共查询到20条相似文献,搜索用时 15 毫秒
1.
Signaling through focal adhesion kinase 总被引:48,自引:0,他引:48
David D. Schlaepfer Christof R. Hauck David J. Sieg 《Progress in biophysics and molecular biology》1999,71(3-4):435-478
Integrin receptor binding to extracellular matrix proteins generates intracellular signals via enhanced tyrosine phosphorylation events that are important for cell growth, survival, and migration. This review will focus on the functions of the focal adhesion kinase (FAK) protein-tyrosine kinase (PTK) and its role in linking integrin receptors to intracellular signaling pathways. FAK associates with several different signaling proteins such as Src-family PTKs, p130Cas, Shc, Grb2, PI 3-kinase, and paxillin. This enables FAK to function within a network of integrin-stimulated signaling pathways leading to the activation of targets such as the ERK and JNK/mitogen-activated protein kinase pathways. Focus will be placed on the structural domains and sites of FAK tyrosine phosphorylation important for FAK-mediated signaling events and how these sites are conserved in the FAK-related PTK, Pyk2. We will review what is known about FAK activation by integrin receptor-mediated events and also non-integrin stimuli. In addition, we discuss the emergence of a consensus FAK substrate phosphorylation sequence. Emphasis will also be placed on the role of FAK in generating cell survival signals and the cleavage of FAK during caspase-mediated apoptosis. An in-depth discussion will be presented of integrin-stimulated signaling events occurring in the FAK knockout fibroblasts (FAK−) and how these cells exhibit deficits in cell migration. FAK re-expression in the FAK− cells confirms the role of this PTK in the regulation of cell morphology and in promoting cell migration events. In addition, these results reinforce the potential role for FAK in promoting an invasive phenotype in human tumors. 相似文献
2.
Medley QG Buchbinder EG Tachibana K Ngo H Serra-Pagès C Streuli M 《The Journal of biological chemistry》2003,278(15):13265-13270
The Trio guanine nucleotide exchange factor functions in neural development in Caenorhabditis elegans and Drosophila and in the development of neural tissues and skeletal muscle in mouse. The association of Trio with the Lar tyrosine phosphatase led us to study the role of tyrosine phosphorylation in Trio function using focal adhesion kinase (FAK). The Lar-interacting domain of Trio is constitutively tyrosine-phosphorylated when expressed in COS-7 cells and was highly phosphorylated when it was co-transfected with FAK. Co-precipitation studies indicated that Trio binds to the FAK amino-terminal domain and to the FAK kinase domain via its SH3 and kinase domains, respectively. Tyrosine-phosphorylated FAK and Trio were present mainly in the detergent-insoluble fraction of cell lysates, and co-expression of Trio and FAK resulted in increased amounts of Trio present in the detergent-insoluble fraction. Immunofluorescence of cells co-transfected with FAK and Trio revealed significant co-localization of the proteins at the cell periphery, indicating that they form a stable complex in vivo. A FAK phosphorylation site, tyrosine residue 2737, was identified in subdomain I of the Trio kinase domain. Additionally, in vitro phosphorylation assays and in vivo co-expression studies indicated that Trio enhances FAK kinase activity. These results suggest Trio may be involved in the regulation of focal adhesion dynamics in addition to effecting changes in the actin cytoskeleton through the activation of Rho family GTPases. 相似文献
3.
Fujita Y Kitagawa M Nakamura S Azuma K Ishii G Higashi M Kishi H Hiwasa T Koda K Nakajima N Harigaya K 《FEBS letters》2002,528(1-3):101-108
Adhesion molecules can initiate intracellular signaling. Engagement of CD44 either by its natural ligand hyaluronan or a specific antibody on a cell line induced tyrosine phosphorylation and activation of focal adhesion kinase (FAK), which then associated with phosphatidylinositol 3-kinase (PI3K) and activated mitogen-activated protein kinase at its downstream. However, the introduction of dominant negative Rho into the cells inhibited the CD44-stimulated FAK phosphorylation. Cells expressing CD44 were significantly resistant to etoposide-induced apoptosis. This anti-apoptotic effect was cancelled by the inhibition of either Rho, FAK or PI3K. These results may indicate a signaling pathway from CD44 to mediate the resistance against drug-induced apoptosis in cancer cells. 相似文献
4.
