首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seligman  No'am  Henkin  Zalmen 《Plant Ecology》2003,164(1):95-107
Our study aimed at identifying mechanisms that permit the long-termpersistence of Sarcopoterium spinosum, a dwarf-shrub thatdominates large areas of hilly landscape in eastern Mediterranean countries.Data were obtained from 16 1×1 m quadrats distributed amongwell-established S. spinosum communities in Israel thathadnot been burned or otherwise disturbed for well over 20 years. We sampled threecommunities that represent different climatic and habitat conditions andanalysed the growth rings in the root crowns of 604 uprooted plants, todetermine the age structures of the sampled stands. Many older'shrubs that appeared to be individual plantswere in fact clusters of ramets with their root crowns concentrated in a verysmall area. The morphology of these ramets indicates that they arose by rootingof peripheral stems. Seedlings and young plants were rare. Ramets seldomexceeded 17 years of age, although a few were 18–21 years old and one had34 growth rings. The average ramet age on the different sites varied between 9and 11 years. The ramets appeared to separate from the mother plant when theywere older than 7 years, after which they had an estimated average half-life ofca. 2.8 years. Young shrubs grew rapidly in height, but their basal cover waslow; it increased when they were much older, presumably as the older plantsdied. Consequently, three or four cohorts of older ramets between 12 and 17years old often dominated stand cover. The continuing profuse production ofseeds even where seedlingrecruitment is normally rare could be related to the relatively short averagelife-span of the ramets. We conclude that where resources are irregularlydistributed and establishment sites are fully occupied by perennial species,localised phalanx-type clonal proliferation can reduce the risk of genetextinction. On favourable sites this strategy confers upon S.spinosum genets the tenacity required to hold off replacement byother species and to dominate large areas of the landscape for much longer thanthe average life span of individual ramets.  相似文献   

2.
Aim The spruce–moss forest is the main forest ecosystem of the North American boreal forest. We used stand structure and fire data to examine the long‐term development and growth of the spruce–moss ecosystem. We evaluate the stability of the forest with time and the conditions needed for the continuing regeneration, growth and re‐establishment of black spruce (Picea mariana) trees. Location The study area occurs in Québec, Canada, and extends from 70°00′ to 72°00′ W and 47°30′ to 56°00′ N. Methods A spatial inventory of spruce–moss forest stands was performed along 34 transects. Nineteen spruce–moss forests were selected. A 500 m2 quadrat at each site was used for radiocarbon and tree‐ring dating of time since last fire (TSLF). Size structure and tree regeneration in each stand were described based on diameter distribution of the dominant and co‐dominant tree species [black spruce and balsam fir (Abies balsamea)]. Results The TSLF of the studied forests ranges from 118 to 4870 cal. yr bp . Forests < 325 cal. yr bp are dominated by trees of the first post‐fire cohort and are not yet at equilibrium, whereas older forests show a reverse‐J diameter distribution typical of mature, old‐growth stands. The younger forests display faster height and radial growth‐rate patterns than the older forests, due to factors associated with long‐term forest development. Each of the stands examined established after severe fires that consumed all the soil organic material. Main conclusions Spruce–moss forests are able to self‐regenerate after fires that consume the organic layer, thus allowing seed regeneration at the soil surface. In the absence of fire the forests can remain in an equilibrium state. Once the forests mature, tree productivity eventually levels off and becomes stable. Further proof of the enduring stability of these forests, in between fire periods, lies in the ages of the stands. Stands with a TSLF of 325–4870 cal. yr bp all exhibited the same stand structure, tree growth rates and species characteristics. In the absence of fire, the spruce–moss forests are able to maintain themselves for thousands of years with no apparent degradation or change in forest type.  相似文献   

