首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A mixed‐species bird flock is a social assemblage where two or more bird species are moving together while foraging and might benefit from increased foraging efficiency and antipredator vigilance. A “mega‐flock,” which includes flocking species from different vegetation strata, often exhibits high species diversity. Mechanisms for the formation of mega‐flocks have not yet been explored. In this study, we evaluated the influence of vegetation structure and bird species diversity in driving the occurrence of mega‐flocks. We investigated the composition of mixed‐species flocks, local bird communities, and vegetation structure in five vegetation types of two high‐elevation sites in central Taiwan. Mega‐flocks occurred more frequently in pine woodland than later successional stages of coniferous forests. However, species richness/diversity of local bird communities increased along successional stages. Therefore, vegetation variables exhibit more influence on the occurrence of mega‐flocks than local bird communities. Besides foliage height diversity, understory coverage also showed positive effects on flock size of mixed‐species flocks. Our results indicated that pine woodlands with more evenly distributed vegetation layers could facilitate the interactions of canopy and understory flocks and increase the formation of mega‐flocks and thus the complexity of mixed‐species flocks.  相似文献   

2.
How environmental changes are affecting bird population dynamics is one of the most challenging conservation issues. Dietary studies of top avian predators could offer scope to monitor anthropogenic drivers of ecosystem changes. We investigated the diet of breeding Eleonora''s falcon in an area of Northeastern Algeria in the years 2010–2012. Feathers and insect remains originating from prey plucking behavior were analyzed, providing insights into the seasonally changing diet of this raptor, as well as the trans‐Mediterranean avian migration. A total of 77 species of birds (16 Sylviidae, 11 Turdidae, and 4 Emberizidae), 3 species of insects, and 1 lizard were identified among prey remains, reflecting a diverse diet. Diet composition and prey abundance varied seasonally, faithfully correlating with the passage of migrant birds as recorded from bird ring recoveries. Our findings suggest that dietary studies of predators might be deployed to investigate changes in bird migration. We discuss our results in the context of trans‐Mediterranean migration, with early‐season prey mainly comprising trans‐Saharan migrants (Apus apus and Merops apiaster) and late‐season prey being dominated by Mediterranean winter migrants (Erithacus rubecula, Turdus philomelos, Sylvia atricapilla, and Sturnus vulgaris). Notably, we observed a significant reduction in species richness of passerine remains in 2012, potentially highlighting a decline in the diversity of avian migrants.  相似文献   

3.
Alpine and arctic lemming populations appear to be highly sensitive to climate change, and when faced with warmer and shorter winters, their well-known high-amplitude population cycles may collapse. Being keystone species in tundra ecosystems, changed lemming dynamics may convey significant knock-on effects on trophically linked species. Here, we analyse long-term (1988–2010), community-wide monitoring data from two sites in high-arctic Greenland and document how a collapse in collared lemming cyclicity affects the population dynamics of the predator guild. Dramatic changes were observed in two highly specialized lemming predators: snowy owl and stoat. Following the lemming cycle collapse, snowy owl fledgling production declined by 98 per cent, and there was indication of a severe population decline of stoats at one site. The less specialized long-tailed skua and the generalist arctic fox were more loosely coupled to the lemming dynamics. Still, the lemming collapse had noticeable effects on their reproductive performance. Predator responses differed somewhat between sites in all species and could arise from site-specific differences in lemming dynamics, intra-guild interactions or subsidies from other resources. Nevertheless, population extinctions and community restructuring of this arctic endemic predator guild are likely if the lemming dynamics are maintained at the current non-cyclic, low-density state.  相似文献   

