首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lung cancer is one of the fatal tumors. The tumor microenvironment plays a key role in regulating tumor progression. To figure out the role of tumor microenvironment in lung adenocarcinoma (LUAD), ESTIMATE algorithm was used to evaluate the immune scores in LUAD. Patients with low immune scores had a worse overall survival (OS) compared with high immune scores. Using RNA-Seq data of 489 patients in The Cancer Genome Atlas (TCGA), differentially expressed genes (DEGs) were identified between high- and low-immune score groups. Based on the DEGs, nine-gene signature was constructed by the least absolute shrinkage and selection operator Cox regression model in TCGA set. The signature demonstrated significant prognostic value in both TCGA and Gene Expression Omnibus database. Multivariate Cox regression analyses indicated that nine-genes signature was an independent prognostic factor. Subgroup analysis also revealed a robust prognostic ability of nine-gene signature. A nomogram with a C-index of 0.722 had a favorable power for predicting 3-, 5-, and 10-year survival for clinical use by integrating nine-gene signature and other clinical features. Co-expression and functional enrichment analysis showed that nine-gene signature was significantly associated with immune response and provided potential profound molecules for revealing the mechanism of tumor initiation and progression. In conclusion, we revealed the significance of immune infiltration and built a novel nine-gene signature as a reliable prognostic factor for patients with LUAD.  相似文献   

2.
3.
《Genomics》2020,112(4):2763-2771
Worldwide, hepatocellular carcinoma (HCC) remains a crucial medical problem. Precise and concise prognostic models are urgently needed because of the intricate gene variations among liver cancer cells. We conducted this study to identify a prognostic gene signature with biological significance. We applied two algorithms to generate differentially expressed genes (DEGs) between HCC and normal specimens in The Cancer Genome Atlas cohort (training set included) and performed enrichment analyses to expound on their biological significance. A protein-protein interactions network was established based on the STRING online tool. We then used Cytoscape to screen hub genes in crucial modules. A multigene signature was constructed by Cox regression analysis of hub genes to stratify the prognoses of HCC patients in the training set. The prognostic value of the multigene signature was externally validated in two other sets from Gene Expression Omnibus (GSE14520 and GSE76427), and its role in recurrence prediction was also investigated. A total of 2000 DEGs were obtained, including 1542 upregulated genes and 458 downregulated genes. Subsequently, we constructed a 14-gene signature on the basis of 56 hub genes, which was a good predictor of overall survival. The prognostic signature could be replicated in GSE14520 and GSE76427. Moreover, the 14-gene signature could be applied for recurrence prediction in the training set and GSE14520. In summary, the 14-gene signature extracted from hub genes was involved in some of the HCC-related signalling pathways; it not only served as a predictive signature for HCC outcome but could also be used to predict HCC recurrence.  相似文献   

4.
In this study, we purpose to investigate a novel five-gene signature for predicting the prognosis of patients with laryngeal cancer. The laryngeal cancer datasets were obtained from The Cancer Genome Atlas (TCGA). Both univariate and multivariate Cox regression analysis was applied to screening for prognostic differential expressed genes (DEGs), and a novel gene signature was obtained. The performance of this Cox regression model was tested by receiver operating characteristic (ROC) curves and area under the curve (AUC). Further survival analysis for each of the five genes was carried out through the Kaplan-Meier curve and Log-rank test. Totally, 622 DEGs were screened from the TCGA datasets in this study. We construct a five-gene signature through Cox survival analysis. Patients were divided into low- and high-risk groups depending on the median risk score, and a significant difference of the 5-year overall survival was found between these two groups (P < .05). ROC curves verified that this five-gene signature had good performance to predict the prognosis of laryngeal cancer (AUC = 0.862, P < .05). In conclusion, the five-gene signature consist of EMP1, HOXB9, DPY19L2P1, MMP1, and KLHDC7B might be applied as an independent prognosis predictor of laryngeal cancer.  相似文献   

