首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wu X  Skirpan A  McSteen P 《Plant physiology》2009,149(1):205-219
The spikelet, which is a short branch bearing the florets, is the fundamental unit of grass inflorescence architecture. In most grasses, spikelets are borne singly on the inflorescence. However, paired spikelets are characteristic of the Andropogoneae, a tribe of 1,000 species including maize (Zea mays). The Suppressor of sessile spikelets1 (Sos1) mutant of maize produces single instead of paired spikelets in the inflorescence. Therefore, the sos1 gene may have been involved in the evolution of paired spikelets. In this article, we show that Sos1 is a semidominant, antimorph mutation. Sos1 mutants have fewer branches and spikelets for two reasons: (1) fewer spikelet pair meristems are produced due to defects in inflorescence meristem size and (2) the spikelet pair meristems that are produced make one instead of two spikelet meristems. The interaction of Sos1 with the ramosa mutants, which produce more branches and spikelets, was investigated. The results show that Sos1 has an epistatic interaction with ramosa1 (ra1), a synergistic interaction with ra2, and an additive interaction with ra3. Moreover, ra1 mRNA levels are reduced in Sos1 mutants, while ra2 and ra3 mRNA levels are unaffected. Based on these genetic and expression studies, we propose that sos1 functions in the ra1 branch of the ramosa pathway controlling meristem determinacy.  相似文献   

2.
3.
Inflorescence organogenesis of a wild-type and a gynomonoecious (pistillate) mutant in Tripsacum dactyloides was studied using scanning electron microscopy. SEM (scanning electron microscope) analysis indicated that wild-type T. dactyloides (Eastern gamagrass) expressed a pattern of inflorescence organogenesis that is observed in other members of the subtribe Tripsacinae (Zea: maize and teosinte), family Poaceae. Branch primordia are initiated acropetally along the rachis of wild-type inflorescences in a distichous arrangement. Branch primordia at the base of some inflorescences develop into long branches, which themselves produce an acropetal series of distichous spikelet pair primordia. All other branch primordia function as spikelet pair primordia and bifurcate into pedicellate and sessile spikelet primordia. In all wild-type inflorescences development of the pedicellate spikelets is arrested in the proximal portion of the rachis, and these spikelets abort, leaving two rows of solitary sessile spikelets. Organogenesis of spikelets and florets in wild-type inflorescences is similar to that previously described in maize and the teosintes. Our analysis of gsf1 mutant inflorescences reveals a pattern of development similar to that of the wild type, but differs from the wild type in retaining (1) the pistillate condition in paired spikelets along the distal portion of the rachis and (2) the lower floret in sessile spikelets in the proximal region of the rachis. The gsf1 mutation blocks gynoecial tissue abortion in both the paired-spikelet and the unpaired-spikelet zone. This study supports the hypothesis that both femaleness and maleness in Zea and Tripsacum inflorescences are derived from a common developmental pathway. The pattern of inflorescence development is not inconsistent with the view that the maize ear was derived from a Tripsacum genomic background.  相似文献   

4.
Development of the mixed inflorescence in Zea diploperennis Iltis, Doebley & Guzman (Poaceae) Mixed inflorescences of diploperennial teosinte, which terminate the main branches of the plant, arise in the same fashion as tassel spikes. The apical meristem produces bracts in a decussate arrangement. A single axillary bud primordium is initiated in the axil of each bract. Growth of the bract is retarded as the bud enlarges and divides longitudinally into two separate spikelet primordia. The paired spikelets running in two ranks on either side of the inflorescence primordium produce the four-rowed condition typical of teosinte tasselS. In the transition region between male and female portions of the inflorescence, development of the pedicellate spikelet of each spikelet pair is arrested at an early ontogenetic stage. Continued growth of the sessile spikelet and associated rachis flaps destroy the remnants of the arrested spikelet in basal portions of the inflorescence. A similar abortion of the lower floret of the sessile spikelet results in a single pistillate floret per node at anthesis. These results provide further support for the hypothesis that a tassel-like mixed inflorescence of teosinte is ancestral to the maize ear.  相似文献   

