首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Australasian region contains a significant proportion of worldwide Poa diversity, but the evolutionary relationships of taxa from this region are incompletely understood. Most Australasian species have been placed in a monophyletic Poa subgenus, Poa supersection Homalopoa section Brizoides clade, but with limited resolution of relationships. In this study, phylogenetic relationships were reconstructed for Australasian Poa, using three plastid (rbcL and matK genes and the rpl32‐trnL intergenic spacer) and two nuclear [internal/external transcribed spacer (ITS/ETS)] markers. Seventy‐five Poa spp. were represented (including 42 Australian, nine New Guinean, nine New Zealand and three Australian/New Zealand species). Maximum parsimony, maximum likelihood and Bayesian inference criteria were applied for phylogenetic reconstruction. Divergence dates were estimated using Bayesian inference, with a relaxed clock applied and rates sampled from an uncorrelated log‐normal distribution. Australasian Poa spp. are placed in three lineages (section Brizoides, section Parodiochloa and the ‘X clade’), each of which is closely related to non‐Australasian taxa or clades. Section Brizoides subsection Australopoa is polyphyletic as currently circumscribed. In Australasia, Poa has diversified within the last 4.3 Mya, with divergence dating results broadly congruent with fossil data that record the appearance of vegetation with a prominent grassland understorey or shrubland/grassland mosaic vegetation dating from the mid‐Pliocene. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 175 , 523–552.  相似文献   

2.
We aimed to clarify phylogenetic relationships within the pantropical genus Diospyros (Ebenaceae sensu lato), and ascertain biogeographical patterns in the New Caledonian endemic species. We used DNA sequences from eight plastid regions (rbcL, atpB, matK, ndhF, trnK intron, trnL intron, trnL-trnF spacer, and trnS-trnG spacer) and included 149 accessions representing 119 Diospyros species in our analysis. Results from this study confirmed the monophyly of Diospyros with good support and provided a clearer picture of the relationships within the genus than in previous studies. Evidence from phylogenetic analyses suggests that Diospyros colonized New Caledonia multiple times. The four lineages of Diospyros in New Caledonia also differ in their degree of diversification. The molecular data indicate that one lineage is paleoendemic and derived from an ancient Australian species. The other three lineages are more closely related to several Southeast Asian species; two of them are neoendemics, and one has radiated rapidly and recently.  相似文献   

3.
The disjunct allotetraploid lineage of the North American genus Microseris in New Zealand and Australia originated from one or a few diaspores after a single introduction via long‐distance dispersal. The plants have evolved into four morphologically distinct ecotypes: ‘fine‐pappus’, ‘coastal’, ‘murnong’, and ‘alpine’, from which the first two are grouped as Microseris scapigera, mainly from New Zealand and Tasmania, and the latter two as M. lanceolata, endemic to the Australian mainland. Three chloroplast (cp) DNA types were distinguished in each of the species, but their distribution, especially in M. lanceolata, showed discrepancies with ecotype differentiation. Here, we analyse the genetic structure of the nuclear (n) DNA among two plants of each of 55 New Zealand, Tasmanian, and Australian Microseris populations for amplified fragment length polymorphisms (AFLPs). The nuclear genetic structure is compared to geographical, ecotype, and cpDNA distribution, in order to resolve and illustrate the early process of adaptive radiation. The strongest signal in the AFLP pattern was related to geographical separation, especially between New Zealand and Australian accessions, and suggested an initial range expansion after establishment. The ecotypic differentiation was less‐well reflected in the AFLP pattern, and evidence was found for the occurrence of hybridization among plants at the same geographical region, or after dispersal, irrespective of the cpDNA‐ and ecotypes. This indicated that the ecotype characteristics were maintained or re‐established by selection. It also showed that genetic differentiation is not an irreversible and progressive process in the early stage of adaptive radiation. Our results illustrate the precarious balance between geographical isolation and selection as factors that favour differentiation, and hybridization as factor that reduces differentiation.  相似文献   

