首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The leaf, stem, root, tuber and dropper anatomy of the orchid tribe Diseae (including the subtribes Satyriinae, Disinae, Brownlecinac, Huttonaeinae and Coryciinae) is reviewed. The study is largely based on investigations of 123 species, and data from several previous publications have also been incorporated. Two characters were identified as being taxonomically valuable: (1) the presence of sclerenchyma caps associated with leaf vascular bundles, and (2) the degree of dissection of the siphonostele of the tuber (‘polystelic’ or ‘monostelic’). The phylogenetic analysis shows that anatomical characters do not change the basic structure of a cladogram that is based on morphological characters. The taxa of Diseae are discussed on the basis of anatomical data. Subtribes Satyriinae (excluding the anatomically unusual genus Pachites), Brownleeinae, Huttonaeinae, and Coryciinae are uniform in. critical anatomical characters. However, subtribe Disinae is rather diverse in vegetative anatomy. Disa sect. Micranthae differs from the rest of the genus in its leaf anatomy. The occurrence of foliar sclerenchyma bundle caps and ‘polystelic’ tubers supports the incorporation of Herschelianthe in Disa sect. Stenocarpa.  相似文献   

2.
The leaf, stem, root, tuber and dropper anatomy of the orchid tribe Diseae (including the subtribes Satyriinae, Disinae, Brownlecinac, Huttonaeinae and Coryciinae) is reviewed. The study is largely based on investigations of 123 species, and data from several previous publications have also been incorporated. Two characters were identified as being taxonomically valuable: (1) the presence of sclerenchyma caps associated with leaf vascular bundles, and (2) the degree of dissection of the siphonostele of the tuber ('polystelic' or 'monostelic'). The phylogenetic analysis shows that anatomical characters do not change the basic structure of a cladogram that is based on morphological characters. The taxa of Diseae are discussed on the basis of anatomical data. Subtribes Satyriinae (excluding the anatomically unusual genus Pachites), Brownleeinae, Huttonaeinae, and Coryciinae are uniform in. critical anatomical characters. However, subtribe Disinae is rather diverse in vegetative anatomy. Disa sect. Micranthae differs from the rest of the genus in its leaf anatomy. The occurrence of foliar sclerenchyma bundle caps and 'polystelic' tubers supports the incorporation of Herschelianthe in Disa sect. Stenocarpa.  相似文献   

3.
The oil-secreting orchids of southern Africa belong to the sub-tribe Coryciinae within Diseae. A phylogeny of Diseae is inferred using sequence data from all genera in the tribe, with an emphasis on resolving generic classifications within Coryciinae. Nuclear (ITS) and plastid (trnLF and matK) gene region sequences were analysed for 79 ingroup taxa and three outgroup taxa. Coryciinae is confirmed to be diphyletic, with Disperis and Coryciinae sensu stricto (s.s.) forming separate monophyletic clades. The current genera Corycium and Pterygodium are not monophyletic according to our analysis and we propose a subdivision of Coryciinae s.s. into 10 monophyletic clades including three monotypic groups. Previous generic classifications of Coryciinae s.s. have been hampered by convergent evolution of floral parts, a consequence of few pollinator species and limited pollinia attachment sites in the oil-bee pollination system common to this group.  相似文献   

4.
Sequence data from the intron and spacer of the trnL-F chloroplast region elucidate the phylogenetic relationships of the tribe Diseae (Orchidoideae: Orchidaceae). Within Diseae, 41 species of Disa, two of Brownleea, three of Satyrium, and two of Corycium were included, with five species of Habenaria sensu lato (Orchideae) and one epidendroid as outgroups. The sequences revealed substitutions and considerable length variation, due mainly to the presence of repeat motifs. Phylogenetic analysis using parsimony revealed five distinct clades. The branching order of the five weakly supported the paraphyly of Diseae, with the successive divergence of Brownleea, Corycium, Habenaria, Satyrium, and Disa. Within the monophyletic Disa, three main groupings appeared, two strongly supported clades representing sect. Racemosae and sect. Coryphaea and the third grouping containing several clades currently grouped into sections based on morphological phylogenies. Some discrepancies between the molecular phylogeny and the phylogeny based on morphological characters may require reevaluation of some of the morphological characters. The presence of different numbers of repeat motifs, both among different taxa and within taxa, indicates that these characters may be phylogenetically informative at the population level.  相似文献   