5.
The ontogeny of tassels and ears in a perennial Mexican teosinte, Zea perennis (Hitchc.) Reeves and Mangelsdorf, was examined using scanning electron microscopy and light microscopy. Ear development follows a pattern previously described for two annual teosintes, Z. mays subsp. mexicana and Z. mays subsp. parviglumis var. parviglumis (race Balsas), and for the bisexual mixed inflorescence in a diploperennial teosinte, Z. diploperennis; it differs from that described for the ear of Z. diploperennis plants grown at the latitudes of Iowa and Wisconsin. Common bud primordia of the ear are initiated in the axil of distichously arranged bracts along the ear axis. These common primordia bifurcate to form paired pedicellate and sessile spikelet primordia. Development of the pedicellate spikelets in the ear is arrested leaving the sessile spikelets, along with the adjoining rachis segment, to form solitary grains enclosed within cupulate fruitcases. The organogenesis of the central spike of the tassel is similar to that previously described in other Zea taxa. This developmental study supports the hypothesis that both femaleness and maleness are derived from and expressed on a common background; it is consistent with the view that the maize ear was derived from the central spike of a male inflorescence terminating a primary branch of the main axis of the inflorescence.  相似文献   

6.
The ontogeny of tassels and ears in two annual Mexican teosintes, Zea mays subsp. mexicana and Z. mays subsp. parviglumis, was examined using scanning electron microscopy and light microscopy. Ear development in these annual teosintes follows a pattern previously described as leading to the bisexual mixed inflorescence in Z. diploperennis. Common bud primordia are initiated in the axils of distichously arranged bracts along the ear axis. These common primordia bifurcate to form paired sessile and pedicellate spikelet primordia. Development of pedicellate spikelets is arrested leaving the sessile spikelets, along with the adjoining rachis segment, to form solitary grains enclosed within cupulate fruitcases. Development of the central tassel spike is similar to that previously described in the Z. diploperennis tassel, except that the first formed axillary bud primordia form precocious tassel branches. The origin of these tassel branches suggests a possible mechanism for the transition from a distichous spike, characteristic of teosinte, to a polystichous spike, typical of maize.  相似文献   

7.
The architecture of maize inflorescences, the male tassel and the female ear, is defined by a series of reiterative branching events. The inflorescence meristem initiates spikelet pair meristems. These in turn initiate spikelet meristems which finally produce the floret meristems. After initiating one meristem, the spikelet pair and spikelet meristem convert into spikelet and floret meristems, respectively. The phenotype of reversed germ orientation1 (rgo1) mutants is the production of an increased number of floret meristems by each spikelet meristem. The visible phenotypes include increased numbers of flowers in tassel and ear spikelets, disrupted rowing in the ear, fused kernels, and kernels with embryos facing the base of the ear, the opposite orientation observed in wild-type ears. rgo1 behaves as single recessive mutant. indeterminate spikelet1 (ids1) is an unlinked recessive mutant that has a similar phenotype to rgo1. Plants heterozygous for both rgo1 and ids1 exhibit nonallelic noncomplementation; these mutants fail to complement each other. Plants homozygous for both mutations have more severe phenotypes than either of the single mutants; the progression of meristem identities is retarded and sometimes even reversed. In addition, in rgo1; ids1 double mutants extra branching is observed in spikelet pair meristems, a meristem that is not affected by mutants of either gene individually. These data suggest a model for control of meristem identity and determinacy in which the progress through meristem identities is mediated by a dosage-sensitive pathway. This pathway is combinatorially controlled by at least two genes that have overlapping functions.  相似文献   

8.
Tassel and ear primordia were collected from greenhouse-grown specimens of the Mexican maize landrace Chapalote and prepared for scanning electron microscopic (SEM) examination. Measurements of inflorescence apices and spikelet pair primordia (spp) were made from SEM micrographs. Correlation of inflorescence apex diameter with number of spikelet ranks showed no significant difference between tassels and ears, except at the two-rank level where the ear apical meristem had a significantly smaller diameter than corresponding two-ranked tassels. Within individual inflorescences, spp in different ranks enlarged at comparable rates, although the rates from one ear to the next along the stem differed. In both tassels and ears, spp divide to form paired sessile and pedicellate spikelet primordia when the spp is 150 μm wide; ear axes are significantly thicker than tassel axes at the time of bifurcation. The similarities in growth between ear and tassel primordia lend further support to the hypothesis that both the maize tassel and ear are derived from a common inflorescence pattern, a pattern shared with teosinte. Inflorescence primordial growth also suggests that a key character difference between teosinte and maize, distichous vs. polystichous arrangement of spikelets, may be related to size of the apical dome and/or rate of primordium production by the apical meristem. There appears to be more than a single morphological event in the shift from vegetative to reproductive growth. The evocation of axillary buds (ears) is independent of, and temporally separated from, the transition to flowering at the primary shoot apex (tassel).  相似文献   

