首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gas exchange and dry-weight production in Opuntia ficus-indica, a CAM species cultivated worldwide for its fruit and cladodes, were studied in 370 and 750 μmol mol−1 CO2 at three photosynthetic photon flux densities (PPFD: 5, 13 and 20 mol m−2 d−1). Elevated CO2 and PPFD enhanced the growth of basal cladodes and roots during the 12-week study. A rise in the PPFD increased the growth of daughter cladodes; elevated CO2 enhanced the growth of first-daughter cladodes but decreased the growth of the second-daughter cladodes produced on them. CO2 enrichment enhanced daily net CO2 uptake during the initial 8 weeks after planting for both basal and first-daughter cladodes. Water vapour conductance was 9 to 15% lower in 750 than in 370 μmol mol−1 CO2. Cladode chlorophyll content was lower in elevated CO2 and at higher PPFD. Soluble sugar and starch contents increased with time and were higher in elevated CO2 and at higher PPFD. The total plant nitrogen content was lower in elevated CO2. The effect of elevated CO2 on net CO2 uptake disappeared at 12 weeks after planting, possibly due to acclimation or feedback inhibition, which in turn could reflect decreases in the sink strength of roots. Despite this decreased effect on net CO2 uptake, the total plant dry weight at 12 weeks averaged 32% higher in 750 than in 370 μmol mol−1 CO2. Averaged for the two CO2 treatments, the total plant dry weight increased by 66% from low to medium PPFD and by 37% from medium to high PPFD.  相似文献   

2.
Responses of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and phosphoenolpyruvate carboxylase (PEPCase) to an elevated atmospheric CO2 concentration were determined along with net CO2 uptake rates for the Crassulacean acid metabolism species Opuntia ficus-indica growing in open-top chambers. During the spring 13 months after planting, total daily net CO2 uptake of basal and first-order daughter cladodes was 28% higher at 720 than at 360 l CO2 l-1. The enhancement, caused mainly by higher CO2 assimilation during the early part of the night, was also observed during late summer (5 months after planting) and the following winter. The activities of Rubisco and PEPCase measured in vitro were both lower at the elevated CO2 concentration, particularly under the more favorable growth conditions in the spring and late summer. Enzyme activity in second-order daughter cladodes increased with cladode age, becoming maximal at 6 to 10 days. The effect ofelevated CO2 on Rubisco and PEPCase activity declined with decreasing irradiance, especially for Rubisco. Throughout the 13-month observation period, O. ficus-indica thus showed increased CO2 uptake when the atmospheric CO2 concentration was doubled despite lower activities of both carboxylating enzymes.  相似文献   

3.
In Agave salmiana Otto ex Salm. var. salmiana grown for 4½ months in open-top chambers, 55% more leaves unfolded and 52% more fresh mass was produced at 730 than at 370μmol CO2 mol?1. A doubling of the CO2 concentration also stimulated growth in another highly productive CAM species, Opuntia ficus-indica (L.) Miller, leading to earlier initial ion and 37% more daughter cladodes. Substantial net CO2 uptake occurred earlier in the afternoon and lasted longer through the night for A. salmiana at 730 than at 370μmol CO2 mol?1, resulting in 59% more total daily net CO2 uptake. The Michaelis constant (HCO3?) for PEPCasc was 15% lower for A. salmiana and 44% lower for O. ficus-indica when the CO2 concentration was doubled; the percentage of Rubisco in the activated state in vivo was on average 64% higher at the doubled CO2 concentration. Thus the substantial increases in net CO2 uptake and biomass production that occurred in these two CAM species when the ambient CO2 concentration was doubled resulted mainly from higher inorganic carbon levels for their carboxylating enzymes, a greater substrate affinity for PEPCase, and a greater percentage of Rubisco in the activated state.  相似文献   