3.
We examined forest structure and regeneration in a 350‐ha forest dominated by Pinus sylvestris 31 yr after a wildfire in the Vienansalo wilderness, Russian Karelia. In most parts of the area, the 1969 fire was not stand replacing but had left larger trees alive so that the area generally remained forest covered. In some localities, however, all trees apparently died and distinct gaps were formed, suggesting that the fire severity varied considerably, contributing to increased variation in stand structure. Living and dead wood volumes were similar, 112 and 96 m3.ha‐1, respectively. The tree species proportions of dead vs living wood indicated that prior to fire disturbance Picea was more common in the area. Regeneration was abundant (saplings, ca. 14 000 ind.ha‐1, height 20 ‐200 cm) and tree seedling recruitment had occurred over a long period of time. Regeneration density was highest on the mesic Vaccinium‐Myrtillus forest site type, decreasing towards nutrient‐poor site types. The most common regeneration microsites were level ground (56% of saplings), immediate surroundings of decayed wood (23%) and depressions (11%). The high proportion of saplings on level ground suggests that after the fire regeneration conditions have been favourable across the whole forest floor. Nevertheless, the areas in the vicinity of decayed wood have been particularly important microsites for seedling establishment. The results provide an example of the effects of wildfire on forest structure in a natural Pinus sylvestris dominated forest, demonstrating the non stand replacing character of fire, high variability in stand structure and the abundance of post‐fire regeneration.  相似文献   

4.
Most obligate seeder species build up a soil seed bank that is associated with massive seed germination in the year immediately after a fire. These species are also shade‐intolerant and disappear when vegetation cover closes, creating unsuitable conditions for seedling recruitment. The only way for these plants to expand their populations is when habitats suitable for seedling recruitment arise (i.e. in years immediately after a fire). However, short primary seed dispersal of obligate seeders does not allow these plants to colonise the suitable habitats, and these habitats can only be colonised by secondary seed dispersion. We hypothesised that Fumana ericoides, an obligate‐seeding small shrub, not only establishes abundantly in the first year after fire, but also expands its local range in the following years due to secondary dispersal by ants while suitable habitats are still available. We tested this hypothesis using experimental studies and a simulation model of potential population expansion in a recently burned area. Results showed that F. ericoides not only established prolifically in the year immediately after fire, but was also able to recruit new individuals and expand its population in the years following the fire, despite a low germination rate and short primary seed dispersal. Ant‐mediated seed dispersal and availability of suitable habitats were key factors in this phenomenon: ants redistributed seeds in suitable habitats while they were available, which accelerated the expansion of F. ericoides because new plants established far away from the core population.  相似文献   

5.
Abstract. Natural Pinus resinosa (red pine) stands in Newfoundland are restricted to 22 small, dry, nutrient-poor sites. A short wildfire cycle (15 - 30 yr) of both surface and crown fire regulates stand perimeters and is the main factor in regulating stand development. At the nucleus of current stands < 100 yr old, a few trees > 200 yr occur, usually showing multiple fire scars. Stem char heights confirmed an increased flammability of the stand and tree mortality for fires moving in the upslope position, as well as for mixed Pinus resinosa-Picea mariana stands. All P. resinosa stands are severely nutrient-deficient. Leaf concentrations of N, P and K were below or near the reported critical values. Nutrient concentrations were highest three months after a surface fire, but dropped considerably one year later. A gradual increase to near post-fire levels is achieved four years after fire. Foliar nutrient concentrations were positively correlated with average width of the annual rings. Aspects of the ericaceous understory dynamics and its relation to P. resinosa regeneration are also discussed.  相似文献   

