首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
Cellular senescence constitutes a generally irreversible proliferation barrier, accompanied by macromolecular damage and metabolic rewiring. Several senescence types have been identified based on the initiating stimulus, such as replicative (RS), stress-induced (SIS) and oncogene-induced senescence (OIS). These senescence subtypes are heterogeneous and often develop subset-specific phenotypes. Reduced protein synthesis is considered a senescence hallmark, but whether this trait pertains to various senescence subtypes and if distinct molecular mechanisms are involved remain largely unknown. Here, we analyze large published or experimentally produced RNA-seq and Ribo-seq datasets to determine whether major translation-regulating entities such as ribosome stalling, the presence of uORFs/dORFs and IRES elements may differentially contribute to translation deficiency in senescence subsets. We show that translation-regulating mechanisms may not be directly relevant to RS, however uORFs are significantly enriched in SIS. Interestingly, ribosome stalling, uORF/dORF patterns and IRES elements comprise predominant mechanisms upon OIS, strongly correlating with Notch pathway activation. Our study provides for the first time evidence that major translation dysregulation mechanisms/patterns occur during cellular senescence, but at different rates depending on the stimulus type. The degree at which those mechanisms accumulate directly correlates with translation deficiency levels. Our thorough analysis contributes to elucidating crucial and so far unknown differences in the translation machinery between senescence subsets.  相似文献   

8.
9.
Premature ribosome drop-off is one of the major errors in translation of mRNA by ribosomes. However, repeated analyses of Ribo-seq data failed to quantify its strength in E. coli. Relying on a novel highly sensitive data analysis method we show that a significant rate of ribosome drop-off is measurable and can be quantified also when cells are cultured under non-stressing conditions. Moreover, we find that the drop-off rate is highly variable, depending on multiple factors. In particular, under environmental stress such as amino acid starvation or ethanol intoxication, the drop-off rate markedly increases.  相似文献   

10.
Bacteria express large numbers of non-coding, regulatory RNAs known as ‘small RNAs’ (sRNAs). sRNAs typically regulate expression of multiple target messenger RNAs (mRNAs) through base-pairing interactions. sRNA:mRNA base-pairing often results in altered mRNA stability and/or altered translation initiation. Computational identification of sRNA targets is challenging due to the requirement for only short regions of base-pairing that can accommodate mismatches. Experimental approaches have been applied to identify sRNA targets on a genomic scale, but these focus only on those targets regulated at the level of mRNA stability. Here, we utilize ribosome profiling (Ribo-seq) to experimentally identify regulatory targets of the Escherichia coli sRNA RyhB. We not only validate a majority of known RyhB targets using the Ribo-seq approach, but also discover many novel ones. We further confirm regulation of a selection of known and novel targets using targeted reporter assays. By mutating nucleotides in the mRNA of a newly discovered target, we demonstrate direct regulation of this target by RyhB. Moreover, we show that Ribo-seq distinguishes between mRNAs regulated at the level of RNA stability and those regulated at the level of translation. Thus, Ribo-seq represents a powerful approach for genome-scale identification of sRNA targets.  相似文献   

11.
DNA sequence data provided by genome sequencing programs open new research prospects. In this respect, computational investigations are of major importance to discover new 'functional/structural patterns' and to improve biological process knowledge. For example, even though the principal steps of translation initiation in prokaryotes are known, it is difficult to point out the exact pattern of the mRNA that is recognized by the ribosome. In this study, we have carried out a systematic context analysis of the complete genome of E. coli, around codons in competition for translation initiation. Using a combinatorial approach, we first show that it is possible to accurately define the initiation site by looking for the localization of patterns representing various combinations of trinucleotides. We have combined this approach with a statistical analysis based on the frequencies of these patterns. This leads to a decision tree, able to discriminate true and false starts with a recognition level near 90%. Our method may help to precisely localize the beginning of open reading frames, and point to likely mistakes for some genes in the database. The method may be included as a component of a gene recognition system, is not restricted to a particular genome or a two-classes discrimination, and may be applied to a broader class of biological patterns.  相似文献   

12.
13.
14.