4.
To determine evolutionary relationships among all Japanese members of the genus Salvia (Lamiaceae), we conducted molecular phylogenetic analyses of two chloroplast DNA (cpDNA) regions (rbcL and the intergenic spacer region of trnLtrnF:trnLtrnF) and one nuclear DNA (nrDNA) region (internal transcribed spacer, ITS). In cpDNA, nrDNA, and cpDNA+nrDNA trees, we found evidence that all Japanese and two Taiwanese Salvia species are included in a clade with other Asian Salvia, and Japanese Salvia species were distributed among three subclades: (1) S. plebeia (subgenus Sclarea), (2) species belonging to subg. Salvia, and (3) species belonging to subg. Allagospadonopsis. At the specific level our findings suggest: a close relationship between S. nipponica and S. glabrescens, no support for monophyly of S. lutescens and its varieties in cpDNA, nrDNA and cpDNA+nrDNA trees, and that S. pygmaea var. simplicior may be more closely related to S. japonica than to other varieties of S. pygmaea.  相似文献   

5.
The trnTtrnF region is located in the large single-copy region of the chloroplast genome. It consists of the trnL intron, a group I intron, and the trnTtrnL and trnLtrnF intergenic spacers. We analyzed the evolution of the region in the three genera of the gymnosperm lineage Gnetales (Gnetum, Welwitschia, and Ephedra), with especially dense sampling in Gnetum for which we sequenced 41 accessions, representing most of the 25–35 species. The trnL intron has a conserved secondary structure and contains elements that are homologous across land plants, while the spacers are so variable in length and composition that homology cannot be found even among the three genera. Palindromic sequences that form hairpin structures were detected in the trnLtrnF spacer, but neither spacer contained promoter elements for the tRNA genes. The absence of promoters, presence of hairpin structures in the trnLtrnF spacer, and high sequence variation in both spacers together suggest that trnT and trnF are independently transcribed. Our model for the expression and processing of the genes tRNAThr(UGU), tRNALeu(UAA), and tRNAPhe (GAA) therefore attributes the seemingly neutral evolution of the two spacers to their escape from functional constraints. [Reviewing Editor: Debashish Bhattacharya]  相似文献   

6.
Phylogeographic analyses using chloroplast DNA (cpDNA) variation were performed for Pedicularis ser. Gloriosae (Orobanchaceae). Eighty-one plants of 18 populations of 6 species (P. gloriosa, P. iwatensis, P. nipponica, P. ochiaiana, P. sceptrum-carolinum and P. grandiflora) were analyzed. Fifteen distinct haplotypes were identified based on six cpDNA regions: the intergenic spacer between the trnT and trnL 3′exon, trnL 3′exon-trnF, atpB-rbcL, accDpsaI, the rpl16 intron and the trnK region (including the matK gene). Via phylogenetic analyses of the haplotypes, two continental species, P. sceptrum-carolinum and P. grandiflora, were placed at the most ancestral position in the trees. The former species is widely distributed in the Eurasian continent, and the latter is distributed in Far East Asia. Two robust major cpDNA clades (clades I and II) were revealed in the Japanese archipelago, although the statistical values of monophyly of these clades were weak. Clade I included the haplotypes (A-1, A-2, B-1, B-2 and J) of three species (P. gloriosa, P. iwatensis and P. ochiaiana), and Clade II included seven haplotypes (C-D, E-1, E-2 and F-H) of P. nipponica. These results suggest that this series originated on the Eurasian continent and that subsequently populations at the eastern edge of the continent differentiated into the two Japanese lineages. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
Euphorbia (Euphorbiaceae) comprises over 2150 species and is thus the second-largest genus of flowering plants. In Europe, it is represented by more than 100 species with highest diversity in the Mediterranean area; the majority of taxa belong to subgenus Esula Pers., including about 500 taxa. The few available phylogenetic studies yielded contrasting results regarding the monophyly of subg. Esula, and the phylogenetic relationships among its constituents remain poorly understood. We have sampled DNA sequences from the nuclear ribosomal internal transcribed spacer (ITS) and the plastid trnT-trnF region from about 100, predominantly European taxa of subg. Esula in order to infer its phylogenetic history. The plastid data support monophyly of subg. Esula whereas the ITS phylogeny, which is generally less resolved, is indecisive in this respect. Although some major clades have partly incongruent positions in the ITS and plastid phylogenies, the taxonomic content of the major terminal clades is congruent in both trees. As traditional sectional delimitations are largely not corroborated, an improved classification is proposed. Character state reconstruction illustrates that the annual life form developed independently several times in different clades of subgenus Esula from perennial ancestors, and that several morphological traits used in previous classifications of Euphorbia developed in parallel in different lineages.  相似文献   

