首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
A cotton Ltp3 gene and its 5′ and 3′ flanking regions have been cloned with a PCR-based genomic DNA walking method. The amplified 2.6 kb DNA fragment contains sequences corresponding to GH3 cDNA which has been shown to encode a lipid transfer protein (LTP3). The gene has an intron of 80 bp which is located in the region corresponding to the C-terminus of LTP3. The Ltp3 promoter was systematically analyzed in transgenic tobacco plants by employing the Escherichia coli β-glucuronidase gene (GUS) as a reporter. The results of histochemical and fluorogenic GUS assays indicate that the 5′ flanking region of the Ltp3 gene contains cis-elements conferring the trichome specific activity of Ltp3 promoter.  相似文献   

4.
In the present study, we have examined the regulation of expression of a newly isolated member of the hsp 30 gene family, hsp 30C. Using RT-PCR, we found that this gene was first heat-inducible at the tailbud stage of development. We also examined the expression of two microinjected modified hsp 30C gene constructs in Xenopus embryos. One of the constructs had 404 bp of hsp 30C 5′-flanking region, whereas the other had 3.6 kb. Both gene constructs had 1 kb of 3′-flanking region. RT-PCR assays were employed to detect the expression of these microinjected genes. The presence of extensive 5′- and 3′-flanking regions of the hsp 30C gene did not confer proper developmental regulation, since heat-inducible expression of both of the microinjected constructs was detectable at the midblastula stage. The premature expression of the microinjected hsp 30 gene was not a result of high plasmid copy number or the presence of plasmid DNA sequences. These results suggest that the microinjected genes contain all the cis-acting DNA sequences required for correct heat-inducible regulation but do not contain the elements required for the proper regulation of hsp 30 gene expression during development. It is possible that regulatory elements controlling the developmental expression of the hsp30 genes may reside upstream or downstream of the entire cluster. © 1993Wiley-Liss, Inc.  相似文献   

5.
6.
7.
We have isolated and determined DNA sequence for the 5-flanking regions of three Arabidopsis thaliana polyubiquitin genes, UBQ3, UBQ10, and UBQ11. Comparison to cDNA sequences revealed the presence of an intron in the 5-untranslated region at the same position immediately upstream of the initiator methionine codon in each of the three genes. An intron at this position is also present in two sunflower and two maize polyubiquitin genes. An intron is also found in the 5-untranslated regions of several animal polyubiquitin genes, although the exact intron position is not conserved among them, and none are in the same position as those in the higher plant polyubiquitin genes. Chimeric genes containing the 5-flanking regions of UBQ3, UBQ10, and UBQ11 in front of the coding regions for the reporter enzyme Escherichia coli -glucuronidase (GUS) were constructed. When introduced transiently into Arabidopsis leaves via microprojectile bombardment, all resulted in readily detectable levels of GUS activity that were quantitatively similar. The introns of UBQ3 and UBQ10 in the corresponding promoter fragments were removed by replacement with flanking cDNA sequences and chimeric genes constructed. These constructs resulted in 2.5- to 3-fold lower levels of marker enzyme activity after transient introduction into Arabidopsis leaves. The UBQ10 promoter without the 5 intron placed upstream of firefly luciferase (LUX) resulted in an average of 3-fold lower LUX activity than from an equivalent construct with the UBQ10 intron. A UBQ3 promoter cassette was constructed for the constitutive expression of open reading frames in dicot plants and it produced readily detectable levels of GUS activity in transient assays.  相似文献   

8.
9.
10.
Regulatory promoter regions responsible for the enhanced expression in anthers and pollen are defined in detail for three nuclear encoded mitochondrial Complex I (nCI) genes from Arabidopsis thaliana. Specific regulatory elements were found conserved in the 5′ upstream regions between three different genes encoding the 22 kDa (PSST), 55 kDa NADH binding (55 kDa) and 28 kDa (TYKY) subunits, respectively. Northern blot analysis and transgenic Arabidopsis plants carrying progressive deletions of the promoters fused to the β-glucuronidase (GUS) reporter gene by histochemical and fluorimetric methods showed that all three promoters drive enhanced expression of GUS specifically in anther tissues and in pollen grains. In at least two of these promoters the –200/–100 regions actively convey the pollen/anther-specific expression in gain of function experiments using CaMV 35S as a minimal promoter. These nCI promoters thus contain a specific regulatory region responding to the physiological demands on mitochondrial function during pollen maturation. Pollen-specific motifs located in these regions appear to consist of as little as seven nucleotides in the respective promoter context.  相似文献   

11.
12.
13.
14.
15.
16.
17.
Summary Three different 3 noncoding sequences of wheat rubisco small subunit (SSU) genes (RbcS) were used as probes to identify the gene members of different RbcS subfamilies in the common wheat cultivar Chinese Spring (CS). All genes of the wheat RbcS multigene family were previously assigned to the long arm of homoeologous group 5 and to the short arm of homoeologous group 2 chromosomes of cv CS. Extracted DNA from various aneuploids of these homoeologous groups was digested with four restriction enzymes and hybridized with three different 3 noncoding sequences of wheat SSU clones. All RbcS genes located on the long arm of homoeologous group 5 chromosomes were found to comprise a single subfamily, while those located on the short arm of group 2 comprised three subfamilies. Each of the ancestral diploid genomes A, B, and D has at least one representative gene in each subfamily, suggesting that the divergence into subfamilies preceded the differentiation into species. This divergence of the RbcS genes, which is presumably accompanied by a similar divergence in the 5 region, may lead to differential expression of various subfamilies in different tissues and in different developmental stages, in response to different environmental conditions. Moreover, members of one subfamily that belong to different genomes may have diverged also in the coding sequence and, consequently, code for distinguishable SSU. It is assumed that such utilization of the RbcS multigene family increases the adaptability and phenotypic plasticity of common wheat over its diploid progenitors.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号