9.
Hubbard L  McSteen P  Doebley J  Hake S 《Genetics》2002,162(4):1927-1935
The evolution of domesticated maize from its wild ancestor teosinte is a dramatic example of the effect of human selection on agricultural crops. Maize has one dominant axis of growth, whereas teosinte is highly branched. The axillary branches in maize are short and feminized whereas the axillary branches of teosinte are long and end in a male inflorescence under normal growth conditions. Previous QTL and molecular analysis suggested that the teosinte branched1 (tb1) gene of maize contributed to the architectural difference between maize and teosinte. tb1 mutants of maize resemble teosinte in their overall architecture. We analyzed the tb1 mutant phenotype in more detail and showed that the highly branched phenotype was due to the presence of secondary and tertiary axillary branching, as well as to an increase in the length of each node, rather than to an increase in the number of nodes. Double-mutant analysis with anther ear1 and tassel seed2 revealed that the sex of the axillary inflorescence was not correlated with its length. RNA in situ hybridization showed that tb1 was expressed in maize axillary meristems and in stamens of ear primordia, consistent with a function of suppressing growth of these tissues. Expression in teosinte inflorescence development suggests a role in pedicellate spikelet suppression. Our results provide support for a role for tb1 in growth suppression and reveal the specific tissues where suppression may occur.  相似文献   

10.
11.
The molecular and genetic control of inflorescence and flower development has been studied in great detail in model dicotyledonous plants such as Arabidopsis and Antirrhinum . In contrast, little is known about these important developmental steps in monocotyledonous species. Here we report the analysis of the Zea mays mutant branched silkless1–2 (bd1–2) , allelic to bd1 , which we have used as a tool to study the transition from spikelet to floret development in maize. Floret development is blocked in the female inflorescence (the ear) of bd1–2 plants, whereas florets develop almost normally in the male inflorescence (the tassel). Detailed phenotypic analyses indicate that in bd1–2 mutants ear inflorescence formation initiates normally, however, the spikelet meristems do not proceed to form floret meristems. The ear spikelets, at anthesis, contain various numbers of spikelet-like meristems and glume-like structures. Furthermore, growth of branches from the base of the ear is often observed. Expression analyses show that the floral-specific MADS box genes Zea mays AGAMOUS1 ( ZAG1 ), ZAG2 and Zea mays MADS 2 ( ZMM2 ) are not expressed in ear florets in bd1–2 mutants, whereas their expression in tassel florets is similar to that of wild type. Taken together, these data indicate that the development from spikelet to floret meristem is differentially controlled in the ear and tassel in the monoecious grass species Zea mays , and that BRANCHED SILKLESS plays an important role in regulating the transition from spikelet meristem to floral meristem during the development of the female inflorescence of maize.  相似文献   

12.
Using C-banding and FISH methods, the karyotype of MC1611 induced mutant of bread wheat, which develop additional spikelets at a rachis node (trait “supernumerary spikelets”) was characterized. It was determined that the mutant phenotype is not associated with aneuploidy and major chromosomal rearrangements. The results of genetic analysis showed that supernumerary spikelets of the line are caused by a mutation of the single Bh-D.1 gene, influenced by the genetic background. The mutation causes abnormalities of inflorescence morphogenesis associated with the development of ectopic spikelet meristems in place of floral meristems in the basal part of the spikelets, causing the appearance of additional spikes at a rachis node. The mutant phenotype suggests that the Bh-D gene determines the fate of the lateral meristems in ear, which develops as floral meristem and gives rise to floral organs in wild-type inflorescences. In the bh-D.1 mutant, the floral meristem identity is impaired. The characterized mutant can be used in further studies on molecular genetic basis of development of wheat inflorescence.  相似文献   