8.
Abstract

Blue penguins, Eudyptula minor, breeding on Penguin Island, Western Australia are considerably larger than other blue penguins in Australia. If genetic isolation is the cause, it may have implications for the conservation status of some blue penguin populations. We compared the sequences of two mitochondrial gene regions (cytochrome‐b and the control region) from Western Australian blue penguins with other populations of blue penguins from Australia and New Zealand. We found few differences between sequences from Western Australia, Phillip Island, Victoria and Otago, New Zealand, although all three differed considerably from other New Zealand blue penguins. Sequences for the control region from the Western Australian blue penguins and 30 more birds breeding at various Australasian sites provided further support for two major clades within Eudyptula; an Australian clade (including Otago) and a New Zealand clade.  相似文献   

9.
Classification of the genusAconitum (Ranunculaceae) has long been considered quite difficult because its species show high levels of morphological and ecological variability. The molecular phylogeny of Asian aconites,Aconitum subgenusAconitum was, therefore, studied based on RFLP and sequences of the intergenic spacer between thetrnL (UAA) 3′ exon andtrnF (GAA), and of thetrnL intron, of the chloroplast DNA. UsingAconitum subgenusLycoctonum as an outgroup, we obtained a statistically reliable molecular tree composed of six clades branched radiatively at the very base. There are three clades of Japanese aconites, a single clade of the species of Yunnan and Himalayas, and two clades of Siberian plants. All the tetraploid taxa of Japan we studied did not show any difference based on the molecular characters analyzed, though they have been classified into many taxa. Evolution and phytogeography of the Asian aconites as well as the phylogeny are discussed.  相似文献   

10.
The Balkan Peninsula is considered the most important refugium for species during the Pleistocene glaciations and today harbours c. 2000 endemic species, but we know surprisingly little about the evolution of taxa in this region. Veronica saturejoides, V. thessalica and V. erinoides are a group of closely related alpine taxa endemic to the Balkan Peninsula. Here, we analyse four DNA regions [the nuclear chalcone synthase intron (CHSi) and ribosomal internal transcribed spacer (ITS) region and the plastid rpoBtrnC spacer and trnLtrnLtrnF region] and amplified fragment length polymorphism (AFLP) fingerprints to provide a phylogenetic hypothesis for the relationships among these taxa. Additionally, we analyse leaf morphological characters used to distinguish the three subspecies of V. saturejoides. The analyses support the distinction of the three subspecies based on previously intuitively suggested characters. Nuclear chalcone synthase intron data indicate that the southern taxa are genetically much more diverse than the more northern V. saturejoides subsp. saturejoides. Phylogenetic relationships inferred from this region and AFLP fingerprints support the monophyly of V. saturejoides. In contrast, plastid DNA regions suggest a closer relationship of V. saturejoides subsp. saturejoides to V. thessalica. The most likely scenario involves introgression into V. saturejoides subsp. saturejoides from V. thessalica. © 2009 The Linnean Society of London, Botanical Journal of the Linnean Society, 2009, 159 , 616–636.  相似文献   

11.
With c. 85 species, the genus Micranthes is among the larger genera of the Saxifragaceae. It is only distantly related to the morphologically similar genus Saxifraga, in which it has frequently been included as Saxifraga section Micranthes. To study the molecular evolution of Micranthes, we analysed nuclear ribosomal (internal transcribed spacer, ITS) and plastid (trnLtrnF) DNA sequences in a comprehensive set of taxa comprising c. 75% of the species. The molecular phylogenetic tree from the combined dataset revealed eight well‐supported clades of Micranthes. These clades agree in part with previously acknowledged subsections or series of Saxifraga section Micranthes. As these eight groups can also be delineated morphologically, we suggest that they should be recognized as sections of Micranthes. New relationships were also detected for some species and species groups, e.g. section Davuricae sister to sections Intermediae and Merkianae, and M. micranthidifolia as a member of section Micranthes. Species proposed to be excluded from the genus Micranthes for morphological reasons were resolved in the molecular tree in Saxifraga. Many morphological characters surveyed were homoplasious to varying extents. Micromorphological characters support comparatively well the clades in the phylogenetic tree. An updated nomenclature and a taxonomic conspectus of sections and species of Micranthes are provided. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 178 , 47–66.  相似文献   