5.
Background: Glioma is a malignant intracranial tumor and the most fatal cancer. The role of ferroptosis in the clinical progression of gliomas is unclear.Method: Univariate and least absolute shrinkage and selection operator (Lasso) Cox regression methods were used to develop a ferroptosis-related signature (FRSig) using a cohort of glioma patients from the Chinese Glioma Genome Atlas (CGGA), and was validated using an independent cohort of glioma patients from The Cancer Genome Atlas (TCGA). A single-sample gene set enrichment analysis (ssGSEA) was used to calculate levels of the immune infiltration. Multivariate Cox regression was used to determine the independent prognostic role of clinicopathological factors and to establish a nomogram model for clinical application.Results: We analyzed the correlations between the clinicopathological features and ferroptosis-related gene (FRG) expression and established an FRSig to calculate the risk score for individual glioma patients. Patients were stratified into two subgroups with distinct clinical outcomes. Immune cell infiltration in the glioma microenvironment and immune-related indexes were identified that significantly correlated with the FRSig, the tumor mutation burden (TMB), copy number alteration (CNA), and immune checkpoint expression was also significantly positively correlated with the FRSig score. Ultimately, an FRSig-based nomogram model was constructed using the independent prognostic factors age, World Health Organization (WHO) grade, and FRSig score.Conclusion: We established the FRSig to assess the prognosis of glioma patients. The FRSig also represented the glioma microenvironment status. Our FRSig will contribute to improve patient management and individualized therapy by offering a molecular biomarker signature for precise treatment.  相似文献   

6.
Background: Colorectal cancer (CRC) is one of the most prevalent malignant cancers worldwide. Immune-related long non-coding RNAs (IRlncRNAs) are proved to be essential in the development and progression of carcinoma. The purpose of the present study was to develop and validate a prognostic IRlncRNA signature for CRC patients.Methods: Gene expression profiles of CRC samples were downloaded from The Cancer Genome Atlas (TCGA) database. Immune-related genes were obtained from the ImmPort database and were used to identify IRlncRNA by correlation analysis. Through LASSO Cox regression analyses, a prognostic signature was constructed. Functional enrichment analysis was performed by gene set enrichment analysis (GSEA). TIMER2.0 web server and tumor immune dysfunction and exclusion (TIDE) algorithm were employed to analyze the association between our model and tumor-infiltrating immune cells and immunotherapy response. The expression levels of IRlncRNAs in cell lines were detected by quantitative real-time PCR (qPCR).Results: A 9-IRlncRNA signature was developed by a LASSO Cox proportional regression model. Based on the signature, CRC patients were divided into high- and low-risk groups with different prognoses. GSEA results indicated that patients in high-risk group were associated with cancer-related pathways. In addition, patients in low-risk group were found to have more infiltration of anti-tumor immune cells and might show a favorable response to immunotherapy. Finally, the result of qPCR revealed that most IRlncRNAs were differently expressed between normal and tumor cell lines.Conclusion: The constructed 9-IRlncRNA signature has potential to predict the prognosis of CRC patients and may be helpful to guide personalized immunotherapy.  相似文献   

7.
8.
9.
Breast cancer (BRCA) is a major global health issue, characterized by high mortality and low early diagnosis rates. The tumor immune microenvironment (TME) of BRCA is closely linked to fatty acid metabolism (FAM). This study aimed to identify FAM-related subtypes in BRCA based on gene expression and clinical data from the Cancer Genome Atlas (TCGA) database. The study found two distinct FAM-related subtypes, each with unique immune characteristics and prognostic implications. A FAM-related risk score prognostic model was developed and validated using TCGA and International Cancer Genome Consortium (GEO) cohorts, showing potential clinical applications for chemotherapy and immunotherapy. Additionally, a nomogram was established to facilitate clinical use of the risk score. These results highlight the significant correlation between FAM genes and TME in BRCA, and demonstrate the potential clinical utility of the FAM-related risk score in informing treatment decisions for BRCA patients.  相似文献   