5.
We present major cladistic analyses of the Lecanoromycetes (Ascomycota, Fungi) focusing on the Lecanorales suborder Peltigerineae, a group including the majority of the cyanobacterial lichens. DNA sequence datasets from the mtSSU and nLSU rDNA were produced and analyzed with maximum parsimony and parsimony jackknifing. The results suggest that the Lecanorales is monophyletic. The Peltigerineae (including Placynthiaceae, Peltigeraceae, Lobariaceae, Nephromataceae, Collemataceae, Coccocarpiaceae, Pannariaceae, and Massalongia) is likewise a monophyletic group. The Lobariaceae, and Lobaria in the traditional sense, are strongly supported as monophyletic, in contrast to results of other investigations based on nITS rDNA data. Pseudocyphellaria may be paraphyletic. Placynthiaceae is the sister group to the Collemataceae and Collema may be nested within Leptogium. Pannariaceae in the traditional sense is not a monophyletic group. Finally, the Lecanorineae is nonmonophyletic in all analyses, and the Cladoniineae and Teloschistineae are nested within the Lecanorineae in the combined analysis.  相似文献   

6.
7.
A high diversity of pleurostomatid ciliates has been discovered in the last decade, and their systematics needs to be improved in the light of new findings concerning their morphology and molecular phylogeny. In this work, a new genus, Protolitonotus gen. n., and two new species, Protolitonotus magnus sp. n. and Protolitonotus longus sp. n., were studied. Furthermore, 19 novel nucleotide sequences of SSU rDNA, LSU rDNA and ITS1‐5.8S‐ITS2 were collected to determine the phylogenetic relationships and systematic positions of the pleurostomatid ciliates in this study. Based on both molecular and morphological data, the results demonstrated that: (i) as disclosed by the sequence analysis of SSU rDNA, LSU rDNA and ITS1‐5.8S‐ITS2, Protolitonotus gen. n. is sister to all other pleurostomatids and thus represents an independent lineage and a separate family, Protolitonotidae fam. n., which is defined by the presence of a semi‐suture formed by the right somatic kineties near the dorsal margin of the body; (ii) the families Litonotidae and Kentrophyllidae are both monophyletic based on both SSU rDNA and LSU rDNA sequences, whereas Amphileptidae are non‐monophyletic in trees inferred from SSU rDNA sequences; and (iii) the genera Loxophyllum and Kentrophyllum are both monophyletic, whereas Litonotus is non‐monophyletic based on SSU rDNA analyses. ITS1‐5.8S‐ITS2 sequence data were used for the phylogenetic analyses of pleurostomatids for the first time; however, species relationships were less well resolved than in the SSU rDNA and LSU rDNA trees. In addition, a major revision to the classification of the order Pleurostomatida is suggested and a key to its families and genera is provided.  相似文献   

8.
The internal transcribed spacer (ITS1, 5.8S rDNA, and ITS2) region of nuclear ribosomal DNA (nrDNA) was sequenced from 53 species, which represent most of the living species diversity in the genus Phalaenopsis (Orchidaceae). A phylogeny was developed for the genus based on the neighbor-joining and maximum parsimony analyses of molecular data. Results of these analyses provided support for the monophyly of the genus Phalaenopsis and concurred in that the genera Doritis and Kingidium should be treated as being parts of the genus Phalaenopsis as suggested by Christenson (2001). Within the genus Phalaenopsis, neither subgenera Aphyllae nor Parishianae were monophyletic, and they were highly clustered with subgenus Proboscidioides plus sections Esmeralda and Deliciosae of subgenus Phalaenopsis based on ITS data. Those species also have the same characters of morphology of four pollinia and similar biogeographies. Furthermore, neither subgenus Phalaenopsis nor Polychilos was monophyletic. Within the subgenus Phalaenopsis, only section Phalaenopsis was highly supported as being monophyletic. As for the subgenus Polychilos, only section Polychilos was moderately supported as being monophyletic. In conclusion, the present molecular data obtained from the ITS sequence of nrDNA of the genus Phalaenopsis provide valuable information for elucidating the phylogeny of this genus.  相似文献   

