首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Benthic species and communities are linked to pelagic zooplankton through life‐stages encompassing both benthic and pelagic habitats and through a mutual dependency on primary producers as a food source. Many zooplankton taxa contribute to the sedimentary system as benthic eggs. Our main aim was to investigate the nature of the population level biotic interactions between and within these two seemingly independent communities, both dependent on the pelagic primary production, while simultaneously accounting for environmental drivers (salinity, temperature, and oxygen conditions). To this end, we applied multivariate autoregressive state‐space models to long (1966–2007) time series of annual abundance data, comparing models with and without interspecific interactions, and models with and without environmental variables included. We were not able to detect any direct coupling between sediment‐dwelling benthic taxa and pelagic copepods and cladocerans on the annual scale, but the most parsimonious model indicated that interactions within the benthic community are important. There were also positive residual correlations between the copepods and cladocerans potentially reflecting the availability of a shared resource or similar seasonal dependence, whereas both groups tended to correlate negatively with the zoobenthic taxa. The most notable single interaction within the benthic community was a tendency for a negative effect of Limecola balthica on the amphipods Monoporeia affinis and Pontoporeia femorata which can help explain the observed decrease in amphipods due to increased competitive interference.  相似文献   

2.
Spatial capture–recapture (SCR) analysis is now used routinely to inform wildlife management and conservation decisions. It is therefore imperative that we understand the implications of and can diagnose common SCR model misspecifications, as flawed inferences could propagate to policy and interventions. The detection function of an SCR model describes how an individual''s detections are distributed in space. Despite the detection function''s central role in SCR, little is known about the robustness of SCR‐derived abundance estimates and home range size estimates to misspecifications. Here, we set out to (a) determine whether abundance estimates are robust to a wider range of misspecifications of the detection function than previously explored, (b) quantify the sensitivity of home range size estimates to the choice of detection function, and (c) evaluate commonly used Bayesian p‐values for detecting misspecifications thereof. We simulated SCR data using different circular detection functions to emulate a wide range of space use patterns. We then fit Bayesian SCR models with three detection functions (half‐normal, exponential, and half‐normal plateau) to each simulated data set. While abundance estimates were very robust, estimates of home range size were sensitive to misspecifications of the detection function. When misspecified, SCR models with the half‐normal plateau and exponential detection functions produced the most and least reliable home range size, respectively. Misspecifications with the strongest impact on parameter estimates were easily detected by Bayesian p‐values. Practitioners using SCR exclusively for density estimation are unlikely to be impacted by misspecifications of the detection function. However, the choice of detection function can have substantial consequences for the reliability of inferences about space use. Although Bayesian p‐values can aid the diagnosis of detection function misspecification under certain conditions, we urge the development of additional custom goodness‐of‐fit diagnostics for Bayesian SCR models to identify a wider range of model misspecifications.  相似文献   

3.
Genetic methods for the estimation of population size can be powerful alternatives to conventional methods. Close‐kin mark–recapture (CKMR) is based on the principles of conventional mark–recapture, but instead of being physically marked, individuals are marked through their close kin. The aim of this study was to evaluate the potential of CKMR for the estimation of spawner abundance in Atlantic salmon and how age, sex, spatial, and temporal sampling bias may affect CKMR estimates. Spawner abundance in a wild population was estimated from genetic samples of adults returning in 2018 and of their potential offspring collected in 2019. Adult samples were obtained in two ways. First, adults were sampled and released alive in the breeding habitat during spawning surveys. Second, genetic samples were collected from out‐migrating smolts PIT‐tagged in 2017 and registered when returning as adults in 2018. CKMR estimates based on adult samples collected during spawning surveys were somewhat higher than conventional counts. Uncertainty was small (CV < 0.15), due to the detection of a high number of parent–offspring pairs. Sampling of adults was age‐ and size‐biased and correction for those biases resulted in moderate changes in the CKMR estimate. Juvenile dispersal was limited, but spatially balanced sampling of adults rendered CKMR estimates robust to spatially biased sampling of juveniles. CKMR estimates based on returning PIT‐tagged adults were approximately twice as high as estimates based on samples collected during spawning surveys. We suggest that estimates based on PIT‐tagged fish reflect the total abundance of adults entering the river, while estimates based on samples collected during spawning surveys reflect the abundance of adults present in the breeding habitat at the time of spawning. Our study showed that CKMR can be used to estimate spawner abundance in Atlantic salmon, with a moderate sampling effort, but a carefully designed sampling regime is required.  相似文献   