10.
《Genomics》2022,114(6):110520
BackgroundRecent studies have emphasized the close relationship between macrophages and tumor immunity, and the prognosis of lung adenocarcinoma (LUAD) patients is intimately linked to this. Nonetheless, the prognostic signature and classification of different immune patterns in LUAD patients based on the macrophages is largely unexplored.MethodsTwo sc-RNAseq datasets of LUAD patients were collected and reprocessed. The differentially expressed genes (DEGs) related to macrophages between LUAD tissues and normal lung tissues were then identified. Based upon the above genes, three distinct immune patterns in the TCGA-LUAD cohort were identified. The ssGSEA and CIBERSORT were applied for immune profiling and characterization of different subtypes. A four-gene prognostic signature for LUAD patients was established based on the DEGs between the subtypes using stepwise multi-Cox regression. TCGA-LUAD cohort was used as training set. Five GEO-LUAD datasets and an independent cohort containing 112 LUAD samples were used for validation. TIDE (tumor immune dysfunction and exclusion) and drug sensitivity analyses were also performed.ResultsMacrophage-related differentially expressed genes were found out using the publicly available scRNA-seq data of LUAD. Three different immune patterns which were proved to have distinct immune infiltration characteristics in the TCGA-LUAD cohort were recognized based on the above macrophage-related genes. Thereafter, 174 DEGs among the above three different immune patterns were figured out; on the basis of this, a four-gene prognostic signature was constructed. This signature distinguished the prognosis of LUAD patients well in various GSE datasets as well as our independent cohort. Further analyses revealed that patients which had a higher risk score also accompanied with a lower immune infiltration level and a worse response to several immunotherapy biomarkers.ConclusionThis study highlighted that macrophage were significantly associated with TME diversity and complexity. The four-gene prognostic signature could be used for predicting outcomes and immune landscapes for patients with LUAD.  相似文献   

11.
Colorectal cancer (CRC) ranks as one of the most commonly diagnosed malignancies worldwide. Although mortality rates have been decreasing, the prognosis of CRC patients is still highly dependent on the individual. Therefore, identifying and understanding novel biomarkers for CRC prognosis remains crucial. The gene expression profiles of five-gene expression omnibus (GEO) data sets of CRC were first downloaded. A total of 352 consistent differentially expressed genes (DEGs) were identified for CRC and paired with normal tissues. Functional analysis including gene ontology and Kyoto encyclopedia of genes and genomes pathway enrichment revealed that these DEGs were related to metabolic pathways, tight junctions, and the cell cycle. Ten hub DEGs were identified based on the search tool for the retrieval of interacting genes database and protein–protein interaction networks. By using univariate Cox proportional hazard regression analysis, we found 11 survival-related genes among these DEGs. We finally established a five-gene signature (kinesin family member 15, N-acetyltransferase 2, glutathione peroxidase 3, secretogranin II, and chloride channel accessory 1) with prognostic value in CRC by step multivariate Cox regression analysis. Based on this risk scoring system, patients in the high-risk group had significantly poorer survival results compared with those in the low-risk group (log-rank test, p < 0.0001). Finally, we validated our gene signature scoring system in two independent GEO cohorts (GSE17536 and GSE33113). We found all five of the signature genes to be DEGs in The Cancer Genome Atlas database. In conclusion, our findings suggest that our five DEG-based signature can provide a novel biomarker with useful applications in CRC prognosis.  相似文献   

12.
Lung adenocarcinoma (LUAD) is one of the most malignant tumor types worldwide. Our objective was to identify a genetic signature that could predict the prognosis of patients with LUAD. We extracted gene data sets from The Cancer Genome Atlas and obtained differentially expressed genes that were highly expressed at every stage. These genes were analyzed using gene set enrichment analysis to obtain four biological processes associated with LUAD. Subsequently, Cox univariate and multivariate analyses were performed to generate four optimized models (G2M checkpoint, E2F targets, mitotic spindle, and glycolysis). We identified a mitotic spindle-related signature (KIF15, BUB1, CCNB2, CDK1, KIF4A, DLGAP5, ECT2, and ANLN), which could be an independent prognostic indicator, to predict the prognosis of patients with LUAD. This new discovery should offer opportunities to explore the pathogenesis of LUAD and prove clinically useful in predicting LUAD patient prognosis.  相似文献   