9.
A phylogeny of green lacewings (Neuroptera: Chrysopidae) using anchored hybrid enrichment data is presented. Using this phylogenomic approach, we analysed 137 kb of sequence data (with < 10% missing) for 82 species in 50 genera of Chrysopidae under Bayesian and maximum likelihood criteria. We recovered a strongly supported tree topologically congruent with recently published phylogenies, especially relationships amongst higher‐level groups. The subfamily Nothochrysinae was recovered as paraphyletic, with one clade sister to the rest of Chrysopidae, and the second clade containing the nominal genus (Nothochrysa Navás) as sister to the subfamily Apochrysinae. Chrysopinae was recovered as a monophyletic with the monobasic Nothancylini tribe n. sister to the rest of the subfamily. Leucochrysini was recovered sister to Belonopterygini, and Chrysopini was rendered paraphyletic with respect to Ankylopterygini. Divergence times and diversification estimates indicate a major shift in rate in ancestral Chrysopini at the end of the Cretaceous, and the extensive radiation of Chrysopinae, the numerically dominant clade of green lacewings, began in the Mid‐Paleogene (c. 45 Ma).  相似文献   

10.
Ceanothus comprises ~55 morphologically and ecologically diverse species of woody perennials endemic to North America. Interpretations of the natural history of Ceanothus have served as a general model of evolution for woody perennials with simple entomophilous pollination systems, but these interpretations lacked explicit phylogenetic context. We used cladistic analysis of sequences of the chloroplast-encoded matK and the internal transcribed spacers (ITS) and 5.8S coding region of nuclear ribosomal DNA (nrDNA) to reconstruct the phylogeny of Ceanothus. The nuclear and organellar phylogenies exhibited very low levels of both topological and character congruence. Subgenera Ceanothus and Cerastes are monophyletic sister taxa in both phylogenies, but both data sets suffer from a lack of resolution below the level of subgenus. Lack of taxonomic congruence between the two data sets may be a result of introgression and/or lineage sorting. The ITS tree was accepted as the better estimate of a species phylogeny for Ceanothus, on the assumption that nuclear markers are less prone to introgression. Three of five polytypic species in the ITS data set were paraphyletic, and four of six polytypic species in the matK data set were paraphyletic. This study demonstrates the degree to which matched independent data sets can produce conflicting summaries of evolutionary history.  相似文献   

11.
A ribosomal DNA region, including the entire 5.8S RNA gene and the internal transcribed spacers ITS 1 and ITS 2, was used for studying the phylogeny ofSalicaceae and the relationship betweenSalicaceae andFlacourtiaceae. The length of the ITS regions withinSalicaceae andFlacourtiaceae was similar to that found in other angiosperms. The GC content of both ITS regions was high, varying 62.7-72.2%. The most parsimonious tree clusters the wind-pollinatedChosenia bracteosa among theSalix species, suggesting that it should be included in the genusSalix. The grouping withinSalix leaves subg.Salix as paraphyletic, for which reason the subgeneric division is questionable.Populus was monophyletic and formed a sister group toSalix. The interspecific variation of the ITS sequences was very small inSalicaceae, which is in contradiction to the age of the group according to the evidence from fossil data.Idesia polycarpa fromFlacourtiaceae shows great sequence similarity withSalicaceae, but the analysis of 5.8S rDNA supports monophyly of the four species ofFlacourtiaceae sampled for this study.  相似文献   

12.
The phylogeny of selected genera from four subfamilies of fungus gnats (Diptera: Mycetophilidae) – Manotinae, Leiinae, Sciophilinae and Gnoristinae (including Metanepsiini) – is reconstructed based on the combined analysis of five mitochondrial (12S, 16S, COI, COII, cytB) and two nuclear (28S, ITS2) gene markers. Results of the different analyses all support Manotinae as a monophyletic group, with Leiinae as the sister group. Allactoneura DeMeijere is nested in the monophyletic and strongly supported clade of Leiinae. The tribe Metanepsiini is revealed as paraphyletic and the genera Metanepsia Edwards and Chalastonepsia Søli do not appear to be closely related. The genera Docosia Winnertz, Ectrepesthoneura Enderlein, Novakia Strobl and Syntemna Winnertz were placed with a group of genera included traditionally in the Gnoristinae. The monophyly of Dziedzickia Johannsen and Phthinia Winnertz is not supported. The genera of Sciophilinae (excluding Paratinia Mik but including Eudicrana Loew) form a monophyletic group in the Bayesian model.  相似文献   