4.
Summary Estimation of abundance is important in both open and closed population capture–recapture analysis, but unmodeled heterogeneity of capture probability leads to negative bias in abundance estimates. This article defines and develops a suite of open population capture–recapture models using finite mixtures to model heterogeneity of capture and survival probabilities. Model comparisons and parameter estimation use likelihood‐based methods. A real example is analyzed, and simulations are used to check the main features of the heterogeneous models, especially the quality of estimation of abundance, survival, recruitment, and turnover. The two major advances in this article are the provision of realistic abundance estimates that take account of heterogenetiy of capture, and an appraisal of the amount of overestimation of survival arising from conditioning on the first capture when heterogeneity of survival is present.  相似文献   

5.
Predation can influence the magnitude of herbivory that grazers exert on primary producers by altering both grazer abundance and their per capita consumption rates via changes in behavior, density‐dependent effects, and size. Therefore, models based solely on changes in abundance may miss key components of grazing pressure. We estimated shifts in grazing pressure associated with changes in the abundance and per capita consumption rates of sea urchins triggered by size‐selective predation by sea otters (Enhydra lutris). Field surveys suggest that sea otters dramatically decreased the abundance and median size of sea urchins. Furthermore, laboratory experiments revealed that kelp consumption by sea urchins varied nonlinearly as a function of urchin size such that consumption rates increased to the 0.56 and 0.68 power of biomass for red and green urchins, respectively. This reveals that shifts in urchin size structure due to size‐selective predation by sea otters alter sea urchin per capita grazing rates. Comparison of two quantitative models estimating total consumptive capacity revealed that a model incorporating shifts in urchin abundance while neglecting urchin size structure overestimated grazing pressure compared to a model that incorporated size. Consequently, incorporating shifts in urchin size better predicted field estimates of kelp abundance compared to equivalent models based on urchin abundance alone. We provide strong evidence that incorporating size‐specific parameters increases our ability to describe and predict trophic interactions.  相似文献   

6.
Removal sampling data are the primary source of monitoring information for many populations (e.g., invasive species, fisheries). Population dynamics, temporary emigration, and imperfect detection are common sources of variation in monitoring data and are key parameters for informing management. We developed two open robust‐design removal models for simultaneously modeling population dynamics, temporary emigration, and imperfect detection: a random walk linear trend model (estimable without ancillary information), and a 2‐age class informed population model (InfoPM, closely related to integrated population models) that incorporated prior information for age‐structured vital rates and relative juvenile availability. We applied both models to multiyear, removal trapping time‐series of a large invasive lizard (Argentine black and white tegu, Salvator merianae) in three management areas of South Florida to evaluate the effectiveness of management programs. Although estimates of the two models were similar, the InfoPMs generally returned more precise estimates, partitioned dynamics into births, deaths, net migration, and provided a decision support tool to predict population dynamics under different effort scenarios while accounting for uncertainty. Trends in tegu superpopulation abundance estimates were increasing in two management areas despite generally high removal rates. However, tegu abundance appeared to decline in the Core management area, where trapping density was the highest and immigration the lowest. Finally, comparing abundance predictions of no‐removal scenarios to those estimated in each management area suggested significant population reductions due to management. These results suggest that local tegu population control via systematic trapping may be feasible with high enough trap density and limited immigration; and highlights the value of these trapping programs. We provided the first estimates of tegu abundance, capture probabilities, and population dynamics, which is critical for effective management. Furthermore, our models are applicable to a wide range of monitoring programs (e.g., carcass recovery or removal point‐counts).  相似文献   