Imaging studies implicate microtubule targeting of focal adhesions in focal adhesion disassembly, although the molecular mechanism is unknown. Here, we develop a model system of focal adhesion disassembly based on the finding that microtubule regrowth after nocodazole washout induces disassembly of focal adhesions, and that this disassembly occurs independently of Rho and Rac, but depends on focal adhesion kinase (FAK) and dynamin. During disassembly, dynamin interacts with FAK and colocalizes with focal adhesions. Inhibition of dynamin prevents migration of cells with a focal adhesion phenotype. Our results show that focal adhesion disassembly involves microtubules, dynamin and FAK, and is not simply the reversal of focal adhesion formation. 相似文献
5.
Cable J Prutzman K Gunawardena HP Schaller MD Chen X Campbell SL 《Biochemistry》2012,51(11):2213-2223
Focal adhesion kinase (FAK), a key regulator of cell adhesion and migration, is overexpressed in many types of cancer. The C-terminal focal adhesion targeting (FAT) domain of FAK is necessary for proper localization of FAK to focal adhesions and subsequent activation. Phosphorylation of Y926 in the FAT domain by the tyrosine kinase Src has been shown to promote metastasis and invasion in vivo by linking the FAT domain to the MAPK pathway via its interaction with growth factor receptor-bound protein 2. Several groups have reported that inherent conformational dynamics in the FAT domain likely regulate phosphorylation of Y926; however, what regulates these dynamics is unknown. In this paper, we demonstrate that there are two sites of in vitro Src-mediated phosphorylation in the FAT domain: Y926, which has been shown to affect FAK function in vivo, and Y1008, which has no known biological role. The phosphorylation of these two tyrosine residues is pH-dependent, but this does not reflect the pH dependence of Src kinase activity. Circular dichroism and nuclear magnetic resonance data indicate that the stability and conformational dynamics of the FAT domain are sensitive to changes in pH over a physiological pH range. In particular, regions of the FAT domain previously shown to regulate phosphorylation of Y926 as well as regions near Y1008 show pH-dependent dynamics on the microsecond to millisecond time scale. 相似文献
6.
Chen R Kim O Li M Xiong X Guan JL Kung HJ Chen H Shimizu Y Qiu Y 《Nature cell biology》2001,3(5):439-444
Etk/BMX, a member of the Btk family of tyrosine kinases, is highly expressed in cells with great migratory potential, including endothelial cells and metastatic carcinoma cell lines. Here, we present evidence that Etk is involved in integrin signalling and promotes cell migration. The activation of Etk by extracellular matrix proteins is regulated by FAK through an interaction between the PH domain of Etk and the FERM domain of FAK. The lack of Etk activation by extracellular matrix in FAK-null cells could be restored by co-transfection with wild-type FAK. Disrupting the interaction between Etk and FAK diminished the cell migration promoted by either kinase. Furthermore, inhibiting Etk expression in metastatic carcinoma cell lines with an antisense oligonucleotide blocks integrin-mediated migration of these cells. Taken together, our data indicate the essential role of the interaction of the PH domain of Etk and the FERM domain of FAK in integrin signalling. 相似文献
7.
