首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Six of 14 species of Triteleia were studied. All possess septal nectaries, raphides in the ovary wall, an anatropous and crassinucellate ovule with a micropyle formed by the inner integument only, and parietal cells. A short and thick nucellus, which is not penetrated by the embryo sac, has a one-layered apical epidermis and thickens from its subepidermal layer. The permanently two-layered inner integument is made up of normal, i.e., not greatly enlarged, cells. The embryo sac is of the Polygonum type, and the endosperm is of the helobial type. Embryo development is of the Asterad type in Triteleia laxa and T. ixioides. From an embryological point of view, Triteleia is closely related to Muilla maritima because the two taxa are alike in all characteristics, except for the number of layers in the apical nucellar epidermis. Triteleia is only distantly related to Dipterostemon, Dichelostemma, and Brodiaea, judging from the numerous differences in embryology. Both Triteleia and Muilla maritima are embryologically more primitive than the Dipterostemon-Dichelostemma-Brodiaea group. Embryologically, the Themidaceae are more similar to the Hyacinthaceae than to Allium. However, all embryological similarities with Hyacinthaceae are in plesiomorphic characters.  相似文献   

2.
The embryology ofStegnosperma halimifolium andS. watsonii has been studied in detail. The tapetum is of the secretory type and its cells become multinucleate. Simultaneous cytokinesis in the pollen mother cells follows meiosis. The ripe pollen grains are 3-celled. The ovule is crassinucellate, bitegmic and amphitropous, with the micropyle formed by the inner integument alone. The female archesporium is one celled, and the parietal tissue 3–5 layered. The embryo sac development conforms to thePolygonum type. A central strand, 6 or 7 cells thick, differentiates inside the nucellus and extends from the base of the embryo sac to the chalazal region. The endosperm is nuclear. The embryogeny conforms to the Caryophyllad type. The seed coat is formed by the outer epidermis of the outer integument and the inner epidermis of the inner integument. Based on this evidence and other data, the status of the genus as an independent family,Stegnospermataceae (Stegnospermaceae) is confirmed. Apparently, it forms a connecting link betweenPhytolaccaceae andCaryophyllaceae.  相似文献   

3.
Studies on embryology and seed morphology are complementary to molecular phylogenetics and of special value at the genus level. This paper discusses the delimitation and evolutionary relationships of genera within the tribe Hydrophylleae of the Boraginaceae. The seven Nemophila species characterized by a conspicuous seed appendage are similar in embryology and seed structure. The ovule is tenuinucellate and unitegmic with a meristematic tapetum. The embryo sac penetrating the nucellar apex is of the Polygonum type, has short-lived antipodal cells, and an embryo sac haustorium. The endosperm is cellular, producing two terminal endosperm haustoria, of which the chalazal has a lateral branch. Embryogeny is of the Chenopodiad type (as in Pholistoma). The seed coat is formed from the small-celled inner epidermis of the integument. The large-celled outer epidermis of the integument disintegrates into scattered cells. Seed pits evolve from irregularly placed inner epidermal cells of the integument. The chalazal part of the ovule produces a cucullus, that functions as an ant-attracting elaiosome. Those species of Nemophila with a conspicuous cucullus form a natural genus. Nemophila is most closely related to Pholistoma. The integumentary seed pits of Nemophila might have evolved from ovular seed pits similar to those in Pholistoma.  相似文献   

4.
Campynemanthe Baill. consists of three species endemic to New Caledonia. Two species are studied and compared. The tapetum is secretory with 2-nucleate tapetal cells. Microsprogenesis is successive, microspore tetrads are isobilateral and the pollen grains are free and inaperturate or have a weakly defined aperture. Placentation is axile with 3–4 ovules in each of the three locules. Ovules are anatropous and crassinucellate with the micropyle formed by the inner integument alone. The archesporial cell cuts off a parietal cell, which divides to form a parietal tissue. The nucellar epidermis divides periclinally at the nucellar apex to become 2-layered. The megaspore tetrad is T-shaped, in which the micropylar megaspore cells are separated by an oblique wall. The chalazal megaspore enlarges and apparently developes into a Polygonum-type embryo sac, but a mature embryo sac has not been seen. The ripe seeds are pale and non-phytomelaniferous. They have copious endosperm rich in fatty oils. The embryo is minute. These characters and gross morphological similarities support relationship with Campynema Labill., but there are also conspicuous differences. The two genera are considered related. They also closely approach genera of the variable family Melanthiaceae and there are reasons to include them in this family.  相似文献   