7.
  1. The estimation of abundance and distribution and factors governing patterns in these parameters is central to the field of ecology. The continued development of hierarchical models that best utilize available information to inform these processes is a key goal of quantitative ecologists. However, much remains to be learned about simultaneously modeling true abundance, presence, and trajectories of ecological communities.
  2. Simultaneous modeling of the population dynamics of multiple species provides an interesting mechanism to examine patterns in community processes and, as we emphasize herein, to improve species‐specific estimates by leveraging detection information among species. Here, we demonstrate a simple but effective approach to share information about observation parameters among species in hierarchical community abundance and occupancy models, where we use shared random effects among species to account for spatiotemporal heterogeneity in detection probability.
  3. We demonstrate the efficacy of our modeling approach using simulated abundance data, where we recover well our simulated parameters using N‐mixture models. Our approach substantially increases precision in estimates of abundance compared with models that do not share detection information among species. We then expand this model and apply it to repeated detection/non‐detection data collected on six species of tits (Paridae) breeding at 119 1 km2 sampling sites across a Pmontanus hybrid zone in northern Switzerland (2004–2020). We find strong impacts of forest cover and elevation on population persistence and colonization in all species. We also demonstrate evidence for interspecific competition on population persistence and colonization probabilities, where the presence of marsh tits reduces population persistence and colonization probability of sympatric willow tits, potentially decreasing gene flow among willow tit subspecies.
  4. While conceptually simple, our results have important implications for the future modeling of population abundance, colonization, persistence, and trajectories in community frameworks. We suggest potential extensions of our modeling in this paper and discuss how leveraging data from multiple species can improve model performance and sharpen ecological inference.
  相似文献   

8.
Relative role of intrinsic density‐dependent factors (such as inter‐ and intraspecific competition, predation) and extrinsic density‐independent factors (environmental changes) in population dynamics is a key issue in ecology. Density‐dependent mechanisms are considered as important drivers of population dynamics in many vertebrate and insect species; however, their influence on the population dynamics of freshwater invertebrates is not clearly understood. In this study, I examined interannual variations in the abundance of the glacial relict amphipod Monoporeia affinis in a small subarctic lake based on long‐term (2002–2019) monitoring data. The results suggest that the population dynamics of amphipods in the lake is influenced by the combined effects of both intrinsic and extrinsic factors. The reproductive success of amphipod cohorts was inversely related to its initial abundance, indicating it is influenced by density‐dependent factors. Maffinis recruitment was negatively correlated with population density and near‐bottom temperature but positively correlated with food availability, which is defined as the concentration of chlorophyll a. Multiple regression with chlorophyll, temperature, and abundance of parent cohort as independent factors explained about 80% of the variation in the reproductive success of amphipods. The negative correlation between amphipod recruitment and water temperature indicates that the current climate conditions adversely affect the populations of glacial relict amphipods even in cold‐water lakes of the subarctic zone. Results of this study can be useful in environmental assessments to separate population oscillations connected with density‐dependent mechanisms from human‐mediated changes.  相似文献   

9.
Detectability of individual animals is highly variable and nearly always < 1; imperfect detection must be accounted for to reliably estimate population sizes and trends. Hierarchical models can simultaneously estimate abundance and effective detection probability, but there are several different mechanisms that cause variation in detectability. Neglecting temporary emigration can lead to biased population estimates because availability and conditional detection probability are confounded. In this study, we extend previous hierarchical binomial mixture models to account for multiple sources of variation in detectability. The state process of the hierarchical model describes ecological mechanisms that generate spatial and temporal patterns in abundance, while the observation model accounts for the imperfect nature of counting individuals due to temporary emigration and false absences. We illustrate our model’s potential advantages, including the allowance of temporary emigration between sampling periods, with a case study of southern red-backed salamanders Plethodon serratus. We fit our model and a standard binomial mixture model to counts of terrestrial salamanders surveyed at 40 sites during 3–5 surveys each spring and fall 2010–2012. Our models generated similar parameter estimates to standard binomial mixture models. Aspect was the best predictor of salamander abundance in our case study; abundance increased as aspect became more northeasterly. Increased time-since-rainfall strongly decreased salamander surface activity (i.e. availability for sampling), while higher amounts of woody cover objects and rocks increased conditional detection probability (i.e. probability of capture, given an animal is exposed to sampling). By explicitly accounting for both components of detectability, we increased congruence between our statistical modeling and our ecological understanding of the system. We stress the importance of choosing survey locations and protocols that maximize species availability and conditional detection probability to increase population parameter estimate reliability.  相似文献   