Sekine Y Tsuji S Ikeda O Sugiyma K Oritani K Shimoda K Muromoto R Ohbayashi N Yoshimura A Matsuda T 《Journal of immunology (Baltimore, Md. : 1950)》2007,179(4):2397-2407
Signal-transducing adaptor protein-2 (STAP-2) is a recently identified adaptor protein that contains pleckstrin homology- and Src homology 2-like domains as well as a YXXQ motif in its C-terminal region. Our previous studies demonstrated that STAP-2 binds to STAT3 and STAT5, and regulates their signaling pathways. In the present study, we find that STAP-2-deficient splenocytes or T cells exhibit enhanced cell adhesion to fibronectin after PMA treatment, and that STAP-2-deficient T cells contain the increased protein contents of focal adhesion kinase (FAK). Furthermore, overexpression of STAP-2 induces a dramatic decrease in the protein contents of FAK and integrin-mediated T cell adhesion to fibronectin in Jurkat T cells via the degradation of FAK. Regarding the mechanism for this effect, we found that STAP-2 associates with FAK and enhances its degradation, proteasome inhibitors block FAK degradation, and STAP-2 recruits an endogenous E3 ubiquitin ligase, Cbl, to FAK. These results reveal a novel regulation mechanism for integrin-mediated signaling in T cells via STAP-2, which directly interacts with and degrades FAK. 相似文献
8.
Activation of pyk2/related focal adhesion tyrosine kinase and focal adhesion kinase in cardiac remodeling 总被引:8,自引:0,他引:8
Melendez J Welch S Schaefer E Moravec CS Avraham S Avraham H Sussman MA 《The Journal of biological chemistry》2002,277(47):45203-45210
Cellular remodeling during progression of dilation involves focal adhesion contact reorganization. However, the signaling mechanisms and structural consequences leading to impaired cardiomyocyte adhesion are poorly defined. These events were studied in tropomodulin-overexpressing transgenic mice that develop dilated cardiomyopathy associated with chronic elevation of intracellular calcium. Analysis of tropomodulin-overexpressing transgenic hearts by immunoblot and confocal microscopy revealed activation and redistribution of signaling molecules known to regulate adhesion. Calcium-dependent pyk2/related focal adhesion tyrosine kinase (RAFTK) showed changes in expression and phosphorylation state, similar to changes observed for a related downstream target molecule of pyk2/RAFTK termed focal adhesion kinase. Paxillin, the target substrate molecule for focal adhesion kinase phosphorylation, was redistributed in tropomodulin-overexpressing transgenic hearts with enhanced paxillin phosphorylation and cleavage. Certain aspects of the in vivo signaling phenotype including increased paxillin phosphorylation could be recapitulated in vitro using neonatal rat cardiomyocytes infected with recombinant adenovirus to overexpress tropomodulin. In addition, increasing intracellular calcium levels with ionomycin induced pyk2/RAFTK phosphorylation, and adenovirally mediated expression of wild-type pyk2/RAFTK resulted in increased phospho-pyk2/RAFTK levels and concomitant paxillin phosphorylation. Collectively, these results delineate a cardiomyocyte signaling pathway associated with dilation that has potential relevance for cardiac remodeling, focal adhesion reorganization, and loss of contractility. 相似文献
9.
Syndecan-4 modulates focal adhesion kinase phosphorylation 总被引:7,自引:0,他引:7
Wilcox-Adelman SA Denhez F Goetinck PF 《The Journal of biological chemistry》2002,277(36):32970-32977
The cell-surface heparan sulfate proteoglycan syndecan-4 acts in conjunction with the alpha(5)beta(1) integrin to promote the formation of actin stress fibers and focal adhesions in fibronectin (FN)-adherent cells. Fibroblasts seeded onto the cell-binding domain (CBD) fragment of FN attach but do not fully spread or form focal adhesions. Activation of Rho, with lysophosphatidic acid (LPA), or protein kinase C, using the phorbol ester phorbol 12-myristate 13-acetate, or clustering of syndecan-4 with antibodies directed against its extracellular domain will stimulate formation of focal adhesions and stress fibers in CBD-adherent fibroblasts. The distinct morphological differences between the cells adherent to the CBD and to full-length FN suggest that syndecan-4 may influence the organization of the focal adhesion or the activation state of the proteins that comprise it. FN-null fibroblasts (which express syndecan-4) exhibit reduced phosphorylation of focal adhesion kinase (FAK) tyrosine 397 (Tyr(397)) when adherent to CBD compared with FN-adherent cells. Treating the CBD-adherent fibroblasts with LPA, to activate Rho, or the tyrosine phosphatase inhibitor sodium vanadate increased the level of phosphorylation of Tyr(397) to match that of cells plated on FN. Treatment of the fibroblasts with PMA did not elicit such an effect. To confirm that this regulatory pathway includes syndecan-4 specifically, we examined fibroblasts derived from syndecan-4-null mice. The phosphorylation levels of FAK Tyr(397) were lower in FN-adherent syndecan-4-null fibroblasts compared with syndecan-4-wild type and these levels were rescued by the addition of LPA or re-expression of syndecan-4. These data indicate that syndecan-4 ligation regulates the phosphorylation of FAK Tyr(397) and that this mechanism is dependent on Rho but not protein kinase C activation. In addition, the data suggest that this pathway includes the negative regulation of a protein-tyrosine phosphatase. Our results implicate syndecan-4 activation in a direct role in focal adhesion regulation. 相似文献
10.