5.
The development of the ovule, fruit and seed of Xyris spp. was studied to assess the embryological characteristics of potential taxonomic usefulness. All of the studied species have (1) orthotropous, bitegmic and tenuinucellate ovules, with a micropyle formed by both the endostoma and exostoma; (2) a cuticle in the ovules and seeds between the nucellus/endosperm and the inner integument and between the inner and outer integuments; (3) helobial, starchy endosperm; (4) a reduced, campanulate and undifferentiated embryo; (5) a seed coat formed by a tanniferous endotegmen, endotesta with thick‐walled cells and exotesta with thin‐walled cells; and (6) a micropylar operculum formed from inner and outer integuments. The pericarp is composed of a mesocarp with cells containing starch grains and an endocarp and exocarp formed by cells with U‐shaped thickened walls. The studied species differ in the embryo sac development, which can be of the Polygonum or Allium type, and in the pericarp, which can have larger cells in either endocarp or exocarp. The Allium‐type embryo sac development was observed only in Xyris spp. within Xyridaceae. Xyris also differs from the other genera of Xyridaceae by the presence of orthotropous ovules and a seed coat formed by endotegmen, endotesta and exotesta, in agreement with the division of the family into Xyridoideae and Abolbodoideae. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 177 , 619–628.  相似文献   

6.
All members of Aristolochiaceae have anatropous, bitegmic, crassinucellate ovules, which are endostomic except in Saruma and Asarum arifolium where ovules are amphistomic. The outer integument is two cell-layered and the inner integument is three cell-layered. The chalazal megaspore is the functional one. All these conditions appear to be plesiomorphic for the order Piperales, which consists of five families, Aristolochiaceae, Hydnoraceae, Lactoridaceae, Piperaceae and Saururaceae. The embryo sac in Aristolochiaceae is eight-nucleate and corresponds to the Polygonum type; a hypostase is frequently present in this family. The seed coat of Aristolochia s.l., Asarum, Saruma and some Thottea species consists primarily of a two cell-layered testa, and a three cell-layered tegmen. In some species the cells of the outer epidermis become radially elongated, forming reticulate wall thickenings. Cells of the inner layer of the testa have crystals and thickened inner walls. The three layers of the tegmen are tangentially elongated, and become cross fibres at maturity, as fibres of the outer and inner layers are parallel to the seed axis, whereas those of the middle layer are perpendicular to it. This type of seed coat anatomy is synapomorphic for Aristolochiaceae. In addition, the gross morphology of the seed and elaiosome histology are remarkably similar in Asarum and Saruma, thus supporting a sister-group relationship between them. Embryological and seed characters do not supply any synapomorphy that support a close relationship between Aristolochiaceae, Hydnoraceae and Lactoridaceae. Instead, some seed features such as the absence of seed appendages and the collapsed cells of endotesta may indicate a close relationship of Lactoris with Piperaceae plus Saururaceae, although this is the subject of further analysis.  相似文献   

7.
Abstract

Seed formation involves not only the embryo and endosperm development, but also the formation of a series of either ephemeral or non-ephemeral structures. In this article, we study several of those structures in Cytisus multiflorus and Cytisus striatus. The endosperm development is first nuclear and later cellular, except for the chalazal area, whose development is always nuclear. It generates, in the early developmental stages, a sac-like haustorium. As the seed develops, two structures seem to be closely related to nutrient mobilization to the embryo sac: on the one hand, a group of cells and a channel, located in the chalazal area and closely related between them and to the endosperm haustorium, which could be interpreted as a hypostase and on the other hand, an endothelium, derived from the inner integument, which later degenerates leaving no trace in the mature seed. All of these structures would be associated with the directionality of assimilates from ovule tissues to embryo sac. In mature seed and surrounding the embryo appears a unicellular layer of cells rich in proteins (aleurone layer), which is the origin of the outermost layer of the cellular endosperm. The seed coat is made up only of the outer integument.  相似文献   