10.
Theoretical modeling predicts that both direct and delayed density‐dependence are key factors to generate population cycles. Deciphering density‐dependent processes that lead to variable population growth characterizing different phases of the cycles remains challenging. This is particularly the case for the period of prolonged low densities, which is inherently data deficient. However, demographic analyses based on long‐term capture–mark–recapture datasets can help resolve this question. We relied on a 16‐year (2004–2019) live‐trapping program to analyze the summer demography and movements of a cyclic brown lemming population in the Canadian Arctic. More specifically, we examined if inversely density‐dependent processes could explain why population growth can remain low during the prolonged low phase. We found that the proportion of females in the population was inversely density‐dependent with a strong male‐biased sex ratio at low densities but not at high densities. However, survival of adult females was higher than adult males, but both had lower survival at low densities than at high ones. Distances moved by both adult males and females were density‐dependent, and proportion of females in reproductive condition was weakly density‐dependent as it tended to increase at low density. Individual body condition, measured as monthly change in body mass, was not density‐dependent. Overall, the strong male‐biased sex ratio at very low densities suggests a loss of reproductive potential due to the rarity of females and appears to be the most susceptible demographic factor that could contribute to the prolonged low phase in cyclic brown lemmings. What leads to this sex‐bias in the first place is still unclear, potentially owing to our trapping period limited to the summer, but we suggest that it could be due to high predation rate on breeding females in winter.  相似文献   

11.
Estimation of a population trend from a time series of abundance data is an important task in ecology, yet such estimation remains logistically and conceptually challenging in practice. First, the extent to which unequal intervals in the time series, due to missing observations or irregular sampling, compromise trend estimation is not well‐known. Furthermore, the predominant trend estimation method (loglinear regression of abundance data against time) ignores the possibility of process noise, while an alternative method (the ‘diffusion approximation’) ignores observation error in the abundance data. State‐space models that account for both process noise and observation error exist but have been little used. We study an adaptation of the exponential growth state‐space (EGSS) model for use with missing data in the time series, and we compare its trend estimation to the status quo methods. The EGSS model provides superior estimates of trend across wide ranges of time series length and sources of variation. The performance of the EGSS model even with half of the counts in the time series missing implies that trend estimates may be improved by diverting effort away from annual monitoring and towards increasing time series length or improving precision of the abundance estimates for years that data are collected.  相似文献   

12.
Density dependence in reproduction plays an important role in stabilizing population dynamics via immediate negative feedback from population density to reproductive output. Although previous studies have shown that negative density‐dependent reproduction is associated with strong spacing behavior and social interaction between individuals, the proximal mechanism for generating negative density‐dependent reproduction remains unclear. In this study, we investigated the effects of density‐induced stress on reproduction in root voles. Enclosed founder populations were established by introducing 6 (low density) and 30 (high density) adults per sex into per enclosure (four enclosures per density in total) during the breeding season from April to July 2012 and from May to August 2015. Fecal corticosterone metabolite (FCM) levels, reproductive traits (recruitment rate and the proportion of reproductively active individuals), and founder population numbers were measured following repeated live trapping in both years. The number of founders was negatively associated with recruitment rates and the proportion of reproductively active individuals, displaying a negative density‐dependent reproduction. FCM level was positively associated with the number of founders. The number of founder females directly affected the proportion of reproductive females, and directly and indirectly through their FCM levels affected the recruitment rate; the effect of the number of male founders on the proportion of reproductive males was mediated by their FCM level. Our results showed that density‐induced stress negatively affected reproductive traits and that density‐induced stress is one ecological factor generating negative density‐dependent reproduction.  相似文献   

13.
Climate change and harvesting can affect the ecosystems'' functioning by altering the population dynamics and interactions among species. Knowing how species interact is essential for better understanding potentially unintended consequences of harvest on multiple species in ecosystems. I analyzed how stage‐specific interactions between two harvested competitors, the haddock (Melanogrammus aeglefinus) and Atlantic cod (Gadus morhua), living in the Barents Sea affect the outcome of changes in the harvest of the two species. Using state‐space models that account for observation errors and stochasticity in the population dynamics, I run different harvesting scenarios and track population‐level responses of both species. The increasing temperature elevated the number of larvae of haddock but did not significantly influence the older age‐classes. The nature of the interactions between both species shifted from predator‐prey to competition around age‐2 to ‐3. Increased cod fishing mortality, which led to decreasing abundance of cod, was associated with an increasing overall abundance of haddock, which suggests compensatory dynamics of both species. From a stage‐specific approach, I show that a change in the abundance in one species may propagate to other species, threatening the exploited species'' recovery. Thus, this study demonstrates that considering interactions among life history stages of harvested species is essential to enhance species'' co‐existence in harvested ecosystems. The approach developed in this study steps forward the analyses of effects of harvest and climate in multi‐species systems by considering the comprehension of complex ecological processes to facilitate the sustainable use of natural resources.  相似文献   