Ulrich Grädler Jörg Bomke Djordje Musil Verena Dresing Martin Lehmann Günter Hölzemann Hartmut Greiner Christina Esdar Mireille Krier Timo Heinrich 《Bioorganic & medicinal chemistry letters》2013,23(19):5401-5409
Chemically diverse fragment hits of focal adhesion kinase (FAK) were discovered by surface plasmon resonance (SPR) screening of our in-house fragment library. Site specific binding of the primary hits was confirmed in a competition setup using a high-affinity ATP-site inhibitor of FAK. Protein crystallography revealed the binding mode of 41 out of 48 selected fragment hits within the ATP-site. Structural comparison of the fragment binding modes with a DFG-out inhibitor of FAK initiated first synthetic follow-up optimization leading to improved binding affinity. 相似文献
11.
Giannone G Rondé P Gaire M Beaudouin J Haiech J Ellenberg J Takeda K 《The Journal of biological chemistry》2004,279(27):28715-28723
Focal adhesion kinase (FAK) activity and Ca(2+) signaling led to a turnover of focal adhesions (FAs) required for cell spreading and migration. We used yellow Cameleon-2 (Ycam), a fluorescent protein-based Ca(2+) sensor fused to FAK or to a FAK-related non-kinase domain, to measure simultaneously local Ca(2+) variations at FA sites and FA dynamics. Discrete subcellular Ca(2+) oscillators initiate both propagating and abortive Ca(2+) waves in migrating U87 astrocytoma cells. Ca(2+)-dependent FA disassembly occurs when the Ca(2+) wave reaches individual FAs, indicating that local but not global Ca(2+) increases trigger FA disassembly. An unexpectedly rapid flux of FAK between cytosolic and FA compartments was revealed by fluorescence recovery after photobleaching studies. The FAK-Ycam recovery half-time (17 s) at FAs was slowed (to 29 s) by Ca(2+) elevation. FAK-related non-kinase domain-Ycam had a faster, Ca(2+)-insensitive recovery half-time (11 s), which is consistent with the effect of Ca(2+) on FAK-Ycam dynamics not being due to a general modification of the dynamics of FA components. Because FAK association at FAs was prolonged by Ca(2+) and FAK autophosphorylation was correlated to intracellular Ca(2+) levels, we propose that local Ca(2+) elevations increase the residency of FAK at FAs, possibly by means of tyrosine phosphorylation of FAK, thereby leading to increased activation of its effectors involved in FA disassembly. 相似文献
12.
