首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
AtC401 is an Arabidopsis homolog of PnC401 that is related to photoperiodic induction of flowering in Pharbitis nil. These genes show free-running rhythms. To study the free-running rhythm of AtC401, we fused a firefly luciferase reporter to the AtC401 promoter and transformed it into Arabidopsis plants. The observed bioluminescence oscillated under continuous light and continuous dark only with sucrose supplementation. The free-running period of bioluminescence was temperature-compensated between 22 degrees C and 30 degrees C. Light-pulse experiments under continuous darkness produced a phase-response curve typical of circadian rhythms. We conclude that rhythmic expression of AtC401 is controlled by a circadian oscillator.  相似文献   

3.
4.
The circadian clock acts as the timekeeping mechanism in photoperiodism. In Arabidopsis thaliana, a circadian clock-controlled flowering pathway comprising the genes GIGANTEA (GI), CONSTANS (CO), and FLOWERING LOCUS T (FT) promotes flowering specifically under long days. Within this pathway, GI regulates circadian rhythms and flowering and acts earlier in the hierarchy than CO and FT, suggesting that GI might regulate flowering indirectly by affecting the control of circadian rhythms. We studied the relationship between the roles of GI in flowering and the circadian clock using late elongated hypocotyl circadian clock associated1 double mutants, which are impaired in circadian clock function, plants overexpressing GI (35S:GI), and gi mutants. These experiments demonstrated that GI acts between the circadian oscillator and CO to promote flowering by increasing CO and FT mRNA abundance. In addition, circadian rhythms in expression of genes that do not control flowering are altered in 35S:GI and gi mutant plants under continuous light and continuous darkness, and the phase of expression of these genes is changed under diurnal cycles. Therefore, GI plays a general role in controlling circadian rhythms, and this is different from its effect on the amplitude of expression of CO and FT. Functional GI:green fluorescent protein is localized to the nucleus in transgenic Arabidopsis plants, supporting the idea that GI regulates flowering in the nucleus. We propose that the effect of GI on flowering is not an indirect effect of its role in circadian clock regulation, but rather that GI also acts in the nucleus to more directly promote the expression of flowering-time genes.  相似文献   

5.
6.
Biological rhythms are ubiquitous in eukaryotes, and the best understood of these occur with a period of approximately a day – circadian rhythms. Such rhythms persist even when the organism is placed under constant conditions, with a period that is close, but not exactly equal, to 24 h, and are driven by an endogenous timer – one of the many 'biological clocks'. In plants, research into circadian rhythms has been driven forward by genetic experiments using Arabidopsis . Higher plant genomes include a particularly large number of genes involved in metabolism, and circadian rhythms may well provide the necessary coordination for the control of these – for example, around the diurnal rhythm of photosynthesis – to suit changing developmental or environmental conditions. The endogenous timer must be flexible enough to support these requirements. Current research supports this notion most strongly for the input pathway, in which multiple photoreceptors have been shown to mediate light input to the clock. Both input and output components are now related to putative circadian oscillator mechanisms by sequence homology or by experimental observation. It appears that the pathways linking some domains of the basic clock model may be very short indeed, or the mechanisms of these domains may overlap. Components of the first plant circadian output pathway to be identified unequivocally will help to determine exactly how many output pathways control the various phases of overt rhythms in plants.  相似文献   

7.
8.
9.
Recent intensive studies have begun to shed light on the molecular mechanisms underlying the plant circadian clock in Arabidopsis thaliana. During the course of these previous studies, the most powerful technique, elegantly adopted, was a real-time bioluminescence monitoring system of circadian rhythms in intact plants carrying a luciferase (LUC) fusion transgene. We previously demonstrated that Arabidopsis cultured cells also retain an ability to generate circadian rhythms, at least partly. To further improve the cultured cell system for studies on circadian rhythms, here we adopted a bioluminescence monitoring system by establishing the cell lines carrying appropriate reporter genes, namely, CCA1::LUC and APRR1::LUC, with which CCA1 (CIRCADIAN CLOCK-ASSOCIATED1) and APRR1 (or TOC1) (ARABIDOPSIS PSEUDO-RESPONSE REGULATORS1 or TIMING OF CAB EXPRESSION1) are believed to be the components of the central oscillator. We report the results that consistently supported the view that the established cell lines, equipped with such bioluminescence reporters, might provide us with an advantageous means to characterize the plant circadian clock.  相似文献   