12.
The phylogeny of the New Zealand hepialid moths was estimated from a cladistic analysis of sixty‐three morphological characters, from all life cycle stages. One hundred and sixteen maximum parsimony trees were produced. The phylogenetic reconstruction indicated that the currently recognized generic concepts, and the four informal lineages hypothesized in a previous morphological taxonomic revision, were monophyletic. The relationships of species within genus Wiseana were not fully resolved. Analysis of a data set of thirty‐nine adult male characters from the New Zealand taxa and the Australian genera Jeana, Oxycanus and Trictena supported the monophyly of the New Zealand ‘Oxycanus’ s.s lineage.  相似文献   

13.
A phylogenetic analysis of the New World genus Cuphea was conducted employing sequences from the nuclear rDNA internal transcribed spacer (ITS) and chloroplast trnL-trnF spacer and rpl16 intron. The analysis expands the number of Cuphea species from 53 in an earlier ITS study to 70 and adds two chloroplast data sets in order to generate a more complete and robust phylogeny and to test a previous result that suggested the presence of a large North American clade. Results reaffirm the monophyly of Cuphea with Pleurophora as the sister genus and recover a basal divergence event that mirrors the two subgenera of the current classification. Phylogenies of the two chloroplast regions are largely unresolved beyond the initial dichotomy and some resolution at the terminal and subterminal nodes. Based on the ITS phylogeny, five major clades are recognized. Subgenus Cuphea (Clade 1), defined morphologically by the synapomorphic loss of bracteoles, is sister to the much larger subg. Bracteolatae (Clades 2–5). Clades 2–4, comprising the South American and Caribbean species, grade successively to Clade 5, an exclusively North American lineage of 29 species. Among the 12 sections included in the study, only section Trispermum, a subclade of Clade 4, is monophyletic. Section Pseudocircaea is nested within Clade 3, which is largely equivalent to section Euandra. The North American endemic clade includes four sections, of which none are recovered as monophyletic in this study.  相似文献   

14.
The European earwig, Forficula auricularia, is a cosmopolitan insect endemic to Europe, West Asia and North Africa, which has invaded many temperate regions of the world including Australia and New Zealand. F. auricularia has been shown to be a complex of morphologically identical, reproductively isolated lineages that possess two distinct clades of mitochondrial DNA. Entomological collection data, historical literature and further field collections were used to develop a greater understanding of Australian F. auricularia’s invasion biology and its current distribution. Genetic analysis of F. auricularia collected from Australia and New Zealand using two mitochondrial genes (COI and a fragment overlapping parts of the COI -COII genes) was also undertaken. To identify the possible source populations of the Australasian invasion these sequences were compared to those from 16 locations within Britain and continental Europe. All Australasian populations were shown to be of the clade B lineage. Tasmanian and New Zealand populations consist of a single subclade comprised of only 4 and 1 haplotypes respectively. The Australian mainland populations also contained a second subclade consisting of up to 11 haplotypes indicating that multiple introductions possibly occurred on the Australian mainland. Comparison of mitochondrial genomes from Australasian and European populations showed the Australian mainland subclade to be most closely related to Portuguese haplotypes, and the Tasmanian and New Zealand clade closely related to those in Brittany, France. No European haplotypes perfectly matched the Australasian sequences. Therefore, the original source populations are still to be identified with harbours on the Iberian Peninsula’s western coast and those on the English Channel likely candidate areas.  相似文献   

15.
We investigated the phylogenetic relationships in Tulipa in Turkey using DNA sequences from the plastid trnL‐trnF region and the internal transcribed spacer (ITS) of nuclear ribosomal DNA. We generated trnL‐trnF and nuclear ITS sequences for 11 Tulipa spp. from Turkey and compared the utility of trnL‐trnF and ITS sequences for phylogenetic analysis. Neighbor‐joining, Bayesian and maximum parsimony methods were implemented using the same matrices. Our study of Tulipa based on molecular data revealed congruent results with previous studies. Despite the relatively lower resolution of trnL‐trnF than that of ITS, both sequence matrices generated similar results. Three clades were clearly distinguished, corresponding to subgenera Tulipa, Eriostemones and Orithyia. It is not fully resolved whether Clusianae should be recognized as a separate section of subgenus Tulipa or a distinct subgenus. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 172 , 270–279.  相似文献   