R-Ras promotes focal adhesion formation through focal adhesion kinase and p130(Cas) by a novel mechanism that differs from integrins 总被引:10,自引:0,他引:10
下载免费PDF全文

R-Ras regulates integrin function, but its effects on integrin signaling pathways have not been well described. We demonstrate that activation of R-Ras promoted focal adhesion formation and altered localization of the alpha2beta1 integrin from cell-cell to cell-matrix adhesions in breast epithelial cells. Constitutively activated R-Ras(38V) dramatically enhanced focal adhesion kinase (FAK) and p130(Cas) phosphorylation upon collagen stimulation or clustering of the alpha2beta1 integrin, even in the absence of increased ligand binding. Signaling events downstream of R-Ras differed from integrins and K-Ras, since pharmacological inhibition of Src or disruption of actin inhibited integrin-mediated FAK and p130(Cas) phosphorylation, focal adhesion formation, and migration in control and K-Ras(12V)-expressing cells but had minimal effect in cells expressing R-Ras(38V). Therefore, signaling from R-Ras to FAK and p130(Cas) has a component that is Src independent and not through classic integrin signaling pathways and a component that is Src dependent. R-Ras effector domain mutants and pharmacological inhibition suggest a partial role for phosphatidylinositol 3-kinase (PI3K), but not Raf, in R-Ras signaling to FAK and p130(Cas). However, PI3K cannot account for the Src-independent pathway, since simultaneous inhibition of both PI3K and Src did not completely block effects of R-Ras on FAK phosphorylation. Our results suggest that R-Ras promotes focal adhesion formation by signaling to FAK and p130(Cas) through a novel mechanism that differs from but synergizes with the alpha2beta1 integrin. 相似文献
13.
Michael SkalskiNamit Sharma Karla WilliamsAndrew Kruspe Marc G. Coppolino 《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》2011,1813(1):148-158
Integrin signaling is central to cell growth and differentiation, and critical for the processes of apoptosis, cell migration and wound repair. Previous research has demonstrated a requirement for SNARE-dependent membrane traffic in integrin trafficking, as well as cell adhesion and migration. The goal of the present research was to ascertain whether SNARE-dependent membrane trafficking is required specifically for integrin-mediated signaling. Membrane traffic was inhibited in Chinese hamster ovary cells by expression of dominant-negative (E329Q) N-ethylmaleimide-sensitive fusion protein (NSF) or a truncated form of the SNARE SNAP23. Integrin signaling was monitored as cells were plated on fibronectin under serum-free conditions. E329Q-NSF expression inhibited phosphorylation of focal adhesion kinase (FAK) on Tyr397 at early time points of adhesion. Phosphorylation of FAK on Tyr576, Tyr861 and Tyr925 was also impaired by expression of E329Q-NSF or truncated SNAP23, as was trafficking, localization and activation of Src and its interaction with FAK. Decreased FAK-Src interaction coincided with reduced Rac activation, decreased focal adhesion turnover, reduced Akt phosphorylation and lower phosphatidylinositol 3,4,5-trisphosphate levels in the cell periphery. Over-expression of plasma membrane-targeted Src or phosphatidylinositol 3-kinase (PI3K) rescued cell spreading and focal adhesion turnover. The results suggest that SNARE-dependent trafficking is required for integrin signaling through a FAK/Src/PI3K-dependent pathway. 相似文献
14.
Quadri SK Bhattacharya J 《American journal of physiology. Lung cellular and molecular physiology》2007,292(1):L334-L342
Endothelial cell (EC) junctions determine vascular barrier properties and are subject to transient opening to allow liquid flux from blood to tissue. Although EC junctions open in the presence of permeability-enhancing factors, including oxidants, the mechanisms by which they reseal remain inadequately understood. To model opening and resealing of EC junctions in the presence of an oxidant, we quantified changes in H(2)O(2)-induced transendothelial resistance (TER) in monolayers of rat lung microvascular EC. During a 30-min exposure, H(2)O(2) (100 microM) decreased TER for an initial approximately 10 min, indicating junctional opening. Subsequently, despite continuous presence of H(2)O(2), TER recovered to baseline, indicating the activation of junctional resealing mechanisms. These bimodal TER transients matched the time course of loss and then gain of E-cadherin at EC junctions. The timing of the TER decrease matched the onset of focal adhesion formation, while F-actin increase at the cell periphery occurred with a time course that complemented the recovery of peripheral E-cadherin. In monolayers expressing a focal adhesion kinase (FAK) mutant (del-FAK) that inhibits FAK activity, the initial H(2)O(2)-induced junctional opening was present, although the subsequent junctional recovery was blocked. Expression of transfected E-cadherin was evident at the cell periphery of wild-type but not del-FAK-expressing EC. E-cadherin overexpression in del-FAK-expressing EC failed to effect major rescue of the junctional resealing response. These findings indicate that in oxidant-induced EC junction opening, FAK plays a critical role in remodeling the adherens junction to reseal the barrier. 相似文献
15.