8.
Embryological features ofGlaucidium palmatum are as follows: the ovule is anatropous and bitegmic; the archesporium is hypodermal and multicelled, consisting of about 10 to 15 cells; all the archesporial, cells develop directly into megaspore mother cells, only three or four of which, however, generally complete meiotic divisions; before and during meiosis, dermal cells of the nucellar apical part undergo successive periclinal divisions forming a thick nucellar cap of as many as 20 cell-layers; embryo sac formation is of the Polygonum type; multiple embryo sacs occur frequently; antipodal cells are small in size and ephemeral or persistent; the inner integument is 3 to 5 cell-layers thick, and the outer integument 7 to 13 cell-layers thick; the outer integument is vascularized; a micropyle is formed by the inner integument alone; the endosperm is of the Nuclear type; embryogeny is of a type similar to the Onagrad type. In light of evidence from embryology and other sources it seems that there is ample reason for recognizing the family Glaucidiaceae which is distinct from the Ranunculaceae and its related families. Several common embryological features suggest an affinity between the Glaucidiaceae and the Paeoniaceae.  相似文献   

9.
Summary Fertilized ovules from sugar beet, Beta vulgaris L., of different intra- and interspecific crosses have been grown under in situ and in vitro conditions and investigated by light microscopy. Selected anatomical parameters were observed and entered in a computer program for statistical treatment. After a few days in culture the cells of the inner integument epidermis develop reticulate wall thickenings and their content of tannins decrease. Likewise, the starch content in the outer integument decreases and no real seed coat is formed. The funiculus tissue increases its metabolic activity, i.e., abundant accumulation of protein and starch. Callus or callus-like proliferations develop in the nucellus and the suspensor, but only rarely in the embryo or endosperm. However, the embryo may show an irregular morphology. Very rapid metabolism of starch in the suspensor may be related to the ability of the embryo to survive the first days in culture. Generally, the cellular responses, most significant in the maternal sporophytic tissue and the suspensor rather than in the embryo and endosperm, can be explained as structural adaptations to alternative pathways of nutrient supply.  相似文献   

10.
Ovules of broad bean (Vicia faba L.) were studied to discloseultrastructural features, which can facilitate nutrient transportto the embryo sac from 10 d after pollination (DAP) to the matureseed. Fertilization occurs during the first 24 h after pollination.The endosperm is a coenocyte, which is eventually consumed bythe embryo. By 10 DAP the inner integument is degraded and theouter integument adjoins the embryo sac boundary. The heart-shapedembryo approaches the embryo sac boundary at two sites, whichhere are named contact zones. Small integument cells in theneighbourhood of the first formed contact zones become separatedby prominent intercellular spaces. A heterogenous scatteringmaterial, probably representing secretion products accumulatesin these spaces. By 14-16 DAP the integument exudate disappears,and the suspensor degenerates. As the contact zones increasein size, wall ingrowths form a bridging network in the narrowspace between the embryo sac boundary and the extra-embryonicpart of the endosperm wall. The epidermal cells of the embryoseparate adjacent to these zones, and develop conspicuous wallingrowths. At 20 DAP vacuoles showing various stages in formationof protein bodies appear in the cells of the embryo.Copyright1994, 1999 Academic Press Vicia faba, broad beans, ovule, seed, nutrient transport  相似文献   