14.
Advances in experimental design and equipment have simplified the collection of maximum metabolic rate (MMR) data for a more diverse array of water‐breathing animals. However, little attention has been given to the consequences of analytical choices in the estimation of MMR. Using different analytical methods can reduce the comparability of MMR estimates across species and studies and has consequences for the burgeoning number of macroecological meta‐analyses using metabolic rate data. Two key analytical choices that require standardization are the time interval, or regression window width, over which MMR is estimated, and the method used to locate that regression window within the raw oxygen depletion trace. Here, we consider the effect of both choices by estimating MMR for two shark and two salmonid species of different activity levels using multiple regression window widths and three analytical methods: rolling regression, sequential regression, and segmented regression. Shorter regression windows yielded higher metabolic rate estimates, with a risk that the shortest windows (<1‐min) reflect more system noise than MMR signal. Rolling regression was the best candidate model and produced the highest MMR estimates. Sequential regression models consistently produced lower relative estimates than rolling regression models, while the segmented regression model was unable to produce consistent MMR estimates across individuals. The time‐point of the MMR regression window along the oxygen consumption trace varied considerably across individuals but not across models. We show that choice of analytical method, in addition to more widely understood experimental choices, profoundly affect the resultant estimates of MMR. We recommend that researchers (1) employ a rolling regression model with a reliable regression window tailored to their experimental system and (2) explicitly report their analytical methods, including publishing raw data and code.  相似文献   

15.
Training in Population Ecology asks for scalable applications capable of embarking students on a trip from basic concepts to the projection of populations under the various effects of density dependence and stochasticity. Demography_Lab is an educational tool for teaching Population Ecology aspiring to cover such a wide range of objectives. The application uses stochastic models to evaluate the future of populations. Demography_Lab may accommodate a wide range of life cycles and can construct models for populations with and without an age or stage structure. Difference equations are used for unstructured populations and matrix models for structured populations. Both types of models operate in discrete time. Models can be very simple, constructed with very limited demographic information or parameter‐rich, with a complex density‐dependence structure and detailed effects of the different sources of stochasticity. Demography_Lab allows for deterministic projections, asymptotic analysis, the extraction of confidence intervals for demographic parameters, and stochastic projections. Stochastic population growth is evaluated using up to three sources of stochasticity: environmental and demographic stochasticity and sampling error in obtaining the projection matrix. The user has full control on the effect of stochasticity on vital rates. The effect of the three sources of stochasticity may be evaluated independently for each vital rate. The user has also full control on density dependence. It may be included as a ceiling population size controlling the number of individuals in the population or it may be evaluated independently for each vital rate. Sensitivity analysis can be done for the asymptotic population growth rate or for the probability of extinction. Elasticity of the probability of extinction may be evaluated in response to changes in vital rates, and in response to changes in the intensity of density dependence and environmental stochasticity.  相似文献   

16.
This study shows how capture–mark–recapture (CMR) models can provide robust estimates of detection heterogeneity (sources of bias) in underwater visual‐census data. Detection biases among observers and fish family groups were consistent between fished and unfished reef sites in Kenya, even when the overall level of detection declined between locations. Species characteristics were the greatest source of detection heterogeneity and large, highly mobile species were found to have lower probabilities of detection than smaller, site‐attached species. Fish family and functional‐group detectability were also found to be lower at fished locations, probably due to differences in local abundance. Because robust CMR models deal explicitly with sampling where not all species are detected, their use is encouraged for studies addressing reef‐fish community dynamics.  相似文献   

17.
Wildlife populations consist of individuals that contribute disproportionately to growth and viability. Understanding a population's spatial and temporal dynamics requires estimates of abundance and demographic rates that account for this heterogeneity. Estimating these quantities can be difficult, requiring years of intensive data collection. Often, this is accomplished through the capture and recapture of individual animals, which is generally only feasible at a limited number of locations. In contrast, N‐mixture models allow for the estimation of abundance, and spatial variation in abundance, from count data alone. We extend recently developed multistate, open population N‐mixture models, which can additionally estimate demographic rates based on an organism's life history characteristics. In our extension, we develop an approach to account for the case where not all individuals can be assigned to a state during sampling. Using only state‐specific count data, we show how our model can be used to estimate local population abundance, as well as density‐dependent recruitment rates and state‐specific survival. We apply our model to a population of black‐throated blue warblers (Setophaga caerulescens) that have been surveyed for 25 years on their breeding grounds at the Hubbard Brook Experimental Forest in New Hampshire, USA. The intensive data collection efforts allow us to compare our estimates to estimates derived from capture–recapture data. Our model performed well in estimating population abundance and density‐dependent rates of annual recruitment/immigration. Estimates of local carrying capacity and per capita recruitment of yearlings were consistent with those published in other studies. However, our model moderately underestimated annual survival probability of yearling and adult females and severely underestimates survival probabilities for both of these male stages. The most accurate and precise estimates will necessarily require some amount of intensive data collection efforts (such as capture–recapture). Integrated population models that combine data from both intensive and extensive sources are likely to be the most efficient approach for estimating demographic rates at large spatial and temporal scales.  相似文献   