4.
Rapid advances in genomic tools for use in ecological contexts and non‐model systems allow unprecedented insight into interactions that occur beyond direct observation. We developed an approach that couples microbial forensics with molecular dietary analysis to identify species interactions and scavenging by invasive rats on native and introduced birds in Hawaii. First, we characterized bacterial signatures of bird carcass decay by conducting 16S rRNA high‐throughput sequencing on chicken (Gallus gallus domesticus) tissues collected over an 11‐day decomposition study in natural Hawaiian habitats. Second, we determined if field‐collected invasive black rats (Rattus rattus; n = 51, stomach and fecal samples) had consumed birds using molecular diet analysis with two independent PCR assays (mitochondrial Cytochrome Oxidase I and Cytochrome b genes) and Sanger sequencing. Third, we characterized the gut microbiome of the same rats using 16S rRNA high‐throughput sequencing and identified 15 bacterial taxa that were (a) detected only in rats that consumed birds (n = 20/51) and (b) were indicative of decaying tissue in the chicken decomposition experiment. We found that 18% of rats (n = 9/51) likely consumed birds as carrion by the presence of bacterial biomarkers of decayed tissue in their gut microbiome. One species of native bird (Myadestes obscurus) and three introduced bird species (Lophura leucomelanos, Meleagris gallopavo, Zosterops japonicus) were detected in the rats’ diets, with individuals from these species (except L. nycthemera) likely consumed through scavenging. Bacterial biomarkers of bird carcass decay can persist through rat digestion and may serve as biomarkers of scavenging. Our approach can be used to reveal trophic interactions that are challenging to measure through direct observation.  相似文献   

5.
Although it is common for nestlings to exhibit a strong bias for fledging in the morning, the mechanisms underlying this behavior are not well understood. Avoiding predation risk has been proposed as a likely mechanism by a number of researchers. We used video surveillance records from studies of grassland birds nesting in North Dakota, Minnesota, and Wisconsin to determine the diel pattern of nest predation and fledging patterns of four ground‐nesting obligate grassland passerines (Grasshopper Sparrow (Ammodramus savannarum), Savannah Sparrow (Passerculus sandwichensis), Bobolink (Dolichonyx oryzivorus), and Eastern Meadowlark (Sturnella magna)). We used the nest predation pattern as a surrogate for predation activity to test whether nestlings minimized predation risk by avoiding fledging when predation activity was high and preferentially fledging when predation risk was low. Predation activity was significantly lower starting 3 hr before sunrise and ending 3 hr after sunrise, followed by a transition to a period of significantly higher activity lasting for 4 hr, before declining to an average activity level for the rest of the diel period. There was little evidence that the four grassland bird species avoided fledging during the high‐risk period and Savannah Sparrow fledged at higher rates during that period. All four species had hours during the low‐risk period where they fledged at higher rates, but only Grasshopper Sparrow fledged preferentially during that period. Bobolink and Eastern Meadowlark had multiple hours with high fledging rates throughout the daytime period, resulting in no relationship between probability of fledging and predation risk. Given the species variability in fledging pattern seen in our study, it is unlikely that there is a universal response to any driver that affects time of fledging. Further study is needed to understand the complex interplay between species ecology and drivers such as physiology, energetics, and predation in affecting grassland bird fledging behavior.  相似文献   

6.
Loss and degradation of grasslands in the Great Plains region have resulted in major declines in abundance of grassland bird species. To ensure future viability of grassland bird populations, it is crucial to evaluate specific effects of environmental factors among species to determine drivers of population decline and develop effective conservation strategies. We used threshold models to quantify the effects of land cover and weather changes in "lesser prairie‐chicken" and "greater prairie‐chicken" (Tympanuchus pallidicinctus and T. cupido, respectively), northern bobwhites (Colinus virginianus), and ring‐necked pheasants (Phasianus colchicus). We demonstrated a novel approach for estimating landscape conditions needed to optimize abundance across multiple species at a variety of spatial scales. Abundance of all four species was highest following wet summers and dry winters. Prairie chicken and ring‐necked pheasant abundance was highest following cool winters, while northern bobwhite abundance was highest following warm winters. Greater prairie chicken and northern bobwhite abundance was also highest following cooler summers. Optimal abundance of each species occurred in landscapes that represented a grassland and cropland mosaic, though prairie chicken abundance was optimized in landscapes with more grassland and less edge habitat than northern bobwhites and ring‐necked pheasants. Because these effects differed among species, managing for an optimal landscape for multiple species may not be the optimal scenario for any one species.  相似文献   