11.
Seed ontogeny of Adesmia bicolor and Adesmia latifolia was analysed using light microscopy and standard histological techniques. Fertilization was porogamic. Linear proembryonal tetrads were observed in A. bicolor. The robust elongated suspensors possessed specialized basal cells. The nucellar epidermis became endothelial. The free‐nuclear endosperm produced a micropylar, filamentous and ephemeral haustorium and a lateral sac‐like haustorium at the funicular side. The cellular endosperm was initiated from the micropylar zone after the cordiform embryo stage. It mostly disintegrated in mature seeds. The sclerified bilayered testa was derived from the outer ovular integument. Different astrosclereid arrangements beyond the lens in both Adesmia species may be related to the different habitats of the two species. The occurrence of both micropylar and lateral nuclear endosperm haustoria has so far not been reported in Fabaceae and is the most distinctive embryological character of Adesmieae. The taxonomic value of the mostly uniform morphology of the suspensor in the Adesmia species studied could also be relevant. The nature of seed endothelia in many Fabaceae requires accurate redetermination prior to taxonomic use. © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 158 , 602–612.  相似文献   

12.
Arabidopsis APETALA2 (AP2) controls seed mass maternally, with ap2 mutants producing larger seeds than wild type. Here, we show that AP2 influences development of the three major seed compartments: embryo, endosperm, and seed coat. AP2 appears to have a significant effect on endosperm development. ap2 mutant seeds undergo an extended period of rapid endosperm growth early in development relative to wild type. This early expanded growth period in ap2 seeds is associated with delayed endosperm cellularization and overgrowth of the endosperm central vacuole. The subsequent period of moderate endosperm growth is also extended in ap2 seeds largely due to persistent cell divisions at the endosperm periphery. The effect of AP2 on endosperm development is mediated by different mechanisms than parent-of-origin effects on seed size observed in interploidy crosses. Seed coat development is affected; integument cells of ap2 mutants are more elongated than wild type. We conclude that endosperm overgrowth and/or integument cell elongation create a larger postfertilization embryo sac into which the ap2 embryo can grow. Morphological development of the embryo is initially delayed in ap2 compared with wild-type seeds, but ap2 embryos become larger than wild type after the bent-cotyledon stage of development. ap2 embryos are able to fill the enlarged postfertilization embryo sac, because they undergo extended periods of cell proliferation and seed filling. We discuss potential mechanisms by which maternally acting AP2 influences development of the zygotic embryo and endosperm to repress seed size.  相似文献   

13.
The development of the floral bud, especially the ovule and seed coat, of Sinomanglietia glauca was observed. Floral buds were covered by eight to nine hypsophyll pieces. The hypsophyll nearest the tepal was closed completely and characterized by two arrays of densely stained cells with dense cytoplasm, which split longitudinally at flowering. The perianth consisted of 16 tepals arranged in three whorls. The gynoecium was composed of numerous apocarpous carpels; the ovule was anatropous with two integuments. Embryogenesis was of the Polygonum type, and the endosperm was nuclear. The inner integument degenerated during seed development. The seed of S. glauca had an endotestal seed coat comprised of a sclerotic layer derived from the inner adaxial epidermis of the outer integument and a sarcotesta derived mainly from the middle cells between the inner and outer epidermis of the outer integument. The embryo developed normally, so embryogenesis is not the cause of difficult regeneration.  相似文献   

14.
Lentibulariaceae is the largest family among carnivorous plants which displays not only an unusual morphology and anatomy but also the special evolution of its embryological characteristics. It has previously been reported by authors that Utricularia species lack a filiform apparatus in the synergids. The main purposes of this study were to determine whether a filiform apparatus occurs in the synergids of Utricularia and its sister genus Genlisea, and to compare the female germ unit in these genera. The present studies clearly show that synergids in both genera possess a filiform apparatus; however, it seems that Utricularia quelchii synergids have a simpler structure compared to Genlisea aurea and other typical angiosperms. The synergids are located at the terminal position in the embryo sacs of Pinguicula, Genlisea and were probably also located in that position in common Utricularia ancestor. This ancestral characteristic still occurs in some species from the Bivalvaria subgenus. An embryo sac, which grows out beyond the limit of the integument and has contact with nutritive tissue, appeared independently in different Utricularia lineages and as a consequence of this, the egg apparatus changes position from apical to lateral.  相似文献   