18.
Negative bias in mark-recapture abundance estimators due to heterogeneity in detection (capture) probability is a well-known problem, but we believe most biologists do not understand why heterogeneity causes bias and how bias can be reduced. We demonstrate how heterogeneity creates dependence and bias in mark-recapture approaches to abundance estimation. In comparison, heterogeneity, and hence estimator bias, is not as problematic for distance sampling and mark-resight methods because both techniques estimate detection probabilities based on a known quantity. We show how the introduction of a known number of individuals planted into a study population prior to a mark-recapture survey can reduce bias from heterogeneity in detection probability. We provide examples with simulation and an analysis of motion-sensitive camera data from a study population of introduced eastern wild turkeys (Meleagris gallopavo silvestris) of known size with a subset of telemetered birds. In choosing a method for abundance estimation, careful consideration should be given to assumptions and how heterogeneity in detection probability can be accommodated for each application.  相似文献   

19.
Monitoring large carnivores is difficult because of intrinsically low densities and can be dangerous if physical capture is required. Noninvasive genetic sampling (NGS) is a safe and cost‐effective alternative to physical capture. We evaluated the utility of two NGS methods (scat detection dogs and hair sampling) to obtain genetic samples for abundance estimation of coyotes, black bears and Canada lynx in three areas of Newfoundland, Canada. We calculated abundance estimates using program capwire , compared sampling costs, and the cost/sample for each method relative to species and study site, and performed simulations to determine the sampling intensity necessary to achieve abundance estimates with coefficients of variation (CV) of <10%. Scat sampling was effective for both coyotes and bears and hair snags effectively sampled bears in two of three study sites. Rub pads were ineffective in sampling coyotes and lynx. The precision of abundance estimates was dependent upon the number of captures/individual. Our simulations suggested that ~3.4 captures/individual will result in a < 10% CV for abundance estimates when populations are small (23–39), but fewer captures/individual may be sufficient for larger populations. We found scat sampling was more cost‐effective for sampling multiple species, but suggest that hair sampling may be less expensive at study sites with limited road access for bears. Given the dependence of sampling scheme on species and study site, the optimal sampling scheme is likely to be study‐specific warranting pilot studies in most circumstances.  相似文献   

20.
Understanding what variables affect ungulate neonate survival is imperative to successful conservation and management of the species. Predation is commonly cited as a cause‐specific source of mortality, and ecological covariates often influence neonate survival. However, variation in survival estimates related to capture methodology has been documented with opportunistically captured neonates generally displaying greater survival than those captured via aid of vaginal implant transmitters (VITs), likely because of increased left truncation observed in the opportunistically captured datasets. Our goal was to assess whether 3‐ and 6‐month survival estimates varied by capture method while simultaneously assessing whether capture method affected model selection and interpretation of ecological covariates for white‐tailed deer neonates captured from three study sites from 2014 to 2015 in North Dakota and South Dakota, USA. We found survival varied by capture method for 3‐month neonate survival with opportunistically captured neonates displaying up to 26% greater survival than their counterparts captured via VITs; however, this relationship was not present for 6‐month survival. We also found model selection and subsequent interpretation of ecological covariates varied when analyzing datasets comprised of neonates captured via VITs, neonates captured opportunistically, and all neonates combined regardless of capture method. When interpreting results from our VIT‐only analysis for 3‐month survival, we found survival varied by three time intervals and was lowest in the first two weeks of life. Capture method did not affect 6‐month survival, which was most influenced by total precipitation occurring during 3 – 8 weeks of a neonate''s life and percent canopy cover found at a neonate''s capture site. Our results support previous research that capture method must be accounted for when deriving survival estimates for ungulate neonates as it can impact derived estimates and subsequent interpretation of results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号