10.
Trees, perennial phanerophytes, display a rich variety of rhythmic phenomena. These are either due to exclusive environmental entrainment or due to the functioning of endogenous oscillators independent of the environment. Both types of rhythms are covered in this review. Purely environment controlled rhythms may be considered as a prelude to endogenous rhythms. Environment controlled rhythms discussed are (i) the diurnal rhythms of nyctinastic and heliotropic leaf movements and oscillatory phenomena of photosynthesis, such as the midday depression and Crassulacean acid metabolism (CAM), and (ii) the annual rhythms of annual growth ring formation, autumnal leaf senescence, over wintering mechanisms and flowering. Among the diurnal rhythms, nyctinastic movements and CAM are also free-running endogenous rhythms showing the operation of circadian clocks in trees. In leaf senescence, over wintering, and flowering control, photoperiod sensing is involved which suggests the participation of endogenous clocks. A question asked is if diurnal and annual rhythms are mechanistically correlated. Evidently, phenological phenomena based on photoperiodism (as dependent on measurement of night length) are co-ordinately regulated by the phytochrome system and the circadian clocks and many aspects of annual developments and over wintering are linked to photoperiodism. The existence in trees of circadian clock genes as known to be anchored in the genome of A. thaliana can be assessed by attempts of alignment with the sequenced genome of Populus or by isolating cDNA clones from trees to check them against the genome of A. thaliana. At extreme latitudes near the equator and north of the polar circle trees also display photoperiod-independent phenological phenomena. In the polar region, total irradiance of red and far red light could possibly be involved and the signalling pathway then involves phytochrome, and thus, may still be similar to that of photoperiodism. At the equator, total daily light irradiance received or sensing the dynamics of daily changes in solar irradiance are essential and it remains enigmatic whether signalling cascades are either attached to the circadian clocks in a still unknown way or totally independent of circadian clocks.  相似文献   

11.
12.
Circadian clocks are endogenous auto-regulatory mechanisms that allow organisms, from bacteria to humans, to advantageously time a wide range of activities within 24 h environmental cycles. Here we report the identification and characterization of an MYB-related gene, designated Circadian 1 (CIR1), that is involved in circadian regulation in Arabidopsis. Expression of CIR1 is transiently induced by light and oscillates with a circadian rhythm. The rhythmic expression of CIR1 is controlled by the central oscillator. Constitutive expression of CIR1 resulted in a shorter period length for the rhythms of four central oscillator components, and much lower amplitude for the rhythms of central oscillator components CCA1 and LHY. Furthermore, CIR1 over-expression severely affected the circadian rhythms of its own RNA and those of the slave oscillator EPR1 and effector genes Lhcb and CAT3. Plants that constitutively expressed CIR1 displayed delayed flowering, longer hypocotyls and reduced seed germination in the dark. These results suggest that CIR1 is possibly part of a regulatory feedback loop that controls a subset of the circadian outputs and modulates the central oscillator.  相似文献   

