incorporation into aggregates, mineral soil C has not increased in the presence of earthworms. Incorporation of litter C into soil and microbial biomass was not affected by biochemical differences between S versus NS labeled litter although NS litter C was assimilated more readily into earthworm biomass and S litter C into fungal hyphae. Apparently, the net effect of earthworm mixing of litter and forest floor C into mineral soil, plus stabilization of that C in aggregates, is counterbalanced by earthworm bioturbation and possible priming effects. Our results support recent arguments that biochemical recalcitrance is not a major contributor to the stabilization of soil C.  相似文献   

19.
European and Asian earthworm invasions are widespread in North America. European earthworms especially are well-known to cause dramatic changes in ecosystems in northern, formerly glaciated portions of the continent, but less is known about the impacts of earthworm invasions in unglaciated areas inhabited by indigenous earthworms. We monitored fluctuations in the spatial extent of an Amynthas agrestis (Megascolecidae) population in the Great Smoky Mountains National Park in eastern Tennessee, USA. Two years of monthly growing-season observations revealed that the distribution of the earthworm population was dynamic, but overall distribution was closely linked to temperature and moisture with dramatic reductions of earthworm numbers associated with very dry conditions. In plots where A. agrestis were more often detected, we measured increased A-horizon soil aggregation and decreased thickness of the Oe/Oa-horizon. However, A. agrestis was not related to A-horizon microbial biomass, A-horizon C:N, Oi-horizon (litter) thickness, or mass of forest floor (O-horizon). Reductions in millipede species richness and density were associated with frequency of A. agrestis presence, possibly due to direct competition for food resources (Oe/Oa material). This evidence for potentially negative interactions between millipedes and A. agrestis suggests that expansion of the non-native earthworm into new habitats in the Park may alter soil physical properties and could pose a threat to native millipede diversity.  相似文献   

20.
Theoretical predictions and empirical studies suggest that resident species diversity is an important driver of community invasibility. Through trait-based processes, plants in communities with high resident species diversity occupy a wider range of ecological niches and are more productive than low diversity communities, potentially reducing the opportunities for invasion through niche preemption. In terrestrial plant communities, biotic ecosystem engineers such as earthworms can also affect invasibility by reducing leaf litter stocks and influencing soil conditions. In a greenhouse experiment, we simultaneously manipulated resident species diversity and earthworm presence to investigate independent and interactive effects of these two variables on the success of several invasive plants. Higher diversity of resident species was associated with lower biomass of invasives, with the effect mediated through resident species biomass. The presence of earthworms had a strong positive effect on the biomass of invasive species across all levels of resident species diversity and a weaker indirect negative effect via decreased soil moisture. Earthworms also weakened the positive correlation between resident species diversity and productivity. We did not observe any interactive effects of resident species biomass and earthworms on invasive species success. Partitioning the net biodiversity effect indicated that selection effects increased with resident species diversity whereas complementarity effects did not. Results suggest that managing for diverse forest communities may decrease the susceptibility of these communities to invasions. However, the presence of introduced earthworms in previously earthworm-free sites may undermine these efforts. Furthermore, future studies of plant community invasibility should account for the effects of introduced earthworms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号