6.
Abstract Plant responses to fire are variable between and within species and are influenced by numerous factors including fire severity. This study investigated the effects of fire severity on the regeneration and recruitment of forest eucalypts in the Cotter River Catchment, Australian Capital Territory (ACT). This study also examined the potential for the obligate seeder Eucalyptus delegatensis R.T. Baker (Myrtaceae) to expand into adjacent stands dominated by the facultative resprouter Eucalyptus fastigata H. Deane & Maiden (Myrtaceae) by seed shed and seedling establishment beyond the pre‐fire boundary. Sites were located in areas of either higher or lower fire severity, and transects were placed across the boundary of stands of E. delegatensis and E. fastigata. Species distributions, tree survival and seedling densities and heights were recorded, and the location of each boundary was determined as the region of maximum change in species composition along the transects. Eucalyptus delegatensis was the only eucalypt killed by higher severity fire. However, E. delegatensis seedling density was greater at higher severity sites than lower severity sites. Eucalyptus fastigata seedling density was low across all sites, with other eucalypts producing few, if any, seedlings. There was no evidence that E. delegatensis had increased its range into downslope stands dominated by E. fastigata. Patterns of vegetative recovery and seedling recruitment may be related to a number of factors, including differences in allocation patterns between seeders and sprouters, and the effects of overstory and understory competition. It is unclear what processes impede E. delegatensis seedling establishment beyond the stand boundary, but may involve an inability of E. delegatensis to shed seed sufficiently far downslope; unsuitable conditions for germination beyond the boundary; or, competition from a retained or resprouting overstory, despite the potential for increased dispersal distance soon after fire.  相似文献   

7.
Abstract. Demographic structure of 12 chaparral sites unburned for 56 to 120 years was investigated. All sites were dominated by vigorous shrub populations and, although there was colonization by seedlings of woodland tree species in several stands, successional replacement of chaparral was not imminent. Although successional changes in community composition were evident, there was no indication of a decline in species diversity. Non-sprouting species of Ceanothus suffered the greatest mortality at most, but not all, sites. Sprouting shrubs, such as Quercus and Heteromeles had very little mortality, even in stands more than a century old. All postfire resprouting species had multiple stems of different ages indicating these shrubs were capable of continuously regenerating their canopy from basal sprouts. Ceanothus populations were highly clumped and there was a significant correlation across all sites between variance/mean ratio and percentage mortality. As Ceanothus populations thinned, they became less clumped. In mixed chaparral stands, Quercus and Heteromeles were significantly taller than associated Ceanothus shrubs and overtopped the Ceanothus; at two sites, the density of live Quercus per plot was correlated with the density of dead Ceanothus. Thus, mortality of Ceanothus stems is likely related to both intra and interspecific interations. Seedling recruitment was observed for most shrub species that regenerate after fire by resprouting; seedling and sapling densities ranging from 1000–36 500 ha-1 were recorded for Quercus dumosa, Rhamnus crocea, Prunus ilicifolia, Heteromeles arbutifolia and Cercocarpus betuloides. For all but the last species, seedlings and saplings were most abundant beneath the canopy cover and not in gaps. Across all sites, recruitment was significantly correlated with depth and bio-mass of the litter layer. Cercocarpus betuloides was present in several stands, but seedling establishment was found only in one very open, disturbed stand. Regardless of stand age, taxa such as Adenostoma, Arctostaphylos and Ceanothus, which recruit seedlings after fire, had no significant seedling production.  相似文献   

8.
Abstract. Quercus ilex (holm oak) coppice forests belong to the most representative communities in the western part of the Iberian Peninsula. Due to the high sprouting potential of holm oak after coppicing, the dynamics of recruitment of new individuals in existing populations has been largely overlooked. In these forests, the density of seedlings increases in old stands, as a result of the remarkable increase in the recruitment of 1-yr and 2-yr old seedlings, probably due to better environmental conditions for germination. Older seedlings show a tendency towards increasing survival under some degree of canopy closure, since their density appears to be higher just before complete canopy closure takes place. Nevertheless, the reduced growth of seedlings in older stands due to low light levels causes age distributions of holm oak seedlings to change drastically, with saplings older than 15 yr becoming very unusual in these stands. Therefore, a bottleneck of recruitment appears at this sapling stage and prevents vigorous regeneration just before thinning. Present conditions of genet density and management tend to prevent population renewal. Dynamics of the seedling bank reinforce the role of gap formation through small or large scale perturbations in population turnover.  相似文献   