7.
The competitive relationship and coexistence pattern among close related species have long been one of the hot issues in ecological research. Interspecies interactions can exert important influences on the local distribution of rare species. Black muntjac Muntiacus crinifrons is an endemic species to eastern China, currently restricted to limited regions. In contrast, Chinese muntjac Muntiacus reevesi is the most common and widespread deer in southern China. Both species co‐occur in southern Anhui and western Zhejiang Province. Little is known about the interaction of these two sympatric‐related species. In this study, to investigate the site use determinants and co‐occurrence pattern of the two sympatric muntjac species, we conducted a camera trap survey across about 250 km2 in mountainous area of southern Anhui Province, China. We adopted a multistep approach to incorporate habitat preferences while modeling occupancy and detection. We found that the two species did not separate along elevation gradient (range from 400 m to 1,400 m) as described in previous studies. Results of single‐species occupancy models indicated that elevation had positive effects on the site use of both species, while slope had an opposite influence on their site use. Positive effects of elevation on the site use implied that both species try to avoid human interference at low elevations. Significant negative effect of slope on the site use of black muntjac suggested that the species prefer habitat with gentle slope and avoided steep. Co‐occurrence models and species interaction factors provided evidence that the two muntjac species had an independent occupancy (ψ BM CM = ψ BM cm, SIF = 1) and exhibited a positive species interaction in detection probability (p BM < r BM CM). Combined with the results of previous studies, we suggested that it was fine differentiation in microhabitats and food resources utilization rather spatial or temporal segregation that allowed the two species co‐occurrence. The site use determinants revealed in our study would be useful for the habitat conservation and restoration for the rare black muntjac, and the co‐occurrence pattern of the two sympatric muntjac species could provide useful information for deep understanding of the coexistence mechanism among forest‐dwelling ungulates.  相似文献   

8.
Extra‐pair behavior is present in 76% of socially monogamous bird species with biparental care. This behavior may produce costs to females related to a reduction in paternal care. We estimated the percentage of extra‐pair offspring and quantified paternal care in 44 nests of Thorn‐tailed Rayadito (Aphrastura spinicauda) to assess whether males reduce their parental care when females obtain extra‐pair fertilizations. We used data from a sub‐Antarctic population of Rayadito located on Navarino Island (55°4′S, 67°40′W), southern Chile. We found no statistical support for a relationship between variation in paternal care and the percentage of extra‐pair offspring. We discuss how the inability of breeding males to assess their genetic paternity and potential restrictions on behavioral flexibility may explain this result. Additionally, if paternal care is subjected to sexual selection, this could limit a facultative response to female extra‐pair behavior by males. Finally, it is possible that a reduction in paternal care might not have evolved in this particular locality given the low frequency of extra‐pair paternity in our study population.  相似文献   

9.
  1. Recent advances in digital data collection have spurred accumulation of immense quantities of data that have potential to lead to remarkable ecological insight, but that also present analytic challenges. In the case of biologging data from birds, common analytical approaches to classifying movement behaviors are largely inappropriate for these massive data sets.
  2. We apply a framework for using K‐means clustering to classify bird behavior using points from short time interval GPS tracks. K‐means clustering is a well‐known and computationally efficient statistical tool that has been used in animal movement studies primarily for clustering segments of consecutive points. To illustrate the utility of our approach, we apply K‐means clustering to six focal variables derived from GPS data collected at 1–11 s intervals from free‐flying bald eagles (Haliaeetus leucocephalus) throughout the state of Iowa, USA. We illustrate how these data can be used to identify behaviors and life‐stage‐ and age‐related variation in behavior.
  3. After filtering for data quality, the K‐means algorithm identified four clusters in >2 million GPS telemetry data points. These four clusters corresponded to three movement states: ascending, flapping, and gliding flight; and one non‐moving state: perching. Mapping these states illustrated how they corresponded tightly to expectations derived from natural history observations; for example, long periods of ascending flight were often followed by long gliding descents, birds alternated between flapping and gliding flight.
  4. The K‐means clustering approach we applied is both an efficient and effective mechanism to classify and interpret short‐interval biologging data to understand movement behaviors. Furthermore, because it can apply to an abundance of very short, irregular, and high‐dimensional movement data, it provides insight into small‐scale variation in behavior that would not be possible with many other analytical approaches.
  相似文献   