4.
A method was devised for collecting phloem sap from the CAMspecies Opuntia ficus-indica using severed stylets of a scaleinsect (Dactylopius opuntiae), for which exudation could continuefor up to 5 d. For both basal (planted) cladodes and first-orderdaughter cladodes, the concentrations of sucrose and total aminoacids in the phloem exudate were virtually constant over 24-hperiods whereas the chlorenchyma osmolality had sizeable increasesduring the night under both current and doubled atmosphericCO2 concentrations. Sucrose, total amino acids, and potassiumaccounted for 56, 21, and 9%, respectively, of the osmolalityof the phloem exudate, which was about 350 mOsm at the two CO2concentrations; valine, isoleucine, leucine, tyrosine, glutamine,and lysine accounted for about 70% of the total amino acids.Doubling the CO2 concentration led to approx. 5% more sucrose,560% more mannose and 17% less amino acids in the phloem exudateand also significantly increased mannose, starch and glucomannanin the chlorenchyma. Atmospheric CO2 concentrations thus affectedvarious solute properties in the phloem and the chlorenchymaof O. ficus-indica.Copyright 1995, 1999 Academic Press Dactylopius opuntiae, Opuntia ficus-indica, cladode, CO2 concentrations, Crassulacean acid metabolism, phloem exudate  相似文献   

5.
Hylocereus undatus (Haworth) Britton and Rose growing in controlled environment chambers at 370 and 740 μmol CO2 mol?1 air showed a Crassulacean acid metabolism (CAM) pattern of CO2 uptake, with 34% more total daily CO2 uptake under the doubled CO2 concentration and most of the increase occurring in the late afternoon. For both CO2 concentrations, 90% of the maximal daily CO2 uptake occurred at a total daily photosynthetic photon flux density (PPFD) of only 10 mol m?2 day?1 and the best day/night air temperatures were 25/15°C. Enhancement of the daily net CO2 uptake by doubling the CO2 concentration was greater under the highest PPFD (30 mol m?2 day?1) and extreme day/night air temperatures (15/5 and 45/35°C). After 24 days of drought, daily CO2 uptake under 370 μmol CO2 mol?1 was 25% of that under 740 μmol CO2 mol?1. The ratio of variable to maximal chlorophyll fluorescence (Fy/Fm) decreased as the PPFD was raised above 5 mol m?2 day?1, at extreme day/night temperatures and during drought, suggesting that stress occurred under these conditions. Fv/Fm was higher under the doubled CO2 concentration, indicating that the current CO2 concentration was apparently limiting for photosynthesis. Thus net CO2 uptake by the shade-tolerant H. undatus, the photosynthetic efficiency of which was greatest at low PPFDs. showed a positive response to doubling the CO2 concentration, especially under stressful environmental conditions.  相似文献   

6.
Daughter cladodes (flattened stem segments) of Opuntia ficus-indica (L.) Miller at 14-18 d after appearance on the underlying basal cladodes were sinks, requiring carbohydrate import for growth. Import stopped at 25-36 d, and the daughter cladodes became sources at 27-28 d. The activities of Rubisco, PEPCase, and sucrose-Pi synthase as well as the chlorophyll content at 14 d were not less than those at 28 d, suggesting that photosynthetic or sucrose synthesis capacity was not limiting carbon assimilation for sink cladodes. Sucrose synthase (SS) activity was three times higher than that of alkaline invertase, indicating that SS is the major enzyme for cytoplasmic sucrose hydrolysis. The SS activity was correlated with cladode growth, the highest activity coinciding with the highest growth rate. The sink-to-source transition for daughter cladodes was correlated with increases in malate and H+ concentrations in the vacuoles of chlorenchyma cells, with 5-fold higher nocturnal malate production and 10-fold higher H+ concentration in 28- than in 14-d-old daughter cladodes. The vacuolar H+ increase during cladode development would lower cytoplasmic pH, which may trigger metabolic events affecting the sink-to-source transition.  相似文献   