13.
Argentine popcorn is an exotic race considered by some to be similar to the earliest cultivated maize. We used scanning electron microscopy to examine inflorescence development in both the tassel and ear. In our material, and under our conditions, both two-ranked central tassel spikes and two-ranked ears were observed as well as more typical four-ranked structures. Subsequent development of spikelets and florets was similar to that observed in other varieties of maize and in their close relatives—the teosintes. We suggest that the switch from two-ranked to four-ranked inflorescences (a key trait difference between teosinte and maize) may be due to a change in developmental timing allowing an additional meristem bifurcation of axillary branch primordia prior to the initiation of spikelet pair primordia.  相似文献   

14.
To identify salt tolerance determinants, we screened for double mutants from a T-DNA tagged sos3-1 mutant population in the Arabidopsis Col-0 gl1 background. The shs1-1 (sodium hypersensitive) sos3-1 mutant was isolated as more sensitive to NaCl than sos3-1 plants. TAIL-PCR revealed that the introduced T-DNA was located 62 bp upstream of the initiation codon of an adenylate translocator-like protein gene on chromosome IV. SHS1 mRNA did not accumulate in shs1-1 sos3-1 plants although it accumulated in shoots of both sos3-1 and the wild type plants, indicating that this gene is inactive in the mutant. Genetic co-linkage analysis revealed that the mutation causing the phenotype segregated as a recessive, single gene mutation. This mutant showed altered sensitive responses to salt as well as to cold stress. It also demonstrated sugar sensitive and ABA insensitive phenotypes including enhanced germination, reduced growth, altered leaf morphology, and necrosis on leaves at an early growth stage. Sensitivity of sos3-1 shs1-1 root growth to LiCl, KCl, and mannitol was not significantly different from growth of sos3-1 roots. Further, expression of 35S::SHS1 in sos3-1 shs1-1 plants complemented NaCl and sugar sensitivity and partially restored the leaf morphology. G. Inan and F. Goto contributed equally in this work.  相似文献   

15.
Inflorescence development in a newly discovered teosinte, Zea nicaraguensis (Poaceae), from Nicaragua has been investigated using scanning electron microscopy (SEM). The SEM examination revealed that the pattern of both male and female inflorescence development was similar to previously described inflorescence in other Zea taxa. Branch primordia were initiated acropetally in a distichous pattern along the rachis of male and female inflorescences. Spikelet pair primordia bifurcated into pedicellate and sessile spikelet primordia. Predictably, pedicellate spikelet development was arrested and aborted in the female teosinte inflorescence. Organogenesis of functional spikelets and florets was similar to that previously described in maize and teosintes. The results were consistent with our hypothesis that both femininity and masculinity share a common mechanism of inflorescence development in Zea and Tripsacum and are in accord with a putative common mechanism of sex determination in the Andropogoneae. Interestingly, this population of teosinte, unique in its ability to grow in water-logged soils, showed a stable pattern of early inflorescence development. Our results also revealed the uncharacteristic presence of inflorescence polystichy in this population of Zea nicaraguensis. We propose this novel phenotypic variation raises the possibility that a domestic evolution of polystichy in maize was enabled by an occasional polystichous phenotypic in teosinte.  相似文献   