13.
 Phylogenetic relationships of the three genera of the family Altingiaceae, i.e., Altingia, Liquidambar and Semiliquidambar, based on matK sequences and the intergenic spacer between the psaA and ycf3 genes (PY-IGS) of cpDNA, and on the internal transcribed spacer (ITS) of nrDNA were studied. Phylogenetic trees based on the three data sets (matK, PY-IGS and ITS) were generated using Hamamelis japonica and Mytilaria laosensis (Hamamelidaceae), Cercidiphyllum japonicum (Cercidiphyllaceae), and Daphniphyllum calycinum (Daphniphyllaceae) as outgroups. The partition-homogeneity tests indicated that the three data sets and the combined data are homogeneous. A combined analysis also generated a strongly supported phylogeny. The phylogenetic trees show that the North American and western Asian species, L. styraciflua and L. orientalis, respectively, form a monophyletic group which is sister to the clade including all Asian species in the family. The genus Liquidambar is paraphyletic with Altingia and Semiliquidambar nested within. Phylogenetic analyses of the molecular data indicate that taxonomic reexamination of the generic delimitation in the Altingiaceae is needed. Received December 20, 2000 Accepted June 25, 2001  相似文献   

14.
Nemeth  S.  Mai  T.T.  Zechman  F.W. 《Journal of phycology》2000,36(S3):51-52
Phylogenetic hypotheses for the pantropical marine green algal genus, Caulerpa , were inferred based on analyses of nuclear-encoded rDNA internal transcribed spacer (ITS) sequences. Results of these analyses were used to assess the correspondence between rDNA phylogeny and traditional sectional taxonomy, to identify synapomorphic morphological characters (including assimilator morphology and chloroplast ultrastructure), and to examine marine biogeographic hypotheses for the genus. Ribosomal DNA ITS sequences were aligned for thirty-three species and intraspecific taxa of Caulerpa. Results indicate limited correspondence between phylogeny and sectional taxonomy for the genus, (e.g., the sections Filicoideae and Sedoideae were not monophyletic). In contrast, chloroplast morphology could be mapped to the tree topology with limited homoplasy. Pantropical isolates of the filicoidean species, Caulerpa sertularioides and Caulerpa mexicana each formed monophyletic groups. Caulerpa reyesii was included as a derived taxon within the Caulerpa taxifolia clade, suggesting that these species were conspecific and affirmed the lack of correspondence between phylogeny and assimilator morphology. Isolates and various intraspecific taxa of Caulerpa racemosa did not form a monophyletic group. Instead, these taxa formed a heterogeneous assemblage with other sedoidean and filicoidean taxa. Within the C. sertularioides clade, Caribbean and Atlantic isolates formed a basal paraphyletic group, whereas eastern and western Pacific isolates formed a more derived monophyletic group. Therefore, these results are not consistent with an Indo-West Pacific origin of this species.  相似文献   

15.
In the present study, we investigated the intrageneric and intergeneric phylogenetic relationships of the heterotrophic marine dinoflagellate genus Protoperidinium. Using single‐cell polymerase chain reaction methods, we determined small subunit ribosomal RNA gene sequences for 10 Protoperidinium species belonging to four sections and two subgenera. Phylogenetic trees were constructed using maximum parsimony, neighbor joining and maximum likelihood methods. We found intraspecific variability of small subunit rDNA sequences in Protoperidinium conicum (Gran) Balech, Protoperidinium crassipes (Kofoid) Balech and Protoperidinium denticulatum (Gran et Braarud) Balech, but not in other species. The small subunit rDNA phylogeny revealed that the genus is monophyletic, but its phylogenetic position within the Dinophyceae could not be determined because of ambiguous basal topologies. Within the genus Protoperidinium, species of the subgenus Archaeperidinium with two anterior intercalary plates (2a) were shown to be monophyletic, but species of the subgenus Protoperidinium with three anterior intercalary plates (3a) were resolved as paraphyletic. The sections Avellana, Divergentia and Protoperidinium were shown to be monophyletic, while the section Conica was paraphyletic. Based on the trees obtained in the present study, most of the traditionally defined sections are supported by molecular phylogeny. It was also indicated that the section Avellana evolved from one of the Conica‐type dinoflagellates.  相似文献   