13.
14.
Serikawa M  Miwa K  Kondo T  Oyama T 《Plant physiology》2008,146(4):1952-1963
Circadian rhythms are found in organisms from cyanobacteria to plants and animals. In flowering plants, the circadian clock is involved in the regulation of various physiological phenomena, including growth, leaf movement, stomata opening, and floral transitions. Molecular mechanisms underlying the circadian clock have been identified using Arabidopsis (Arabidopsis thaliana); the functions and genetic networks of a number of clock-related genes, including CIRCADIAN CLOCK ASSOCIATED1, LATE ELONGATED HYPOCOTYL (LHY), TIMING OF CAB EXPRESSION1, GIGANTEA (GI), and EARLY FLOWERING3 (ELF3), have been analyzed. The degree to which clock systems are conserved among flowering plants, however, is still unclear. We previously isolated homologs for Arabidopsis clock-related genes from monocotyledon Lemna plants. Here, we report the physiological roles of these Lemna gibba genes (LgLHYH1, LgLHYH2, LgGIH1, and LgELF3H1) in the circadian system. We studied the effects of overexpression and RNA interference (RNAi) of these genes on the rhythmic expression of morning- and evening-specific reporters. Overexpression of each gene disrupted the rhythmicity of either or both reporters, suggesting that these four homologs can be involved in the circadian system. RNAi of each of the genes except LgLHYH2 affected the bioluminescence rhythms of both reporters. These results indicated that these homologs are involved in the circadian system of Lemna plants and that the structure of the circadian clock is likely to be conserved between monocotyledons and dicotyledons. Interestingly, RNAi of LgGIH1 almost completely abolished the circadian rhythm; because this effect appeared to be much stronger than the phenotype observed in an Arabidopsis gi loss-of-function mutant, the precise role of each clock gene may have diverged in the clock systems of Lemna and Arabidopsis.  相似文献   

15.
16.
17.
The Lemna genus is a group of monocotyledonous plants with tiny, floating bodies. Lemna gibba G3 and L. paucicostata 6746 were once intensively analyzed for physiological timing systems of photoperiodic flowering and circadian rhythms since they showed obligatory and sensitive photoperiodic responses of a long-day and a short-day plant, respectively. We attempted to approach the divergence of biological timing systems at the molecular level using these plants. We first employed molecular techniques to study their circadian clock systems. We developed a convenient bioluminescent reporter system to monitor the circadian rhythms of Lemna plants. As in Arabidopsis, the Arabidopsis CCA1 promoter produced circadian expression in Lemna plants, though the phases and the sustainability of bioluminescence rhythms were somewhat diverged between them. Lemna homologs of the Arabidopsis clock-related genes LHY/CCA1, GI, ELF3 and PRRs were then isolated as candidates for clock-related genes in these plants. These genes showed rhythmic expression profiles that were basically similar to those of Arabidopsis under light-dark conditions. Results from co-transfection assays using the bioluminescence reporter and overexpression effectors suggested that the LHY and GI homologs of Lemna can function in the circadian clock system like the counterparts of Arabidopsis. All these results suggested that the frame of the circadian clock appeared to be conserved not only between the two Lemna plants but also between monocotyledons and dicotyledons. However, divergence of gene numbers and expression profiles for LHY/CCA1 homologs were found between Lemna, rice and Arabidopsis, suggesting that some modification of clock-related components occurred through their evolution.  相似文献   

18.
Expression patterns of the cold-circadian rhythm-RNA binding (CCR) and chlorophyll a/b binding (CAB) protein genes have circadian rhythms with phases that are different from each other and are affected differently by cold (4 degrees C) treatment. Cycling of CCR and CAB RNA levels was observed in Arabidopsis seedlings grown for 5 days at 4 degrees C under a light/ dark photoperiod, although the cycling had reduced amplitude compared with normal growth conditions (20 degrees C). CCR RNA levels were elevated in the cold, whereas CAB RNA levels were reduced in the cold relative to levels in control seedlings. Cold pulses (4 degrees C for 12 or 20 hr) under continuous light affected the rhythms of CCR and CAB RNA levels in similar ways. The 12-hr cold pulse caused a 4-hr phase delay in both rhythms, whereas the 20-hr cold pulse resulted in a 12-hr phase delay in both rhythms. The timing of CAB expression 1 (toc1) mutation shortened the period of the CCR rhythm, matching previous results for the regulation of the CAB-luciferase (CAB-luc) transgene in this mutant. The results suggest that CCR and CAB share clock machinery but are regulated by downstream components that are affected differently by the cold. Also, the circadian clock regulating these genes in Arabidopsis has a cold-sensitive phase under continuous light conditions.  相似文献   

19.
20.
Molecular Intrigue Between Phototransduction and the Circadian Clock   总被引:1,自引:0,他引:1  
MILLAR  ANDREW J. 《Annals of botany》1998,81(5):581-587
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号