10.
Most Central African rainforests are characterized by a remarkable abundance of light‐demanding canopy species: long‐lived pioneers (LLP) and non‐pioneer light demanders (NPLD). A popular explanation is that these forests are still recovering from intense slash‐and‐burn farming activities, which abruptly ended in the 19th century. This “human disturbance” hypothesis has never been tested against spatial distribution patterns of these light demanders. Here, we focus on the 28 most abundant LLP and NPLD from 250 one‐ha plots distributed along eight parallel transects (~50 km) in the Yangambi forest. Four species of short‐lived pioneers (SLP) and a single abundant shade‐tolerant species (Gilbertiodendron dewevrei) were used as reference because they are known to be strongly aggregated in recently disturbed patches (SLP) or along watercourses (G. dewevrei). Results show that SLP species are strongly aggregated with clear spatial autocorrelation of their diameter. This confirms that they colonized the patch following a one‐time disturbance event. In contrast, LLP and NPLD species have random or weakly aggregated distribution, mostly without spatial autocorrelation of their diameter. This does not unambiguously confirm the “human disturbance” hypothesis. Alternatively, their abundance might be explained by their deciduousness, which gave them a competitive advantage during long‐term drying of the late Holocene. Additionally, a canonical correspondence analysis showed that the observed LLP and NPLD distributions are not explained by environmental variables, strongly contrasting with the results for the reference species G. dewevrei, which is clearly aggregated along watercourses. We conclude that the abundance of LLP and NPLD species in Yangambi cannot be unambiguously attributed to past human disturbances or environmental variables. An alternative explanation is that present‐day forest composition is a result of adaptation to late‐Holocene drying. However, results are inconclusive and additional data are needed to confirm this alternative hypothesis.  相似文献   

11.
Population sizes of many birds are declining alarmingly and methods for estimating fluctuations in species’ abundances at a large spatial scale are needed. The possibility to derive indicators from the tendency of specific species to co‐occur with others has been overlooked. Here, we tested whether the abundance of resident titmice can act as a general ecological indicator of forest bird density in European forests. Titmice species are easily identifiable and have a wide distribution, which makes them potentially useful ecological indicators. Migratory birds often use information on the density of resident birds, such as titmice, as a cue for habitat selection. Thus, the density of residents may potentially affect community dynamics. We examined spatio‐temporal variation in titmouse abundance and total bird abundance, each measured as biomass, by using long‐term citizen science data on breeding forest birds in Finland and France. We analyzed the variation in observed forest bird density (excluding titmice) in relation to titmouse abundance. In Finland, forest bird density linearly increased with titmouse abundance. In France, forest bird density nonlinearly increased with titmouse abundance, the association weakening toward high titmouse abundance. We then analyzed whether the abundance (measured as biomass) of random species sets could predict forest bird density better than titmouse abundance. Random species sets outperformed titmice as an indicator of forest bird density only in 4.4% and 24.2% of the random draws, in Finland and France, respectively. Overall, the results suggest that titmice could act as an indicator of bird density in Northern European forest bird communities, encouraging the use of titmice observations by even less‐experienced observers in citizen science monitoring of general forest bird density.  相似文献   

12.
Habitat alterations resulting from land‐use change are major drivers of global biodiversity losses. In Africa, these threats are especially severe. For instance, demand to convert land into agricultural uses is leading to increasing areas of drylands in southern and central Africa being transformed for agriculture. In Zimbabwe, a land reform programme provided an opportunity to study the biodiversity response to abrupt habitat modification in part of a 91,000 ha dryland area of semi‐natural savannah used since 1930 for low‐level cattle ranching. Small‐scale subsistence farms were created during 2001–2002 in 65,000 ha of this area, with ranching continuing in the remaining unchanged area. We measured the compositions of bird communities in farmed and ranched land over 8 years, commencing one decade after subsistence farms were established. Over the study period, repeated counts were made along the same 45 transects to assess species'' population changes that may have resulted from trait‐filtering responses to habitat disturbance. In 2012, avian species'' richness was substantially higher (+8.8%) in the farmland bird community than in the unmodified ranched area. Temporal trends over the study period showed increased species'' richness in the ranched area (+12.3%) and farmland (+6.8%). There were increased abundances in birds of most sizes, and in all feeding guilds. New species did not add new functional traits, and no species with distinctive traits were lost in either area. As a result, species'' diversity reduced, and functional redundancy increased by 6.8% in ranched land. By 2020, two decades after part of the ranched savannah was converted into farmland, the compositions of the two bird communities had both changed and became more similar. The broadly benign impact on birds of land conversion into subsistence farms is attributed to the relatively low level of agricultural activity in the farmland and the large regional pool of nonspecialist bird species.  相似文献   