15.
Microsporogenesis and embryology of the monotypic Zippelia (Z. begoniaefolia) Blume (Piperaceae) is described for the first time to assess its systematic relationships. The formation of the anther wall is of Basic Type such that the anther wall, consisting of an endothecium with fibrous thickenings, two middle layers, and a glandular septum with 2‐nucleate cells, is derived from a primary parietal layer. Simultaneous cytokinesis follows meiosis of the microspore mother cell thence forming a tetrahedral tetrad of microspores. The single basal ovule is orthotropous, crassinucellate and bitegmic but only the inner integument forms the micropyle. The sporogenous cell of the nucellus functions directly as a megaspore mother cell. A coenocyte with four nuclei forms after meiosis of the megaspore mother cell. The formation of the embryo sac is tetrasporic ab initio and is of, or similar to, the Drusa Type of embryo sac in which the nuclei of the coenocyte undergo two successive mitoses and forms a 16‐celled or 16‐nucleate embryo sac that is ovoid in shape. The embryo sac has an egg apparatus consisting of an egg cell and two synergids (but one of the latter is less discernable). Two polar cells occur just beneath the egg apparatus and 11 antipodal cells or nuclei are arranged along the lower part of the inner wall of the embryo sac. They are linked by threads of cytoplasm. The two polar cells are separated or fused before fertilization. A large primary endosperm nucleus with many nucleoli, which resulted from the fertilized polar cells and with the participation of antipodal cells, divides into a free nuclei stage. The free nuclei are arranged along the lower part of the inner wall of the embryo sac or rarely assemble at the central part. The development of endosperm is thus of the Nuclear Type. The zygote remains undivided and fails to develop even when the seed is nearly mature. Frequently, the zygote and the endosperm abort later and leave an empty chamber in the top part of the seed. Most of the seed content is starchy perisperm. Only the inner integument forms the seed coat and the pericarp develops glochidiate hairs (anchor‐like hairs) when the endosperm begins to develop. By comparison with the other piperaceous taxa using embryological and botanical features, Zippelia is referred to as a basal taxon and a more isolated evolutionary line or a blind branch in the Piperaceae. © 2002 The Linnean Society of London, Botanical Journal of the Linnean Society, 2002, 140 , 49–64.  相似文献   

16.

Information on the reproductive anatomy in genera of the tribe Naucleeae, particularly Cephalanthus, is scarce and fragmented. Of the six species in the genus, only the mature megagamethophyte of Cephalanthus occidentalis has been described. This study aims to provide information on embryological aspects in flowers of C. glabratus and to analyze the morphology and anatomy of the flowers, fruit, and seed in the six species of the genus. Cephalanthus glabratus have imperfect flowers: pistillate (PF) and staminate (SF). In the PF, the ovules are functional, while in the SF, they atrophy during the formation of the embryo sac. The mature ovule has a single integument, corresponds to the Phyllis type and the embryo sac is a Polygonum type, forming only in the PF. The presence of pollenkitt and secondary presentation of pollen were observed in the SF, as well as in the pollen formation previously described, whereas in the PF, they are absent, due to the collapse of the pollen grains inside the indehiscent anthers. The analysis of the ontogeny of the ovular excrescence in C. glabratus determined its funicular origin, calling it an aril. Its development is a pre-anthesis event, initiated during megasporogenesis. In seeds, the aril is a fleshy, white appendage which almost completely envelops the seeds of Cephalanthus, except for Cephalanthus natalensis where it is noticeably more reduced. Studies of the fruit in Cephalanthus species indicate that the infructescence is a dry schizocarp which separates into uni-seminated mericarps, except in C. natalensis that has fleshy indehiscent fruit.