9.
Invasive species can increase fire frequency and intensity, generating favorable conditions for their self-perpetuation. Mediterranean south-central Chile may be especially prone to the effects of invasive species on fire regimes because it is less adapted to fire and it contains a highly endemic flora. Teline monspessulana (L.) K. Koch (syn. Cytisus monspessulanus L.; Genista monspessulana (L.) L.A.S. Johnson) is an introduced shrub that forms monotypic stands or is present as an understory species in native forests as well as in forestry plantations. Dense T. monspessulana stands are completely destroyed by fire, generating the conditions for it seeds to germinate and establish an abundant regeneration, with up to 900 plants/m2. We report key evidence on abundance and biomass in adult stands, and patterns of seed bank and regeneration after fire in stands of T. monspessulana around the city of Concepción, Chile. We estimated living biomass in pure stands and underneath Eucalyptus plantations. In burned areas, we assessed T. monspessulana seed bank and studied regeneration patterns. We found that T. monspessulana densities reaches 52,778 plants/ha and 8.92 ton/ha in pure stands and 34,223 plants/ha and 2.31 ton/ha underneath Eucalyptus plantations. T. monspessulana generates small caliper fuel and acts as a ladder-fuel. Large soil seed banks allow for abundant regeneration after fire, with mean densities of 877,111 plants/ha, but an overall mortality of 37.2% in the first year after the fire. The high values of regeneration compared to final densities in adult stands suggest that density-dependent mortality. Our results indicate that T. monspessulana regeneration is not only favored by fires, but also that the species creates favorable conditions for intense and continuous fires, both under pure conditions, but also associated to exotic tree plantations. To understand the implications of positive feedbacks between invaders and fire, we recommend focusing in the mechanisms by which they increases fuel accumulation and fuel flammability, and how higher fire frequency and intensity favors invasive species recruitment over native species. Comprehension of this dynamics will allow for better management and control of these invasions which have major ecological, economical and social implications.  相似文献   

10.
Ne'eman  G.  Fotheringham  C.J.  Keeley  J.E. 《Plant Ecology》1999,145(2):235-242
Obligate seeding species are highly specialized to fire disturbance and many conifers such as cypress, which are adapted to high intensity stand-replacing fires, have canopy seed banks stored in serotinous cones. Resilience of these trees to fire disturbance is a function of disturbance frequency and one focus of this study was to determine the effect of patch age on postfire recruitment. A second focus was to determine the extent to which fire induced a landscape level change in the location of the forest boundary. Prior to a fire in 1994, a large Cupressus sargentii forest was a mosaic landscape of different aged patches of nearly pure cypress bordered by chaparral. Patches less than 60 years of age were relatively dense with roughly one tree every 1–2 m2 but older patches had thinned to one tree every 3–15 m2. Older trees had substantially greater canopy cone crops but the stand level seed bank size was not significantly correlated with stand age. Fire-dependent obligate seeding species are sensitive to fire return interval because of potential changes in the size of seed banks – facing both a potential `immaturity risk' and a `senescence risk'. At our site, C. sargentii regeneration was substantial in stands as young as 20 years, suggesting that fire return interval would need to be shorter than this to pose any significant risk. Reduced seedling recruitment in stands nearly 100 years of age may indicate risk from senescence is greater, however, even the lowest density seedling recruitment was many times greater than the density of mature forests – thus this cypress would appear to be resilient to a wide range of fire return intervals. Changes in landscape patterning of forest and chaparral are unlikely except after fire. Factors that inhibit tree establishment within the shrubland, as well as factors that affect shrub establishment within the forest border likely affect the `permeability' of this ecotone. After the 1994 fire this boundary appeared to be stable in that cypress recruited best within the shadow of burned canopies and cypress were weak invaders of adjacent shrublands.  相似文献   

11.
Summary In the low elevation chaparral areas of Sequoia National Park, California, pure stands of chamise (Adenostoma fasciculatum) are periodically rejuvenated by fire. Mature stands showed considerable variability in density and total biomass even though a positive correlation exists between the two. Mature stands showed a preponderance of individuals in the smaller size classes (inverse-J shape distribution). Dead shrubs found in mature stands also tended to be in the smaller size classes. This relatively high mortality of small individuals is important to post-fire stand development. In addition, resprout and seedling biomass one year after fire both showed inverse-J shaped size-class structures. A positive correlation existed between the preburn basal area of a shrub and its first year resprout biomass. Shrub biomass and distance to nearest neighbor were poorly correlated. A significant correlation existed between stand density and a stand's variance-to-mean ratio, indicating a trend toward more regular spacing as density increases. Pre-burn and fire-induced mortality tended to move the stand towards a more clumped distribution. Seedlings replaced dead individuals after a fire and thus restored regular spacing.  相似文献   