13.
Species delimitation among closely related species is challenging because traditional phenotype‐based approaches, for example, using morphology, ecological, or chemical characteristics, may not coincide with natural groupings. With the advent of high‐throughput sequencing, it has become increasingly cost‐effective to acquire genome‐scale data which can resolve previously ambiguous species boundaries. As the availability of genome‐scale data has increased, numerous species delimitation analyses, such as BPP and SNAPP+Bayes factor delimitation (BFD*), have been developed to delimit species boundaries. However, even empirical molecular species delimitation approaches can be biased by confounding evolutionary factors, for example, hybridization/introgression and incomplete lineage sorting, and computational limitations. Here, we investigate species boundaries and the potential for micro‐endemism in a lineage of lichen‐forming fungi, Niebla Rundel & Bowler, in the family Ramalinaceae by analyzing single‐locus and genome‐scale data consisting of (a) single‐locus species delimitation analysis using ASAP, (b) maximum likelihood‐based phylogenetic tree inference, (c) genome‐scale species delimitation models, e.g., BPP and SNAPP+BFD, and (d) species validation using the genealogical divergence index (gdi). We specifically use these methods to cross‐validate results between genome‐scale and single‐locus datasets, differently sampled subsets of genomic data and to control for population‐level genetic divergence. Our species delimitation models tend to support more speciose groupings that were inconsistent with traditional taxonomy, supporting a hypothesis of micro‐endemism, which may include morphologically cryptic species. However, the models did not converge on robust, consistent species delimitations. While the results of our analysis are somewhat ambiguous in terms of species boundaries, they provide a valuable perspective on how to use these empirical species delimitation methods in a nonmodel system. This study thus highlights the challenges inherent in delimiting species, particularly in groups such as Niebla, with complex, relatively recent phylogeographic histories.  相似文献   

14.
In many insect taxa, there is a well‐established trade‐off between flight capability and reproduction. The wing types of Acridoidea exhibit extremely variability from full length to complete loss in many groups, thus, provide a good model for studying the trade‐off between flight and reproduction. In this study, we completed the sampling of 63 Acridoidea species, measured the body length, wing length, body weight, flight muscle weight, testis and ovary weight, and the relative wing length (RWL), relative flight muscle weight (RFW), and gonadosomatic index (GSI) of different species were statistically analyzed. The results showed that there were significant differences in RWL, RFW, and GSI among Acridoidea species with different wing types. RFW of long‐winged species was significantly higher than that of short‐winged and wingless species (p < .01), while GSI of wingless species was higher than that of long‐winged and short‐winged species. The RWL and RFW had a strong positive correlation in species with different wing types (correlation coefficient r = .8344 for male and .7269 for female, and p < .05), while RFW was strong negatively correlated with GSI (r = −.2649 for male and −.5024 for female, and p < .05). For Acridoidea species with wing dimorphism, males with relatively long wings had higher RFW than that of females with relatively short wings, while females had higher GSI. Phylogenetic comparative analysis showed that RWL, RFW, and GSI all had phylogenetic signals and phylogenetic dependence. These results revealed that long‐winged individuals are flight capable at the expense of reproduction, while short‐winged and wingless individuals cannot fly, but has greater reproductive output. The results support the trade‐off between flight and reproduction in Acridoidea.  相似文献   