7.
Opuntia ficus-indica, an extremely productive CAM plant cultivatedin many countries, was exposed to 36, 52, and 72–73 PaCO2 in field plots and open-top chambers. Initiation of newcladodes (stem segments) was monitored until the canopy closed,after which bimonthly harvests maintained the plants for oneyear at a cladode area per unit ground area that is optimalfor biomass production. Doubling the CO2 partial pressure slightlyincreased the number of first-order daughter cladodes growingon the basal (planted) cladodes after 3 months and nearly doubledthe number and area of second-order cladodes. When the C02 levelwas doubled, cladodes were 5% thicker after a few months and11 to 16% thicker after one year. Although the productivityenhancement by elevated C02 tended to decrease during the year,the annual above-ground dry-mass gain was 37 to 40% higher whenthe C02 level was doubled, reaching 65 tons hectare–1year–1 in a field plot. Well-watered cladodes at day/nightair temperatures of 25°C/15°C and a total daily photosyntheticphoton flux (PPF) of 15 mol m–2 d–1 in controlledenvironment chambers had 74% more net CO2 uptake over 24 h at73 Pa than at 37 Pa CO2. With doubled CO2, the percentage enhancementof net CO2 uptake increased as the PPF was lowered, as the temperaturewas raised, and during drought. Using an environmental productivityindex based on such factors, net CO2 uptake and hence productivityof O. ficus-indica can be predicted for elevated CO2 levelsand other variations accompanying global climate change. Key words: Crassulacean acid metabolism, environmental productivity index, gas exchange, global climate change, plant growth  相似文献   

8.
Abstract. The productivity of the prickly-pear cactus Opuntia ficus-indica, which is cultivated worldwide for its fruits and stem segments, was predicted based on the responses of its net CO2 uptake to soil water status, air temperature and photosynthetic photon flux density (PPFD). Each of these environmental factors was represented by an index with a maximum value of unity when that factor was not limiting net CO2 uptake over a 24-h period. The water index, the temperature index, and the PPFD index were determined for 87 sites in the contiguous United States using data from 189 weather stations and for 148 sites worldwide using data from 1464 weather stations. The product of these three indices, the environmental productivity index (EPI), was used to predict the productivity of O. ficus-indica under current climatic conditions and under those accompanying a possible increase in the atmospheric CO2 level to 650μumol mol?1. Sites with temperatures always above -10°C and hence suitable for prickly-pear cultivation numbered 37 in the United States and 110 worldwide; such sites increased by 43 and 5%, respectively, for the global warming accompanying the elevated CO2. Productivity of O. ficus-indica was at least 15 tonnes dry weight hectare?1 year?1, comparable to that of many agronomic crops, for 20 sites with temperatures always above -10°C in the contiguous United States and for 12 such sites worldwide under current climatic conditions; such sites increased by 85 and 117%, respectively, under the elevated CO2 condition, mainly because of direct effects of the atmospheric CO2 level on net CO2 uptake. In summary, simulations based on EPI indicate that O. ficus-indica may presently be advantageously cultivated over a substantial fraction of the earth's surface, such regions increasing markedly with a future doubling in atmospheric CO2 levels.  相似文献   

9.
Cui M  Miller PM  Nobel PS 《Plant physiology》1993,103(2):519-524
CO2 uptake, water vapor conductance, and biomass production of Opuntia ficus-indica, a Crassulacean acid metabolism species, were studied at CO2 concentrations of 370, 520, and 720 [mu]L L-1 in open-top chambers during a 23-week period. Nine weeks after planting, daily net CO2 uptake for basal cladodes at 520 and 720 [mu]L L-1 of CO2 was 76 and 98% higher, respectively, than at 370 [mu]L L-1. Eight weeks after daughter cladodes emerged, their daily net CO2 uptake was 35 and 49% higher at 520 and 720 [mu]L L-1 of C02, respectively, than at 370 [mu]L L-1. Daily water-use efficiency was 88% higher under elevated CO2 for basal cladodes and 57% higher for daughter cladodes. The daily net CO2 uptake capacity for basal cladodes increased for 4 weeks after planting and then remained fairly constant, whereas for daughter cladodes, it increased with cladode age, became maximal at 8 to 14 weeks, and then declined. The percentage enhancement in daily net CO2 uptake caused by elevated CO2 was greatest initially for basal cladodes and at 8 to 14 weeks for daughter cladodes. The chlorophyll content per unit fresh weight of chlorenchyma for daughter cladodes at 8 weeks was 19 and 62% lower in 520 and 720 [mu]L L-1 of CO2, respectively, compared with 370 [mu]L L-1. Despite the reduced chlorophyll content, plant biomass production during 23 weeks in 520 and 720 [mu]L L-1 of CO2 was 21 and 55% higher, respectively, than at 370 [mu]L L-1. The root dry weight nearly tripled as the C02 concentration was doubled, causing the root/shoot ratio to increase with CO2 concentration. During the 23-week period, elevated CO2 significantly increased CO2 uptake and biomass production of O. ficus-indica.  相似文献   