12.
Sustained elephant browsing and intense burning could result in the loss of woodlands under conditions where elephant densities are high, such as in northern Botswana. Three woodland types dominated by Acacia erioloba, Baikiaea plurijuga and Colophospermum mopane were monitored in plots and contemporary recruitment rates of woody plants were compared with the associated local elephant densities and fire occurrences. Woodland types differed with respect to structure, extent of elephant damage and the occurrence of fire. Canonical correlations indicated that high extent of fire damage and high elephant densities did not covary within the woodland types investigated. Low tree densities in some woodland types were associated with high elephant densities and new elephant damage to plants increased with high elephant densities during the dry season. Plots with an apparent high fire frequency had lower tree densities and higher cover abundance of shrubs and seedlings.The annual rates of tree recruitment/loss in each woodland type were estimated through a model based on observed seedling recruitment, mortality and reversal to lower height classes due to combinations of fire occurrence and elephant browsing. The model suggested that elephants induce tree loss in woodlands dominated by plant species which are principal food sources. Fire however, seems to have a widespread effect across woodlands which could result in extensive tree loss.  相似文献   

13.
The exotic shrub Scotch Broom (Cytisus scoparius) has invaded large areas of eucalypt woodland at Barrington Tops, New South Wales, where it forms dense stands that have significant impacts on vegetation structure, flora and fauna. Data are presented from four 25 m2 plots, which have been studied since 1985. Two plots were located in uniform broom thickets of different ages, and two were located across the margins of broom stands, which have since expanded to cover the entire plots. All broom plants in the plots (other than young seedlings, which were counted) were mapped, tagged and monitored annually. New seedlings appeared annually, but there was no relationship between their numbers (varying between years) and subsequent recruitment of older plants. The probability of seedlings reaching first flowering was less than 2%, and of surviving to mature size (>10 cm2 basal area) was negligible. Seedlings mainly died through suppression (shade). Individuals less than 50 cm high were also browsed. Recruitment occurred only where light levels were high, either before closure of the broom canopy or after senescence had led to canopy opening. From approximately 12–30 years after initial invasion, broom stands underwent self‐thinning of mature plants, accelerated by collapse of plants on to each other. Recruitment of new, maturing plants, after this period produced a stand that was less dense than that found after initial invasion. Broom is creating more disturbance‐prone environments due to its impacts on other biota, likely alterations to the fire regime, and by harbouring feral pigs. Further disturbance favours broom, and elsewhere it has resulted in massive seedling regeneration. While fire or other disturbance can be used to stimulate germination, and thereby reduce a large part of the soil seed bank, denser broom infestations are likely to result unless follow‐up treatments can be applied over long time periods. A wiser management option, at least in the short term, may be avoidance of all disturbance, especially for stands of mature broom.  相似文献   

14.
We examined differences in bird communities in relation to characteristics of habitat structure in a pine forest, Samcheok, South Korea. An unburned stand, a stand burned 7 years earlier and then naturally restored, and a stand where Japanese red pine Pinus densiflora seedlings were planted after the fire were used for the survey. Habitat structure was dramatically changed by postfire silvicultural practices. Number of stand trees, shrubs, seedlings, snags, and vegetation coverage were significantly different among study stands. We made 1,421 detections of 46 bird species during 23 separate line transect surveys per stand between February 2007 and December 2008. The mean number of observed bird species and individuals, bird species diversity index (H′), and Simpson’s diversity index (D s) were highest in the unburned stand and lowest in the pine seedling stand. There were more species and individuals of forest-dwelling birds in the unburned stand than both burned stands. Canopy and cavity nesters, foliage searchers, bark gleaners, and timber drillers were significantly higher in the unburned stand. In the pine seedling stand, densities of birds that prefer open field and shrub cover were higher. Stand structure was simplified in the pine seedling stand by postfire practices. Because of differences in habitat structure and bird communities, postfire practices in the burned stand should be re-evaluated. Also, management strategies for pine forest after forest fires are needed based on results of long-term experiments.  相似文献   