15.
Complete documentation on the status of mammals is indispensable for appropriate conservation measures in protected areas. However, there is inadequate information on mammalian resources in the ecosystem of Gibe Sheleko National Park (GSNP). Thus, the study aimed to assess species diversity, abundance, and habitat association of medium‐ and large‐sized mammals in GSNP. We stratified the study area into five dominant habitat types, namely dense forest, wooded grassland, grassland, riverine forest, and farmland habitat types based on land cover and vegetation structures and further employed stratified random sampling technique across each habitat type. The sample transects covered 20% of the study area. Transect width ranged from 50 m to 400 m based on vegetation cover and visibility of mammals. The main data were collected via direct observation. Data were analyzed via chi‐square test and species diversity indexes. We recorded the total of 20 mammals species'' those belong to 10 families of which 8 species were large‐sized and 12 species medium‐sized mammals. There were two IUCN vulnerable species, namely Hippopotamus amphibious and Panthera pardus, and two globally near‐threatened species, particularly Litocranius walleri and Caracal caracal in the study area. Dense forest held the highest species diversity of medium‐ and large‐sized mammals (H′ = 2.28) with the highest evenness index (J = 0.84). Riverine forest had the least diversity with uneven population distribution. Papio anubis was the most abundance species, whereas Caracal caracal was the least abundant in the study area. GSNP is home for threatened and spectacular mammals species''; hence, an appropriate conservation measure is mandatory to keep existing mammals species''.  相似文献   

16.
Plastid genomes (plastomes) have a quadripartite structure, but some species have drastically reduced or lost inverted repeat (IR) regions. IR regions are important for genome stability and the evolution rate. In the evolutionary process of gymnosperms, the typical IRs of conifers were lost, possibly affecting the evolutionary rate and selection pressure of genomic protein‐coding genes. In this study, we selected 78 gymnosperm species (51 genera, 13 families) for evolutionary analysis. The selection pressure analysis results showed that negative selection effects were detected in all 50 common genes. Among them, six genes in conifers had higher ω values than non‐conifers, and 12 genes had lower ω values. The evolutionary rate analysis results showed that 9 of 50 common genes differed between conifers and non‐conifers. It is more obvious that in non‐conifers, the rates of psbA (trst, trsv, ratio, dN, dS, and ω) were 2.6‐ to 3.1‐fold of conifers. In conifers, trsv, ratio, dN, dS, and ω of ycf2 were 1.2‐ to 3.6‐fold of non‐conifers. In addition, the evolution rate of ycf2 in the IR was significantly reduced. psbA is undergoing dynamic change, with an abnormally high evolution rate as a small portion of it enters the IR region. Although conifers have lost the typical IR regions, we detected no change in the substitution rate or selection pressure of most protein‐coding genes due to gene function, plant habitat, or newly acquired IRs.  相似文献   

17.
Prior to the introduction of white‐nose syndrome (WNS) to North America, temperate bats were thought to remain within hibernacula throughout most of the winter. However, recent research has shown that bats in the southeastern United States emerge regularly from hibernation and are active on the landscape, regardless of their WNS status. The relationship between winter activity and susceptibility to WNS has yet to be explored but warrants attention, as it may enable managers to implement targeted management for WNS‐affected species. We investigated this relationship by implanting 1346 passive integrated transponder (PIT) tags in four species that vary in their susceptibility to WNS. Based on PIT‐tag detections, three species entered hibernation from late October to early November. Bats were active at hibernacula entrances on days when midpoint temperatures ranged from −1.94 to 22.78°C (mean midpoint temperature = 8.70 ± 0.33°C). Eastern small‐footed bats (Myotis leibii), a species with low susceptibility to WNS, were active throughout winter, with a significant decrease in activity in mid‐hibernation (December 16 to February 15). Tricolored bats (Perimyotis subflavus), a species that is highly susceptible to WNS, exhibited an increase in activity beginning in mid‐hibernation and extending through late hibernation (February 16 to March 31). Indiana bats (M. sodalis), a species determined to have a medium–high susceptibility to WNS, remained on the landscape into early hibernation (November 1 to December 15), after which we did not record any again until the latter portion of mid‐hibernation. Finally, gray bats (M. grisescens), another species with low susceptibility to WNS, maintained low but regular levels of activity throughout winter. Given these results, we determined that emergence activity from hibernacula during winter is highly variable among bat species and our data will assist wildlife managers to make informed decisions regarding the timing of implementation of species‐specific conservation actions.  相似文献   