  相似文献   

17.
The embryology ofCrocus thomasii is described. Male meiosis is of simultaneous type, and gives rise to starchy microspores which develop into lipoid pollen grains; these are two-celled and show a spinulate acolpate, abaculate exine lacking apertures. The tapetum is glandular and its cells become bi- or sometimes multinucleate. The ovule is anatropous and bitegmic; the inner integument forms the micropyle. Megasporogenesis is heteropolar with starch accumulation in the functional chalazal megaspore. Embryo sac development conforms to thePolygonum type. The endosperm development is nuclear. The embryo develops according to the Caryophyllad type. In the ripe seed it is differentiated and enveloped by a starchy cellular endosperm. The embryological characters observed strongly favour a close relation betweenC. thomasii andC. sativus.  相似文献   

18.
The embryological characteristics and ovular integument development of the dioecious species Woonyoungia septentrionalis (Dandy) Law (Magnoliaceae), which are poorly understood, were investigated under laser scanning confocal microscope (LSCM) and light microscope (LM). The embryological characteristics conform to most of the previously studied species in Magnoliaceae. The anther has 4 microsporangia, and the anther wall develops according to the dicotyledonous type. Cytokinesis at meiosis of the microspore mother cells follows a modified simultaneous type, giving rise to isobilateral or decussate tetrads, and a cell plate is absent, but a membrane was observed. Mature pollen grains are 2‐cellular and have high germination rates. The ovule is anatropous, crassinucellate and bitegmic, and meiotic result in linear tetrads of megaspores, the one at the chalazal end functions directly as an embryo‐sac cell. The development of the embryo sac is of the Polygonum‐type and endosperm formation is of the nuclear type. The outer integument of the ovule differentiates into an outer fleshy and an inner stony layer while the inner integument is reduced to a tanniniferous layer. The normal embryological development, high germination rates of pollen and high seed set indicate that the primary reason for the decline of the species is not to be found in these developmental processes.  相似文献   

19.
Winter , Dorothy M. (Iowa State U., Ames.) The development of the seed of Abutilon theophrasti. II. Seat coat. Amer. Jour. Bot. 47(3) : 157—162. Illus. 1960.–The integuments of Abutilon theophrasti Medic. undergo a rapid increase in size, predominantly by anticlinal cell divisions during the first 3 days after fertilization. Within 7 days, the outer epidermis of the inner integument becomes thick walled. At maturity this compact, lignified, and cutinized palisade layer accounts for more than half the thickness of the seed coat. During early growth, the palisade cells form a continuous layer in the micropylar region. In the chalazal region the palisade layer is discontinuous in a slit-shaped region, 60 × 740 microns. The shape of this discontinuity constitutes a major difference between dormant-seeded Abutilon and non-dormant Gossypium seeds. Exterior to the palisade layer is the outer integument which consists of a small-celled layer and a large-celled layer sparsely covered with unicellular, lignified hairs. Interior to the palisade is the thick mesophyll of the inner integument which is largely digested during seed growth and leaves only 2 pigmented cell layers in most regions at maturity. The inner epidermis is small-celled, pigmented and cutinized and adheres tightly to the endosperm. Seed coat impermeability increases with seed maturity. Even immature seeds will germinate, if scarified, indicating a lack of embryo dormancy.  相似文献   

20.
The present paper aims at discovering the characters of embryological development of Circaeaster agrestis, which makes up a monotypic genus, Circaeaster, to establish the phylogenetic relationships of the genus. The different opinions on its systematic position among botanists are briefly explained. The embryological studies show that the most important advanced characters of the genus are as follows. The ovule is amphitropous, unitegmic and tenuinucelar; the embryo sac formation is in accordance with the Polygonum type; endosperm formation is of the cellular type, the primary endosperm nucleus dividing to form two cells and the first wall vertical; embryo formation follows the variation of the Caryophyllad type; at the early stage of development of embryo, the integument has been already atrophied and at last disappeared, so that the seed coat is absent in the mature fruit. On the basis of the embryological and some morphological evidence, the authors consider that a close relationship between the genus and Ranunculaceae and its related families seems to be unlikely. The affinities of the genus Circaeaster are still uncertain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号