13.
Despite the prognostic value of IDH and other gene mutations found in diffuse glioma, markers that judge individual prognosis of patients with diffuse lower‐grade glioma (LGG) are still lacking. This study aims to develop an expression‐based microRNA signature to provide survival and radiotherapeutic response prediction for LGG patients. MicroRNA expression profiles and relevant clinical information of LGG patients were downloaded from The Cancer Genome Atlas (TCGA; the training group) and the Chinese Glioma Genome Atlas (CGGA; the test group). Cox regression analysis, random survival forests‐variable hunting (RSFVH) screening and receiver operating characteristic (ROC) were used to identify the prognostic microRNA signature. ROC and TimeROC curves were plotted to compare the predictive ability of IDH mutation and the signature. Stratification analysis was conducted in patients with radiotherapy information. Gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed to explore the biological function of the signature. We identified a five‐microRNA signature that can classify patients into low‐risk or high‐risk group with significantly different survival in the training and test datasets (P < 0.001). The five‐microRNA signature was proved to be superior to IDH mutation in survival prediction (AUCtraining = 0.688 vs 0.607). Stratification analysis found the signature could further divide patients after radiotherapy into two risk groups. GO and KEGG analyses revealed that microRNAs from the prognostic signature were mainly enriched in cancer‐associated pathways. The newly discovered five‐microRNA signature could predict survival and radiotherapeutic response of LGG patients based on individual microRNA expression.  相似文献   

14.
Lung adenocarcinoma (LUAD) is the main subtype of non-small cell lung cancer with a poor survival prognosis. In our study, gene expression, DNA methylation, and clinicopathological data of primary LUAD were utilized to identify potential prognostic markers for LUAD, which were recruited from The Cancer Genome Atlas (TCGA) database. Univariate regression analysis showed that there were 21 methylation-associated DEGs related to overall survival (OS), including 9 down- and 12 up-regulated genes. The 12 up-regulated genes with hypomethylation may be risky genes, whereas the other 9 down-regulated genes with hypermethylation might be protective genes. By using the Step-wise multivariate Cox analysis, a methylation-associated 6-gene (consisting of CCL20, F2, GNPNAT1, NT5E, B3GALT2, and VSIG2) prognostic signature was constructed and the risk score based on this gene signature classified patients into high- or low-risk groups. Patients of the high-risk group had shorter OS than those of the low-risk group in both the training and validation cohort. Multivariate Cox analysis and the stratified analysis revealed that the risk score was an independent prognostic factor for LUAD patients. The methylation-associated gene signature may serve as a prognostic factor for LUAD patients and the represent hypermethylated or hypomethylated genes might be potential targets for LUAD therapy.  相似文献   

15.
Current studies suggest that some microRNAs (miRNAs) are associated with prognosis in clear cell renal cell carcinoma (ccRCC). In this paper, we aimed to identify a miRNAs signature to improve prognostic prediction for ccRCC patients. Using ccRCC RNA-Seq data of The Cancer Genome Atlas (TCGA) database, we identified 177 differentially expressed miRNAs between ccRCC and paracancerous tissue. Then all the ccRCC tumor samples were divided into training set and validation set randomly. Three-miRNA signature including miR130b, miR-18a, and miR-223 were constructed by the least absolute shrinkage and selection operator (LASSO) Cox regression model in training set. According to optimal cut-off value of three-miRNA signature risk score, all the patients could be classified into high-risk group and low-risk group significantly. Survival of patients was significantly different between two groups (hazard ratio, 5.58, 95% confidence interval, 3.17-9.80; P < 0.0001), and three-miRNA signature performed favorably prognostic and predictive accuracy. The results were further validated in the validation set and total set. Multivariate Cox regression analyses and subgroup analyses showed that three-miRNA signature was an independent prognostic factor. Two nomograms that integrated three-miRNA signature and three clinicopathological risk factors were constructed to predict overall survival and disease-free survival after surgery for ccRCC patients. Functional enrichment analysis showed the possible roles of three-miRNA signature in some cancer-associated biological processes and pathways. In conclusion, we developed a novel three-miRNA signature that performed reliable prognostic for patient survival with ccRCC, it might facilitate ccRCC patients counseling and individualize management.  相似文献   