15.
Although succession may follow multiple pathways in a given environment, the causes of such variation are often elusive. This paper describes how changes in fire interval mediate successional trajectory in conifer-dominated boreal forests of northwestern Canada. Tree densities were measured 5 and 19 years after fire in permanent plots and related to pre-fire vegetation, site and fire characteristics. In stands that were greater than 75 years of age when they burned, recruitment density of conifers was significantly correlated with pre-fire species basal area, supporting the expectation of stand self-replacement as the most common successional pathway in these forests. In contrast, stands that were under 25 years of age at the time of burning had significantly reduced conifer recruitment, but showed no change in recruitment of trembling aspen (Populus tremuloides). As a result, young-burned stands had a much higher probability of regenerating to deciduous dominance than mature-burned stands, despite the dominance of both groups by spruce (Picea mariana and Picea glauca) and pine (Pinus contorta) before the fire. Once initiated, deciduous-dominated stands may be maintained across subsequent fire cycles through mechanisms such as low on-site availability of conifer seed, competition with the aspen canopy, and rapid asexual regeneration of aspen after fire. We suggest that climate-related increases in fire frequency could trigger more frequent shifts from conifer to deciduous-dominated successional trajectories in the future, with consequent effects on multiple ecosystem processes.  相似文献   

16.
Abstract. Post-fire succession was reconstructed for a sector located in the southern part of the Québec boreal forest. Forest composition for different periods since fire was evaluated using a stand initiation map together with ecological maps representing both site conditions and stand types. Nine fires covering at least 100 ha and representing a chronosequence of more than 230 yr were used. Although a relatively clear successional pattern from deciduous to coniferous composition relating to time-since-fire was observed, Pinus banksiana stands showed an erratic distribution not related to succession but possibly to the pre-fire stand composition. A comparison with forest cover maps produced after a recent spruce budworm outbreak, showed that succession toward coniferous dominance appeared to be interrupted by spruce budworm (Choristoneura fumiferana) outbreaks which, by killing Abies balsamea, lead to a mixed deciduous forest composition. A simple empirical model based on a negative exponential distribution of age classes was developed to evaluate how changes in the fire cycle would affect the composition of the forest mosaic. The transition between deciduous dominance and coniferous dominance occurs in a fire cycle > 200 yr. Although pure deciduous stands tend to disappear during long fire cycles, the proportion of mixed stands remains relatively constant. Prediction of the forest composition for longer fire cycles is complicated by the interaction between post-fire composition and stand vulnerability to spruce budworm outbreaks.  相似文献   

17.
Abstract. Data from three forest stands for the past 2000 yr show how the shade-intolerant species Pinus sylvestris and Betula pubescens maintain significant populations in the Swedish boreal landscape. Age structure data from a northern stand close to the range limits of Picea abies and Pinus complement a local pollen diagram, and reveal cyclic population fluctuations which can be related to periods of climatic stress and fire. Pollen data from two southern stands show that high fire frequencies in the past prevented the expansion of Picea populations. Reduction of the fire frequency during the last 200 yr has favoured Picea. A long time perspective reveals the population dynamics of long-lived species and indicates the controlling factors. Such knowledge permits assessment of the current status and likely future of forest stands.  相似文献   