16.
Gene flow between maize [Zea mays (L.)] and its wild relatives does occur, but at very low frequencies. Experiments were undertaken in Tapachula, Nayarit, Mexico to investigate gene flow between a hybrid maize, landraces of maize and teosinte (Z. mays ssp. mexicana, races Chalco and Central Plateau). Hybridization, flowering synchrony, pollen size and longevity, silk elongation rates, silk and trichome lengths and tassel diameter and morphology were measured. Hybrid and open-pollinated maize ears produced a mean of 8 and 11 seeds per ear, respectively, when hand-pollinated with teosinte pollen, which is approximately 1–2% of the ovules normally produced on a hybrid maize ear. Teosinte ears produced a mean of 0.2–0.3 seeds per ear when pollinated with maize pollen, which is more than one-fold fewer seeds than produced on a maize ear pollinated with teosinte pollen. The pollination rate on a per plant basis was similar in the context of a maize plant with 400–500 seeds and a teosinte plant with 30–40 inflorescences and 9–12 fruitcases per inflorescence. A number of other factors also influenced gene-flow direction: (1) between 90% and 95% of the fruitcases produced on teosinte that was fertilized by maize pollen were sterile; (2) teosinte collections were made in an area where incompatibility systems that limit fertilization are present; (3) silk longevity was much shorter for teosinte than for maize (approx. 4 days vs. approx. 11 days); (4) teosinte produced more pollen on a per plant basis than the landraces and commercial hybrid maize; (5) teosinte frequently produced lateral branches with silks close to a terminal tassel producing pollen. Collectively these factors tend to favor crossing in the direction of teosinte to maize. Our results support the hypothesis that gene flow and the subsequent introgression of maize genes into teosinte populations most probably results from crosses where teosinte first pollinates maize. The resultant hybrids then backcross with teosinte to introgress the maize genes into the teosinte genome. This approach would slow introgression and may help explain why teosinte continues to co-exist as a separate entity even though it normally grows in the vicinity of much larger populations of maize.  相似文献   

17.
18.
 DNA fingerprinting verified hybrid plants obtained by crossing Eastern gamagrass, Tripsacum dactyloides L., and perennial teosinte, Zea diploperennis Iltis, Doebley & R. Guzmán. Pistillate inflorescences on these hybrids exhibit characteristics intermediate to the key morphological traits that differentiate domesticated maize from its wild relatives: (1) a pair of female spikelets in each cupule; (2) exposed kernels not completely covered by the cupule and outer glumes; (3) a rigid, non-shattering rachis; (4) a polystichous ear. RFLP analysis was employed to investigate the possibility that traits of domesticated maize were derived from hybridization between perennial teosinte and Tripsacum. Southern blots of restriction digested genomic DNA of parent plants, F1, and F2 progeny from two different crosses were probed with RFLP markers specifically associated with changes in pistillate inflorescence architecture that signal maize domestication. Pairwise analysis of restriction patterns showed traits considered missing links in the origin of maize correlate with alleles derived from Tripsacum, and the same alleles are stably inherited in second generation progeny from crosses between Tripsacum and perennial teosinte. Received: 11 October 1996/Accepted:8 November 1996  相似文献   

19.
barren stalk1 is a recessive mutant of maize that has no tassel branches, spikelets, tillers, or ears. Here we present a detailed characterization of the ba1 mutant phenotype, including scanning electron microscopy of developing inflorescences, in situ hybridization analysis using a meristem marker, molecular mapping, and genetic analysis demonstrating an epistatic relationship between ba1 and teosinte branched1 (tb1). These data show that the primary defect in the ba1 mutant is a failure in axillary meristem development.  相似文献   

20.
The barley mutant, poly-row-and-branched spike (prbs) showed altered inflorescence morphology: complete conversion of the rudimentary lateral spikelets in two-rowed barley into fully developed fertile spikelets similar to the six-rowed phenotype, and additional spikelets in the middle of spike. Moreover, branched spikes emerged in progeny from a cross between the mutant and a six-rowed barley cultivar. Morphological observation of the development of immature spikes of the mutant and descendants with branched spikes showed that the Prbs gene is involved in spikelet development in the triple-mound stage. In mutant prbs, new meristems initiated at the flanks of lateral spikelets and middle spikelet meristems were converted to branch meristems, developing branched spikes. These observations suggested that the Prbs gene plays a crucial role in spikelet initiation and identity maintenance. The Prbs gene may be an important modifier in inflorescence differentiation from a panicle into a spike. The branched spikes emerging in hybrids from a cross between the mutant and six-rowed barley cultivar were not conferred by the gene vrs1 or Int-c, which decide spike morphology in six-rowed barley. These results imply that although six-row genes vrs1 and Int-c and prbs have similar effects on lateral spikelet development, they have different functions in branched spikes. The Prbs gene was mapped to chromosome 3H between SSR marker Bmag0023 and marker Cbic60 at a genetic distance of 3.3 and 5.4 centimorgans (cM), respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号