16.
The phylogeny of Syllidae is assessed in a combined analysis of molecular data from nuclear 18S rDNA and mitochondrial 16S rDNA and cytochrome c oxidase subunit I. In total, 103 terminal taxa are examined: 88 syllids in the four classical subfamilies Eusyllinae, Exogoninae, Syllinae and Autolytinae, as well as 15 outgroup taxa from Phyllodocida and Eunicida. Maximum parsimony analysis of the combined data set indicates that Syllidae, as currently delineated, is monophyletic, though not with very high support values. Astreptosyllis Kudenov & Dorsey, 1982, Streptosyllis Webster & Benedict, 1884 and SyllidesÖrsted, 1845 comprise a monophyletic group well differentiated from the rest of the Syllidae. The subfamilies Autolytinae and Syllinae are monophyletic. Exogoninae is monophyletic, although not well supported, and Eusyllinae is clearly paraphyletic. Results corroborate previous studies about the evolution of reproductive modes in that epigamy is the plesiomorphic condition and schizogamy appeared independently in Autolytinae and Syllinae. © The Willi Hennig Society 2007.  相似文献   

17.
The Dasycladales is an ancient order of tropical benthic marine green algae, unique in their radially arranged unicellular thalli and well‐preserved fossil record due to extensive calcification of the thallus. The inference of an accurate phylogeny for the Dasycladales is important in order to better understand stratigraphy, character evolution, and classification. Previous analyses (rbcL and 18S rDNA) suggested that the Family Acetabulariaceae is monophyletic, but that the Family Dasycladaceae is a basal paraphyletic assemblage. However, the two data sets disagreed regarding genus‐ and species‐level relationships within the Dasycladales. For example, the placement of the genera, Halicoryne, Bornetella and Cymopolia were incongruent. Given the conflicting results of these previous analyses, the current project examined a third highly conserved nuclear‐encoded gene, 26S rDNA. Aligned 26S rDNA sequences were analyzed with parsimony and model‐based methods and compared to previous results based on18S and rbcL sequences. Family‐level relationships based on 26S rDNA were congruent with previous studies: the Acetabulariaceae is monophyletic while the Dasycladaceae is paraphyletic. In addition, acetabulariacean genera are not monophyletic, suggesting that the presence of a corona inferior or calcification of gametes may not be appropriate to define genera. Within the Dasycladaceae, the basal position of Cymopolia is supported by 26S rDNA, a result congruent with rbcL and stratigraphy but not with 18S data. These results will be discussed in the context of morphological character evolution, fossil stratigraphy and family, tribal and generic relationships among these living algal fossils. Supported in part by NSF grant DEB‐0128977 to FWZ.  相似文献   