18.
Climate change influences species geographical distribution and diversity pattern. The Chinese fire‐bellied newt (Cynops orientalis) is an endemic species distributed in East‐central China, which has been classified as near‐threatened species recently due to habitat destruction and degradation and illegal trade in the domestic and international pet markets. So far, little is known about the spatial distribution of the species. Based on bioclimatic data of the current and future climate projections, we modeled the change in suitable habitat for C. orientalis by ten algorithms, evaluated the importance of environmental factors in shaping their distribution, and identified distribution shifts under climate change scenarios. In this study, 46 records of C. orientalis from East China and 8 bioclimatic variables were used. Among the ten modeling algorithms, four (GAM, GBM, Maxent, and RF) were selected according to their predictive abilities. The current habitat suitability showed that C. orientalis had a relatively wide but fragmented distribution, and it encompassed 41,862 km2. The models suggested that precipitation of warmest quarter (bio18) and mean temperature of wettest quarter (bio6) had the highest contribution to the model. This study revealed that C. orientalis is sensitive to climate change, which will lead to a large range shift. The projected spatial and temporal pattern of range shifts for C. orientalis should provide a useful reference for implementing long‐term conservation and management strategies for amphibians in East China.  相似文献   

19.
Agriculture intensification threatens farmland bird populations because, among other reasons, it reduces the availability of food resources required to rear their offspring. In our study, we sampled and analyzed total arthropod abundance, biomass and richness, and orthopteran and coleopteran abundance and biomass in different agricultural habitats (alfalfa fields, stubble fields, grazed fields, and field margins) across 4 study localities with different levels of agriculture abandonment–intensification, comparing between areas used and not used by one of the most threatened farmland birds in Europe, the little bustard (Tetrax tetrax), during the chick‐rearing season. Field margins were the taxonomically richest habitat, while alfalfa fields presented significantly higher total arthropod abundance and biomass than other habitats. All arthropod variables were the highest in the localities with clear conservation‐focused agrarian management, and the lowest in the most intensive one. Areas used by little bustards had higher orthopteran and coleopteran abundance and biomass than nonused areas, except for coleopteran biomass in grazed fields. These results highlight the relevance of these arthropods for the species, the importance of dry alfalfa fields as food reservoirs in this critical time of year, the food scarcity in sites where agrarian management disregards farmland bird conservation, and the role of stubbles as providers of food resources during the chick‐rearing season in areas used by the species. The adequate management of alfalfa fields and stubbles to provide those key resources seems crucial to improve little bustard breeding success.  相似文献   

20.
High‐throughput DNA sequencing technologies make it possible now to sequence entire genomes relatively easily. Complete genomic information obtained by whole‐genome resequencing (WGS) can aid in identifying and delineating species even if they are extremely young, cryptic, or morphologically difficult to discern and closely related. Yet, for taxonomic or conservation biology purposes, WGS can remain cost‐prohibitive, too time‐consuming, and often constitute a “data overkill.” Rapid and reliable identification of species (and populations) that is also cost‐effective is made possible by species‐specific markers that can be discovered by WGS. Based on WGS data, we designed a PCR restriction fragment length polymorphism (PCR‐RFLP) assay for 19 Neotropical Midas cichlid populations (Amphilophus cf. citrinellus), that includes all 13 described species of this species complex. Our work illustrates that identification of species and populations (i.e., fish from different lakes) can be greatly improved by designing genetic markers using available “high resolution” genomic information. Yet, our work also shows that even in the best‐case scenario, when whole‐genome resequencing information is available, unequivocal assignments remain challenging when species or populations diverged very recently, or gene flow persists. In summary, we provide a comprehensive workflow on how to design RFPL markers based on genome resequencing data, how to test and evaluate their reliability, and discuss the benefits and pitfalls of our approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号