10.
Upon transfer from well-watered conditions to total drought, long-day-grown cladodes of Opuntia ficus-indica Mill. shift from full Crassulacean acid metabolism (CAM) to CAM-idling. Experiments using 14C-tracers were conducted in order to characterize the carbon-flow pattern in cladodes under both physiological situations. Tracer was applied by 14CO2 fumigations and NaH14CO3 injections during the day-night cycle. The results showed that behind the closed stomata, mesophyll cells of CAM-idling plants retained their full capacity to metabolize CO2 in light and in darkness. Upon the induction of CAM-idling the level of the capacity of phosphoenolpyruvate carboxylase (EC 4.1.1.31) was maintained. By contrast, malate pools decreased, displaying finally only a small or no day-night oscillation. The capacity of NADP-malic enzyme (EC 1.1.1.40) decreased in parallel with the reduction in malate pools. Differences in the labelling patterns, as influenced by the mode of tracer application, are discussed.Abbreviations CAM Crassulacean acid metabolism - PEP-Case phosphoenolpyruvate carboxylase  相似文献   

11.
Zhao  Tianhong  Shi  Yi  Huang  Guohong  Wang  Yan  Sun  Bei 《中国科学:生命科学英文版》2005,48(1):136-141

Effects of doubled CO2 and O3 concentration on Soybean were studied in open-top chambers (OTC). Under doubled CO2 concentration, grain yield and biomass increased, the SOD activity, vitamin C (Vc) and carotenoid (Car) content also increased; Superoxide (O2 ) generating rate decreased, relative conductivity and malondialdehyde (MDA) content significantly declined. But under doubled O3 concentration, the SOD activity, Vc and Car contents declined, resulting in imbalance of activated-oxygen production, enhanced O2 generating rate and accelerated process of lipid peroxidation and increase in MDA content and ion leakage of leaves. The final result was decreased grain yield and plant biomass. Interactive effects of doubled CO2 and O3 concentrations on soybean were mostly counteractive. However, the beneficial effects of concentration-doubled CO2 are more than compensate the negative effects imposed by doubled O3, and the latter in its turn partly counteracted the positive effects of the former.

  相似文献   

12.
Leaves of Alternanthera philoxeroides, alligator weed, developed at a photosynthetic photon flux density (PPFD, light energy at wavelengths of 400 to 700 nm) of 790 μmol sec−1 m−2 (High Light) had less surface area, were thicker, had a higher maximum Pn (net rate of CO2 uptake), and required a higher PPFD for saturation of Pn, than leaves developed at 160 μmol sec−1 m−2 (Low Light). Mesophyll thickness at Low Light was within 19% of maximum 2 days after emergence but at High Light, thickness increased 79% between 2 and 16 days after leaf emergence. The ratio of mesophyll surface area to leaf surface area decreased during development in both light treatments; the ratio, however, was over 70% greater in fully expanded High Light leaves than in Low Light leaves. Maximum Pn expressed on a leaf surface area basis was 158% greater in High Light leaves than in Low Light leaves, but Pn was only 58% greater when expressed on a mesophyll surface area basis. It was estimated that fully expanded High Light leaves fixed 72% more CO2 per leaf (Pn expressed per unit surface area times the total surface area per leaf) than fully expanded Low Light leaves when Pn was measured at the PPFD leaves expanded under. Both High and Low Light leaves would fix about the same amount of CO2 per leaf when Pn was measured at 160 μmol sec−1 m−2 because the larger surface area of the Low Light leaves offset small differences in Pn.  相似文献   