16.
Deregulated long noncoding RNAs (lncRNA) have been critically implicated in tumorigenesis and serve as novel diagnostic and prognostic biomarkers. Here we sought to develop a prognostic lncRNA signature in patients with head and neck squamous cell carcinoma (HNSCC). Original RNA-seq data of 499 HNSCC samples were retrieved from The Cancer Genome Atlas database, which was randomly divided into training and testing set. Univariate Cox regression survival analysis, robust likelihood-based survival model and random sampling iterations were applied to identify prognostic lncRNA candidates in the training cohort. A prognostic risk score was developed based on the Cox coefficient of four individual lncRNA imputed as follows: (0.14546 × expression level of RP11-366H4.1) + (0.27106 × expression level of LINC01123) + (0.54316 × expression level of RP11-110I1.14) + (−0.48794 × expression level of CTD-2506J14.1). Kaplan-Meier analysis revealed that patients with high-risk score had significantly reduced overall survival as compared with those with low-risk score when patients in training, testing, and validation cohorts were stratified into high- or low-risk subgroups. Multivariate survival analysis further revealed that this 4-lncRNA signature was a novel and important prognostic factor independent of multiple clinicopathological parameters. Importantly, ROC analyses indicated that predictive accuracy and sensitivity of this 4-lncRNA signature outperformed those previously well-established prognostic factors. Noticeably, prognostic score based on quantification of these 4-lncRNA via qRT-PCR in another independent HNSCC cohort robustly stratified patients into subgroups with high or low survival. Taken together, we developed a robust 4-lncRNA prognostic signature for HNSCC that might provide a novel powerful prognostic biomarker for precision oncology.  相似文献   

17.
Tamoxifen treatment is important assistant for estrogen-receptor-positive breast cancer (BRCA) after resection. This study aimed to identify signatures for predicting the prognosis of patients with BRCA after tamoxifen treatment. Data of gene-specific DNA methylation (DM), as well as the corresponding clinical data for the patients with BRCA, were obtained from The Cancer Genome Atlas and followed by systematic bioinformatics analyses. After mapping these DM CPG sites onto genes, we finally obtained 352 relapse-free survival (RFS) associated DM genes, with which 61,776 gene pairs were combined, including 1,614 gene pairs related to RFS. An 11 gene-pair signature was identified to cluster the 189 patients with BRCA into the surgical low-risk group (136 patients) and high-risk group (53 patients). Then, we further identified a tamoxifen-predictive signature that could classify surgical high-risk patients with significant differences on RFS. Combining surgical-only prognostic signature and tamoxifen-predictive signature, patients were clustered into surgical-only low-risk group, tamoxifen nonbenefit group, and tamoxifen benefit group. In conclusion, we identified that the gene pair PDHA2–APRT could serve as a potential prognostic biomarker for patients with BRCA after tamoxifen treatment.  相似文献   