18.
In most zoological textbooks, Platyhelminthes are depicted as an early- emerging clade forming the likely sister group of all the other Bilateria. Other phylogenetic proposals see them either as the sister group of most of the Protostomia or as a group derived from protostome coelomate ancestors by progenesis. The main difficulty in their correct phylogenetic placing is the lack of convincing synapomorphies for all Platyhelminthes, which may indicate that they are polyphyletic. Moreover, their internal phylogenetic relationships are still uncertain. To test these hypotheses, new complete 18S rDNA sequences from 13 species of "Turbellaria" have been obtained and compared to published sequences of 2 other "Turbellaria," 3 species of parasitic Platyhelminthes, and several diploblastic and deuterostome and protostome triploblastics. Maximum-parsimony, maximum-likelihood, and neighbor-joining methods were used to infer their phylogeny. The results show the order Catenulida to form an independent early- branching clade and emerge as a potential sister group of the rest of the Bilateria, while the rest of Platyhelminthes (Rhabditophora), which includes the parasites, form a clear monophyletic group closely related to the protostomes. The order Acoela, morphologically considered as candidates to be ancestral, are shown to be fast-clock organisms for the 18S rDNA gene. Hence, long-branching of acoels and insufficient sampling of catenulids and acoels leave their position still unresolved and call for further studies. Within the Rhabditophora, our analyses suggest (1) a close relationship between orders Macrostomida and Polycladida, forming a clear sister group to the rest of orders; (2) that parasitic platyhelminthes appeared early in the evolution of the group and form a sister group to a still-unresolved clade made by Nemertodermatida, Lecithoepitheliata, Prolecithophora, Proseriata, Tricladida, and Rhabdocoela; and (3) that Seriata is paraphyletic.   相似文献   

19.
Abstract A molecular phylogeny of the fungus gnat family Mycetophilidae based on the nuclear 18S, 28S, and the mitochondrial 16S rRNA genes is presented. The total alignment included 58 taxa and 1704 bp. The family was recovered as monophyletic in parsimony and Bayesian analyses. In the Bayesian analysis, Mycetophilinae and its two tribes, Mycetophilini and Exechiini, were monophyletic with good statistical support. The subfamily Mycomyinae was found consistently in a sister‐group relationship to Mycetophilinae. Gnoristinae was rendered paraphyletic, subtending Mycomyinae and Mycetophilinae. Within Gnoristinae, the genera Coelosia Winnertz, Boletina Staeger, Gnoriste Meigen group with Docosia Winnertz, usually considered to be a member of Leiinae. No support was found for the monophyly of the subfamilies Sciophilinae and Leiinae.  相似文献   

20.
Siphonaptera (fleas) is a highly specialized order of holometabolous insects comprising ~2500 species placed in 16 families. Despite a long history of extensive work on flea classification and biology, phylogenetic relationships among fleas are virtually unknown. We present the first formal analysis of flea relationships based on a molecular matrix of four loci (18S ribosomal DNA, 28S ribosomal DNA, Cytochrome Oxidase II, and Elongation Factor 1‐alpha) for 128 flea taxa from around the world representing 16 families, 25 subfamilies, 26 tribes, and 83 flea genera with eight outgroups. Trees were reconstructed using direct optimization and maximum likelihood techniques. Our analysis supports Tungidae as the most basal flea lineage, sister group to the remainder of the extant fleas. Pygiopsyllomorpha is monophyletic, as are the constituent families Lycopsyllidae, Pygiopsyllidae, and Stivaliidae, with a sister group relationship between the latter two families. Macropsyllidae is resolved as sister group to Coptopsyllidae with moderate nodal support. Stephanociricidae is monophyletic, as are the two constituent subfamilies Stephanocircinae and Craneopsyllinae. Vermipsyllidae is placed as sister group to Jordanopsylla. Rhopalopsyllidae is monophyletic as are the two constituent subfamilies Rhopalopsyllinae and Parapsyllinae. Hystrichopsyllidae is paraphyletic with Hystrichopsyllini placed as sister to some species of Anomiopsyllini and Ctenopariini placed as sister to Carterettini. Ctenophthalmidae is grossly paraphyletic with the family broken into seven lineages dispersed on the tree. Most notably, Anomiopsyllini is paraphyletic. Pulicidae and Chimaeropsyllidae are both monophyletic and these families are sister groups. Ceratophyllomorpha is monophyletic and includes Ischnopsyllidae, Ceratophyllidae, and Leptopsyllidae. Leptopsyllidae is paraphyletic as are its constituent subfamilies Amphipsyllinae and Leptopsyllinae and the tribes Amphipsyllini and Leptopsyllini. Ischnopsyllidae is monophyletic. Ceratophyllidae is monophyletic, with a monophyletic Dactypsyllinae nested within Ceratophyllinae, rendering the latter group paraphyletic. Mapping of general host associations on our topology reveals an early association with mammals with four independent shifts to birds. © The Willi Hennig Society 2008.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号