13.
Summary The growth and photosynethetic responses to atmospheric CO2 enrichment of 4 species of C4 grasses grown at two levels of irradiance were studied. We sought to determine whether CO2 enrichment would yield proportionally greater growth enhancement in the C4 grasses when they were grown at low irradiance than when grown at high irradiance. The species studied were Echinochloa crusgalli, Digitaria sanguinalis, Eleusine indica, and Setaria faberi. Plants were grown in controlled environment chambers at 350, 675 and 1,000 l 1-1 CO2 and 1,000 or 150 mol m-2 s-1 photosynthetic photon flux density (PPFD). An increase in CO2 concentration and PPFD significantly affected net photosynthesis and total biomass production of all plants. Plants grown at low PPFD had significantly lower rates of photosynthesis, produced less biomass, and had reduced responses to increases in CO2. Plants grown in CO2-enriched atmosphere had lower photosynthetic capacity relative to the low CO2 grown plants when exposed to lower CO2 concentration at the time of measurement, but had greater rate of photosynthesis when exposed to increasing PPFD. The light level under which the plants were growing did not influence the CO2 compensation point for photosynthesis.  相似文献   

14.
The levels of ten essential nutrients and Na in the chlorenchyma and subjacent parenchyma of ten species of cacti were measured along with the maximal rates of nocturnal acid accumulation. Nutrient levels varied considerably among species; also, soil differences between sites affected levels within Opuntia ficus-indica and O. chlorotica. Compared to most agronomic plants, chlorenchyma levels of Ca, Mg, and Mn in cacti tended to be higher and Na lower. Moreover, Ca tended to accumulate in the chlorenchyma with age. The strongest correlation between nutrient level and a metabolic process for the 11 elements tested was with N, where nocturnal acid accumulation tended to be greater when the N level in the chlorenchyma was higher (r2 = 0.39). Hydroponically grown seedlings of Carnegiea gigantea, Ferocactus acanthodes, and Trichocereus chilensis responded to N fertilization, reaching about 90% of their maximal growth rates when provided with N at 0.25 x that in Hoagland's solution (namely, 4 mm nitrate). Nocturnal acid accumulation was negatively correlated with the chlorenchyma Na (r2 = 0.32), which averaged only 28 ppm for O. ficus-indica (the root contained considerably more) and 234 ppm for the other species. Growth of seedlings was 50% reduced at about 100 mm NaCl for F. acanthodes, T. chilensis, and C. gigantea, while variations in P had a relatively small effect.  相似文献   

15.
Shoots of Opuntia ficus-indica (L.) Miller consist of a sequence of flattened stem segments (cladodes) in contact over only a small portion of their periphery. The maximum angular deflection for an upper terminal cladode under a weight equal to its own fresh mass applied perpendicular to its face increased from 5° to 9° as cladode length increased from 20 cm to 60 cm, consistent with an increase in mass proportional to length2.83. Just over half of the angular deflection of an upper cladode represented flexure of the cladode-cladode junction; the angular deflections averaged fourfold more for mass loadings perpendicular to the cladode face compared with those parallel to it. Compared with such static loading by mass, dynamic loading by wind for a 31-cm-long cladode led to a maximum angular deflection of only 0.13° at a wind speed of 1 m sec−1 and 2.3° at 10 m sec−1. Drought caused the angular deflections to increase 9% for 21-cm-long cladodes over a 90-day period and to decrease 45% for 44-cm-long cladodes. Increases in stem temperature from 0 C to 20 C increased angular deflections of a 27-cm-long cladode about 10%, with little further increase up to 50 C. Even though the cladodes were thin compared with stems of many perennials and the cladode-cladode junction comprised only about 3.5% of their peripheral area, the shoots of O. ficus-indica proved to be quite rigid, as angular deflections of cladodes were only slightly influenced by temperature and wind, were not markedly enhanced by drought, and were less than 10° under loading by a cladode's mass.  相似文献   