18.
Breast cancer, the most common cancer in women worldwide, is associated with high mortality. The long non-coding RNAs (lncRNAs) with a little capacity of coding proteins is playing an increasingly important role in the cancer paradigm. Accumulating evidences demonstrate that lncRNAs have crucial connections with breast cancer prognosis while the studies of lncRNAs in breast cancer are still in its primary stage. In this study, we collected 1052 clinical patient samples, a comparatively large sample size, including 13 159 lncRNA expression profiles of breast invasive carcinoma (BRCA) from The Cancer Genome Atlas database to identify prognosis-related lncRNAs. We randomly separated all of these clinical patient samples into training and testing sets. In the training set, we performed univariable Cox regression analysis for primary screening and played the model for Robust likelihood-based survival for 1000 times. Then 11 lncRNAs with a frequency more than 600 were selected for prediction of the prognosis of BRCA. Using the analysis of multivariate Cox regression, we established a signature risk-score formula for 11 lncRNA to identify the relationship between lncRNA signatures and overall survival. The 11 lncRNA signature was validated both in the testing and the complete set and could effectively classify the high-/low-risk group with different OS. We also verified our results in different stages. Moreover, we analyzed the connection between the 11 lncRNAs and the genes of ESR1, PGR, and Her2, of which protein products (ESR, PGR, and HER2) were used to classify the breast cancer subtypes widely. The results indicated correlations between 11 lncRNAs and the gene of PGR and ESR1. Thus, a prognostic model for 11 lncRNA expression was developed to classify the BRAC clinical patient samples, providing new avenues in understanding the potential therapeutic methods of breast cancer.  相似文献   

19.
Owing to the high morbidity and mortality, novel biomarkers in the occurrence and development of colorectal cancer (CRC) are needed nowadays. In this study, the CRC-related datasets were downloaded from the Gene Expression Omnibus (GEO) database and The Cancer Genome Atlas (TCGA) database. After screening the differentially expressed genes (DEGs) in R software, a total of 238 upregulated and 199 downregulated DEGs were revealed simultaneously. Then the Kaplan-Meier survival analysis and Cox regression analysis were used to reveal the prognostic function of these DEGs. Neurexophilin and PC-esterase domain family member 4 (NXPE4) and prostate androgen-regulated mucin-like protein 1 (PARM1) were two outstanding independent overall survival (OS) and relapse-free survival (RFS) prognostic genes of CRC in TCGA database. We next verified the expression of NXPE4 and PARM1 messenger RNA (mRNA) levels were significantly lower in CRC tumor tissue than in the adjacent noncancerous tissue in our clinical samples, and NXPE4 mRNA expression level was related to the tumor location and tumor size, while PARM1 was related to tumor location, lymph nodes metastasis, and tumor size. This study demonstrated that NXPE4 and PARM1 might be two potential novel prognostic biomarkers for CRC.  相似文献   

20.
Due to the high heterogeneity of lung adenocarcinoma (LUAD), molecular subtype based on gene expression profiles is of great significance for diagnosis and prognosis prediction in patients with LUAD. Invasion-related genes were obtained from the CancerSEA database, and LUAD expression profiles were downloaded from The Cancer Genome Atlas. The ConsensusClusterPlus was used to obtain molecular subtypes based on invasion-related genes. The limma software package was used to identify differentially expressed genes (DEGs). A multi-gene risk model was constructed by Lasso-Cox analysis. A nomogram was also constructed based on risk scores and meaningful clinical features. 3 subtypes (C1, C2 and C3) based on the expression of 97 invasion-related genes were obtained. C3 had the worst prognosis. A total of 669 DEGs were identified among the subtypes. Pathway enrichment analysis results showed that the DEGs were mainly enriched in the cell cycle, DNA replication, the p53 signalling pathway and other tumour-related pathways. A 5-gene signature (KRT6A, MELTF, IRX5, MS4A1 and CRTAC1) was identified by using Lasso-Cox analysis. The training, validation and external independent cohorts proved that the model was robust and had better prediction ability than other lung cancer models. The gene expression results showed that the expression levels of MS4A1 and KRT6A in tumour tissues were higher than in normal tissues, while CRTAC1 expression in tumour tissues was lower than in normal tissues. The 5-gene signature prognostic stratification system based on invasion-related genes could be used to assess prognostic risk in patients with LUAD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号