18.
Abstract Revisitation studies enable long‐term changes in vegetation to be deciphered and insights into plant community succession to be gained. This is particularly important when assessing the effects of fire exclusion in ecosystems where fire is thought to have once been common. Using two adjacent coastal Banksia integrifolia forest stands in southern Victoria, Australia initially surveyed in 1975 by Hazard and Parsons, we document the changes that occurred in the stand structure between 1975 and 2000. Western Park (WP) has now remained unburnt for over 100 years while Cerberus Naval Base (CNB) was most recently burnt in 1942. Banksia integrifolia densities have decreased at both sites over the 25‐years period by an average of 42–77%, as have other coastal native shrubs (e.g. Leptospermum laevigatum, Leucopogon parviflorus). Trees at WP appear to have died due to old age while mortality at CNB is presumed to be due to stand thinning in response to intense competition for light. Successful recruitment by Banksia has been minimal; trees less than 9 cm girth over bark at breast height (GBBH) were absent at CNB while no trees <19 cm GBBH were observed at WP. The long‐term absence of disturbance such as fire is suspected to be one of the causes of regeneration failure of the stand at WP. Gap phase regeneration is not apparent in B. integrifolia and hence, long‐term succession to a more grassy community is likely when fire is excluded for long periods.  相似文献   

19.
Enright  N.J.  Goldblum  D. 《Plant Ecology》1999,144(1):71-82
Population size-structures, seed production, canopy seed storage (serotiny), and recruitment were investigated in relation to fire, drought and disease for a pair of co-occurring resprouting and non-sprouting shrub species from the genus Hakea (Proteaceae) in fire-prone Eucalyptus woodlands in western Victoria, Australia. The non-sprouter species, Hakea decurrens, showed faster height growth, higher seed production and higher seed viability than the resprouter, Hakea rostrata. Population size structures in stands up to 24 years since last fire showed no evidence of inter-fire recruitment for either species. Following a fire in 1990 in a mixed species stand 15–20 years old, the estimated number of viable seeds released from canopy-stored seed banks was approximately equal for both species. However, the rate of seedling establishment in the first year was about 10 times higher, and seedling suvivorship over the first 5 years was seven times higher, for the non-sprouter. Seedlings of Hakea decurrens and resprouts of Hakea rostrata began to produce seeds within three years of the last fire, while the few surviving seedlings of Hakea rostrata showed no evidence of reproductive maturity after six years. Inter-fire recruitment was recorded for the non-sprouter, Hakea decurrens, in the oldest stand (burned in 1967) between 24 and 28 years since last fire. This was associated with an increased rate of seed release from serotinous fruits due to the onset of high rates of adult plant mortality. High adult mortality and increased seed release correlated with increasing stand age, the occurrence of severe drought, and the likely presence of Phytophthora cinnamomi, a fungal pathogen which damages the root system, reducing water and nutrient uptake. There were no new recruits for the resprouter Hakea rostrata in this stand, but old plants continued to resprout from basal lignotubers and no mortality was observed. While recruitment of strongly serotinous shrub species is commonly described as being restricted to the immediate post-fire period, the present study illustrates that other events (e.g., senescence, drought, disease) can lead to recruitment of serotinous non-sprouters and may be important in the maintenance of populations during unusually long periods without fire.  相似文献   

20.
Abstract. In order to explain conifer species recruitment in Canada's southeastern boreal forest, we characterized conifer regeneration microsites and determined how these microsites vary in abundance during succession. Microsite abundance was evaluated in deciduous, mixed and coniferous stands along a 234-yr postfire chronosequence. Conifers were most often found in relatively well-illuminated microsites, devoid of litter, especially broad-leaf litter, and with a reduced cover of lower vegetation (< 50 cm tall). Although associated with moss-rich forest floor substrates, Abies balsamea was the most ubiquitously distributed species. Picea glauca and especially Thuja occidentalis seedlings were frequently found on rotten logs. Light measurements did not show differences among seedling species nor between stand types. The percentage cover of broad-leaf litter decreased significantly during succession. Also, rotten logs covered with moss occupied a significantly larger area in the mid-successionnal stands than in early successional deciduous or late successional coniferous stands. The results suggest that the presence of specific forest floor substrate types is a factor explaining low conifer recruitment under deciduous stands, conifer codominance in the mid-successional stage, and delayed Thuja recolonization after fire. Results also suggest that some facilitation mechanism is responsible for the observed directional succession.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号