16.
Wong  Suan-Chin 《Plant Ecology》1993,(1):211-221
Cotton plants (Gossypium hirsutum L. var Deltapine 90) and radish plants (Raphanus sativus L var Round Red) were grown under full sunlight using a factorial combination of atmospheric CO2 concentrations (350 µmol mol-1 and 700 µmol mol-1) and humidities (35% and 90% RH at 32 °C during the day). Cotton plants showed large responses to increased humidity and to doubled CO2. In cotton plants, the enhanced dry matter yield due to doubled CO2 concentration was 1.6-fold greater at low humidity than at high humidity. Apart from the direct effect of elevated CO2 level on photosynthesis, the greater effect of doubled CO2 concentration on dry matter yield at low humidity was probably due to: (1) increased leaf water potential caused by reduction of transpiration resulting from the negative CO2 response of stomata to increased CO2 concentration the consequence being greater leaf area expansion; (2) reduction of CO2 assimilation rate at low humidity and normal CO2 concentration as a result of humidity response of stomata causing reduction of intercellular CO2 concentration. In contrast, apart from the very early stage of development, radish plants do not respond to increased humidity but had a relatively large response to doubled CO2 concentration. Furthermore, due to the determinate growth pattern as well as having a prominent storage root, the extra photoassimilate derived at doubled CO2 level is allocated to the storage root.Abbreviatios DAE day after emergence - LAD leaf areal density (leaf dry weight/leaf area) - LAR leaf area ratio (leaf area/plant dry weight) - NAR net assimilation rate - ci internal CO2 concentration - PPFD photosynthetic photon flux density - RGR relative growth rate - RLAGR relative leaf area growth rate - VPD vapour pressure deficit  相似文献   

17.
A multichannel automated chamber system was developed for continuous monitoring of CO2 exchange at multiple points between agro-ecosystem or soil and atmosphere. This system consisted of an automated chamber subsystem with a CO2 concentration analyzer and a data logging subsystem. Both subsystems were under the control of a programmable logic controller (PLC). The automated chamber subsystem contained 18 chambers (50 cm × 50 cm × 50 cm) and a compressor. The chamber lids were closed and can be automatically opened. During measurement, one of the 18 chambers was kept closed for three minutes for measuring and the other chambers were kept open to maintain the natural soil conditions to the maximum extent. Environmental variables were simultaneously measured using sensors and recorded by the data logger. The reliability of the multichannel automated chamber system was tested and the results showed that the turbulence of the fans had no significant effect on the CO2 exchange. The changes in the air and the temperature of soil and soil moisture inside the chambers, caused by the enclosure of the chambers, were not significant. The net ecosystem CO2 exchange for the wheat ecosystem was ?2.35 μmol·m?2·s>?1 and the soil respiration was 3.87 μmol·m?2·s>?1 in the wheat field, and 6.61 μmol·m?2·s>?1 in the apple orchard.  相似文献   