Platelet-derived growth factor-BB and lysophosphatidic acid distinctly regulate hepatic myofibroblast migration through focal adhesion kinase 总被引:3,自引:0,他引:3
Tangkijvanich P Melton AC Chitapanarux T Han J Yee HF 《Experimental cell research》2002,281(1):140-147
Although hepatic myofibroblast (HMF) migration contributes to the development of fibrosis, the mechanisms coordinating this movement are uncertain. We determined the effects of lysophosphatidic acid (LPA) and platelet-derived growth factor-BB (PDGF) on actin polymerization, FAK tyrosine phosphorylation, and migration of cultured human HMFs. LPA (0.4-100 microM) stimulated migration, FAK tyrosine phosphorylation, and stress fiber assembly with a sigmoidal dose response. PDGF (1-250 ng/ml) stimulated migration, FAK tyrosine phosphorylation, and actin polymerization with a bell-shape dose-response characterized by a maximum at 10-25 ng/ml. Concentrations of cytochalasin D, which abolished FAK tyrosine phosphorylation, also blocked LPA- and PDGF-induced migration. A dose of 1-10 ng/ml PDGF acted synergistically with LPA (10 microM) to stimulate FAK tyrosine phosphorylation and migration, whereas higher concentrations of PDGF (100-250 ng/ml) inhibited FAK tyrosine phosphorylation and migration in response to LPA (10 microM). These data indicate that PDGF and LPA coordinately govern the migration of HMFs by differentially regulating FAK and suggest a novel model in which PDGF, acting as an amplifier/attenuator of LPA-induced signaling, facilitates HMF accumulation within injured areas of the liver. 相似文献
16.
Paxillin binding is not the sole determinant of focal adhesion localization or dominant-negative activity of focal adhesion kinase/focal adhesion kinase-related nonkinase
下载免费PDF全文

Cooley MA Broome JM Ohngemach C Romer LH Schaller MD 《Molecular biology of the cell》2000,11(9):3247-3263
The carboxy-terminal 150 residues of the focal adhesion kinase (FAK) comprise the focal adhesion-targeting sequence, which is responsible for its subcellular localization. The mechanism of focal adhesion targeting has not been fully elucidated. We describe a mutational analysis of the focal adhesion-targeting sequence of FAK to further examine the mechanism of focal adhesion targeting and explore additional functions encoded by the carboxy-terminus of FAK. The results demonstrate that paxillin binding is dispensable for focal adhesion targeting of FAK. Cell adhesion-dependent tyrosine phosphorylation strictly correlated with the ability of mutants to target to focal adhesions. Focal adhesion targeting was also a requirement for maximal FAK-dependent tyrosine phosphorylation of paxillin and FAK-related nonkinase (FRNK)-dependent inhibition of endogenous FAK function. However, there were additional requirements for these latter functions because we identified mutants that target to focal adhesions, yet are defective for the induction of paxillin phosphorylation or the dominant-negative function of FRNK. Furthermore, the paxillin-binding activity of FRNK mutants did not correlate with their ability to inhibit FAK, suggesting that FRNK has other targets in addition to paxillin. 相似文献
17.