Background

Genome-wide assays performed in Arabidopsis and other organisms have revealed that the translation status of mRNAs responds dramatically to different environmental stresses and genetic lesions in the translation apparatus. To identify additional features of the global landscape of translational control, we used microarray analysis of polysomal as well as non-polysomal mRNAs to examine the defects in translation in a poly(A) binding protein mutant, pab2 pab8, as well as in a mutant of a large ribosomal subunit protein, rpl24b/shortvalve1.

Results

The mutation of RPL24B stimulated the ribosome occupancy of mRNAs for nuclear encoded ribosomal proteins. Detailed analysis yielded new insights into the translational regulon containing the ribosomal protein mRNAs. First, the ribosome occupancy defects in the rpl24b mutant partially overlapped with those in a previously analyzed initiation factor mutant, eif3h. Second, a group of mRNAs with incomplete coding sequences appeared to be uncoupled from the regulon, since their dependence on RPL24B differed from regular mRNAs. Third, different sister paralogs of the ribosomal proteins differed in their translation state in the wild-type. Some sister paralogs also differed in their response to the rpl24b mutation. In contrast to rpl24b, the pab2 pab8 mutant revealed few gene specific translational defects, but a group of seed storage protein mRNAs were stimulated in their ribosome occupancy. In the course of this work, while optimizing the statistical analysis of ribosome occupancy data, we collected 12 biological replicates of translation states from wild-type seedlings. We defined 20% of mRNAs as having a high variance in their translation state. Many of these mRNAs were functionally associated with responses to the environment, suggesting that subtle variation in the environmental conditions is sensed by plants and transduced to affect the translational efficiency of hundreds of mRNAs.

Conclusions

These data represent the first genome-wide analysis of translation in a eukaryote defective in the large ribosomal subunit. RPL24 and eIF3h play similar but non-identical roles in eukaryotic translation. The data also shed light on the fine structure of the regulon of ribosomal protein mRNAs.
  相似文献   

15.
A great number of non-coding RNAs(ncRNAs) account for the majority of the genome. The translation of these ncRNAs has been noted but seriously underestimated due to both technological and theoretical limitations. Based on the development of ribosome profiling(Ribo-seq), full length translating RNA analysis(RNC-seq) and mass spectrometry technology, more and more ncRNAs are being found to be translated in different organism, and some of them can produce functional peptides. While recently, not only individual new functional proteins, but also a new proteome have been experimentally discovered to be encoded by endogenous lncRNAs and circRNAs. These new proteins are of biological significance, suggesting the connection of the translation of ncRNAs to human physiology and diseases. Therefore, an in-depth and systematic understanding of the coding capabilities of ncRNAs is necessary for basic biology and medicine. In this review, we summarize the advances in the field of discovering this new proteome, i.e. "ncRNA-coded" proteins.  相似文献   

16.
17.
18.
19.
The profiling of ribosome footprints by deep sequencing has revolutionized the analysis of translation by mapping ribosomes with high resolution on a genome-wide scale. We present a variation on this approach that offers a rapid and cost-effective alternative for the genome-wide profiling of chloroplast ribosomes. Ribosome footprints from leaf tissue are hybridized to oligonucleotide tiling microarrays of the plastid ORFeome and report the abundance and translational status of every chloroplast mRNA. Each assay replaces several time-consuming traditional methods while also providing information that was previously inaccessible. To illustrate the utility of the approach, we show that it detects known defects in chloroplast gene expression in several nuclear mutants of maize (Zea mays) and that it reveals previously unsuspected defects. Furthermore, it provided firm answers to several lingering questions in chloroplast gene expression: (1) the overlapping atpB/atpE open reading frames, whose translation had been proposed to be coupled, are translated independently in vivo; (2) splicing is not a prerequisite for translation initiation on an intron-containing chloroplast RNA; and (3) a feedback control mechanism that links the synthesis of ATP synthase subunits in Chlamydomonas reinhardtii does not exist in maize. An analogous approach is likely to be useful for studies of mitochondrial gene expression.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号