18.
Phloem versus xylem water and carbon flow between a developingdaughter cladode (flattened stem segment) and the underlyingbasal cladode of Opuntia ficus-indica was assessed using netCO2 uptake, transpiration, phloem sap concentration, and waterpotential of both organs as well as phloem and apoplastic tracers.A 14-d-old daughter cladode was a sink organ with a negativedaily net CO2 uptake; its water potential was higher than thatof the underlying basal cladode, implicating a non-xylem pathwayfor the water needed for growth. Indeed, the relatively dilutephloem sap (7.44% dry weight) of a basal cladode can supplyall the water (7.1 gd–1) along with photosynthate neededfor the growth of a 14-d-old daughter cladode; about 3% of theimported water flowed back to the basal cladode via the xylem.In contrast, a 28-d-old daughter cladode was a source organwhose water potential was lower than that of its basal cladode,so the xylem can supply the water needed (25.7 g d–1)for its growth; about 6% of the imported water flowed back tothe basal cladode along with photosynthate via the phloem. Thephloem tracer carboxyfluorescein occurred in the phloem of 14-d-olddaughter cladodes after its precursor was applied to basal cladodes.When applied to basal cladodes, the apoplastic tracers sulphorhodamineG (SR) and trisodium 8-hydroxy-1,3,6-pyrenetrisulphonate (PTS)failed to move into 14-d-old daughter cladodes within 5 h, butmoved into 28-d-old daughter cladodes within 2 h. SR and PTSmoved into basal cladodes within 2 h when applied to 14-d-olddaughter cladodes, but not within 5-6 h when applied to 28-d-olddaughter cladodes. The tracer experiments therefore confirmedthe patterns of water flow determined using water and carbonbudgets. Key words: Carboxyfluorescein, phloem-xylem water flow, source-sink water relations, suiphorhodamine G, trisodium 8-hydroxy-1,3,6-pyrenetnsulphonate  相似文献   

19.
Terminal vertical cladodes (flattened stems) of Opuntia ficus-indica growing in widely separated locations were nonrandomly oriented. On plantations at 33°S latitude in Chile individual cladodes tended to orient in the same direction as the planted cladodes on which they developed. However, after 2 years unshaded new cladodes tended to face east-west. Terminal cladodes also tended to face east-west for irrigated O. ficus-indica in California (at 34°N) and in Israel (32 to 33°N), but cladodes developing in the winter tended to face north-south. Except for the residual effect of initial planting direction, the observed patterns tended to maximize the interception of photosynthetically active radiation (PAR). Specifically, east-west cladode orientation would maximize PAR interception, except for cladodes developing near the winter solstice at latitudes more than 27° from the equator. Nocturnal acidity increases and hence productivity would generally be light-limited, since the nocturnal increase in acidity was 90% saturated for a total daytime PAR of 24 mol m–2 day–1 and the PAR received on vertical surfaces is usually less than this. Topographical features can modify the orientation patterns, since at a site where PAR was considerably blocked by surrounding mountains the maximal nocturnal acidity increases and peak in cladode orientation occurred 20° from facing east–west. Laboratory studies showed that developing cladodes oriented toward a horizontal light and were rotated an average of 16° in a direction that increased PAR interception compared to the cladodes on which they developed. Such phototropic responses, the higher productivity of favorably oriented cladodes, and the tendency to orient similarly to the underlying cladode presumably accounts for the overall orientation patterns observed, where up to four times more cladodes may face in a particular direction than at right angles to it.  相似文献   

20.

The marine diatom Thalassiosira pseudonana grown under air (0.04% CO2) and 1 and 5% CO2 concentrations was evaluated to determine its potential for CO2 mitigation coupled with biodiesel production. Results indicated that the diatom cultures grown at 1 and 5% CO2 showed higher growth rates (1.14 and 1.29 div day−1, respectively) and biomass productivities (44 and 48 mgAFDWL−1 day−1) than air grown cultures (with 1.13 div day−1 and 26 mgAFDWL−1 day−1). The increase of CO2 resulted in higher cell volume and pigment content per cell of T. pseudonana. Interestingly, lipid content doubled when air was enriched with 1–5% CO2. Moreover, the analysis of the fatty acid composition of T. pseudonana revealed the predominance of monounsaturated acids (palmitoleic-16:1 and oleic-18:1) and a decrease of the saturated myristic acid-14:0 and polyunsaturated fatty acids under high CO2 levels. These results suggested that T. pseudonana seems to be an ideal candidate for biodiesel production using flue gases.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号