Lee J Jung ID Chang WK Park CG Cho DY Shin EY Seo DW Kim YK Lee HW Han JW Lee HY 《Experimental cell research》2005,307(2):315-328
Lysophosphatidic acid (LPA) mediates diverse biological responses, including cell migration, through the activation of G-protein-coupled receptors. Recently, we have shown that LPA stimulates p21-activated kinase (PAK) that is critical for focal adhesion kinase (FAK) phosphorylation and cell motility. Here, we provide the direct evidence that p85 beta-PIX is required for cell motility of NIH-3T3 cells by LPA through FAK and p38 MAP kinase phosphorylations. LPA induced p85 beta-PIX binding to FAK in NIH-3T3 cells that was inhibited by pretreatment of the cells with phosphoinositide 3-kinase inhibitor, LY294002. Furthermore, the similar inhibition of the complex formation was also observed, when the cells were transfected with either p85 beta-PIX mutant that cannot bind GIT or dominant negative mutants of Rac1 (N17Rac1) and PAK (PAK-PID). Transfection of the cells with specific p85 beta-PIX siRNA led to drastic inhibition of LPA-induced FAK phosphorylation, peripheral redistribution of p85 beta-PIX with FAK and GIT1, and cell motility. p85 beta-PIX was also required for p38 MAP kinase phosphorylation induced by LPA. Finally, dominant negative mutant of Rho (N19Rho)-transfected cells did not affect PAK activation, while the cells stably transfected with p85 beta-PIX siRNA or N17Rac1 showed the reduction of LPA-induced PAK activation. Taken together, the present data suggest that p85 beta-PIX, located downstream of Rac1, is a key regulator for the activations of FAK or p38 MAP kinase and plays a pivotal role in focal complex formation and cell motility induced by LPA. 相似文献
18.
19.
Quadri SK Bhattacharjee M Parthasarathi K Tanita T Bhattacharya J 《The Journal of biological chemistry》2003,278(15):13342-13349
Endothelial cell barrier (EC) properties regulate blood tissue fluid flux. To determine the role of endothelial-matrix interactions in barrier regulation, we induced cell shrinkage by exposing confluent endothelial monolayers to hyperosmolarity. The dominant effect of a 15-min hyperosmolar exposure was an increase in the trans-endothelial electrical resistance, indicating the induction of barrier strengthening. Hyperosmolar exposure also increased activity of focal adhesion kinase and E-cadherin accumulation at the cell periphery. Concomitantly, the density of actin filaments increased markedly. In EC monolayers stably expressing constitutively active or dominant negative isoforms of Rac1, the actin response to hyperosmolar exposure was enhanced or blocked, respectively, although the response in trans-endothelial resistance was unaffected, indicating that the endothelial barrier enhancement occurred independently of actin. However, in monolayers expressing a kinase-deficient mutant of focal adhesion kinase, the hyperosmolarity-induced increases in activity of focal adhesion and peripheral E-cadherin enhancement were blocked and the induced increase of electrical resistance was markedly blunted. These findings indicate that in EC exposed to hyperosmolar challenge, the involvement of focal adhesion kinase was critical in establishing barrier strengthening. 相似文献
20.
Signaling through MAP kinase networks in plants 总被引:13,自引:0,他引:13
Protein phosphorylation is the most important mechanism for controlling many fundamental cellular processes in all living organisms including plants. A specific class of serine/threonine protein kinases, the mitogen-activated protein kinases (MAP kinases) play a central role in the transduction of various extra- and intracellular signals and are conserved throughout eukaryotes. These generally function via a cascade of networks, where MAP kinase (MAPK) is phosphorylated and activated by MAPK kinase (MAPKK), which itself is activated by MAPKK kinase (MAPKKK). Signaling through MAP kinase cascade can lead to cellular responses including cell division, differentiation as well as response to various stresses. In plants, MAP kinases are represented by multigene families and are organized into a complex network for efficient transmission of specific stimuli. Putative plant MAP kinase cascades have been postulated based on experimental analysis of in vitro interactions between specific MAP kinase components. These cascades have been tested in planta following expression of epitope-tagged kinases in protoplasts. It is known that signaling for cell division and stress responses in plants are mediated through MAP kinases and even auxin, ABA and possibly ethylene and cytokinin also utilize a MAP kinase pathway. Most of the biotic (pathogens and pathogen-derived elicitors) including wounding and abiotic stresses (salinity, cold, drought, and oxidative) can induce defense responses in plants through MAP kinase pathways. In this article we have covered the historical background, biochemical assay, activation/inactivation, and targets of MAP kinases with emphasis on plant MAP kinases and the responses regulated by them. The cross-talk between plant MAP kinases is also discussed to bring out the complexity within this three-component module. 相似文献