16.
The trnL-trnF region is located in the large single-copy region of the chloroplast genome. It consists of the trnL gene, a group I intron, and the trnL-F intergenic spacer. We analyzed the evolution of the region in three gymnosperm families, Taxaceae, Cephalotaxaceae, and Podocarpaceae, with especially dense sampling in Taxaceae and Cephalotaxaceae, for which we sequenced 43 accessions, representing all species. The trnL intron has a conserved secondary structure and contains elements that are homologous across land plants, and the spacer is highly variable in length and composition. The spatial distribution of nucleotide diversity along the trnL-F region suggests that different portions of this region have different evolutionary patterns. Tandem repeats that form stem–loop structures were detected in both the trnL intron and the trnL-F spacer, and the spacer sequences contain promoter elements for the trnF gene. The presence of promoters and stem–loop structures in the trnL-F spacer and high sequence variation in this region suggest that trnL and trnF are independently transcribed. Stem–loop regions P6, P8, and P9 of the trnL intron and the trnL-F spacer (except the promoter elements) might undergo neutral evolution with respect to their escape from functional constraints.  相似文献   

17.
In order to clarify evolutionary patterns and processes of intraspecific diversification ofPedicularis chamissonis Steven, we analyzed intraspecific variation of the nucleotide sequences of non-coding regions of chloroplast DNA: the intergenic spacers betweentrnT (UGU) andtrnL (UAA) 5′exon,trnL (UAA) 3′exon andtrnF (GAA), andatpB andrbcL. In 24 populations ofP. chamissonis, 33 nucleotide substitutions and 12 insertions/deletions were inferred, and their genetic distances ranged from 0.001 to 0.014. Seventeen distinct cpDNA haplotypes could be recognized and each haplotype was found to be geographically structured. Two major clades (the Northern and Southern clades) were revealed in phylogenetic analyses of cpDNA haplotypes. The haplotypes of the Northern clade had a wider distribution area in the populations of Mts. lide of central Honshu in Japan, northward to Unalaska Island in the Aleutians. Relationships among most haplotypes were unresolved polytomies. On the other hand, the haplotypes of the Southern clade occurred from the populations of Mt. Gassan southwards to Mt. Arakawa of central Honshu. Within this clade, three subclades were clearly recognized. From these results, we concluded that the haplotypes of the Northern and Southern clades inP. chamissonis might have traveled down to Japanese Archipelago from the north in not a single glacial period.  相似文献   

18.

Background and Aims

Phylogenetic relationships of subtribes Cranichidinae and Prescottiinae, two diverse groups of neotropical terrestrial orchids, are not satisfactorily understood. A previous molecular phylogenetic study supported monophyly for Cranichidinae, but Prescottiinae consisted of two clades not sister to one another. However, that analysis included only 11 species and eight genera of these subtribes. Here, plastid and nuclear DNA sequences are analysed for an enlarged sample of genera and species of Cranichidinae and Prescottiinae with the aim of clarifying their relationships, evaluating the phylogenetic position of the monospecific genera Exalaria, Ocampoa and Pseudocranichis and examining the value of various structural traits as taxonomic markers.

Methods

Approx. 6000 bp of nucleotide sequences from nuclear ribosomal (ITS) and plastid DNA (rbcL, matK-trnK and trnL-trnF) were analysed with cladistic parsimony and Bayesian inference for 45 species/14 genera of Cranichidinae and Prescottiinae (plus suitable outgroups). The utility of flower orientation, thickenings of velamen cell walls, hamular viscidium and pseudolabellum to mark clades recovered by the molecular analysis was assessed by tracing these characters on the molecular trees.

Key Results

Spiranthinae, Cranichidinae, paraphyletic Prescottia (with Pseudocranichis embedded), and a group of mainly Andean ‘prescottioid’ genera (the ‘Stenoptera clade’) were strongly supported. Relationships among these clades were unresolved by parsimony but the Bayesian tree provided moderately strong support for the resolution (Spiranthinae–(Stenoptera clade-(Prescottia/Pseudocranichis–Cranichidinae))). Three of the four structural characters mark clades on the molecular trees, but the possession of a pseudolabellum is variable in the polyphyletic Ponthieva.

Conclusions

No evidence was found for monophyly of Prescottiinae and the reinstatement of Cranichidinae s.l. (including the genera of ‘Prescottiinae’) is favoured. Cranichidinae s.l. are diagnosed by non-resupinate flowers. Lack of support from parsimony for relationships among the major clades of core spiranthids is suggestive of a rapid morphological radiation or a slow rate of molecular evolution.Key words: Cranichideae, Cranichidinae, matK-trnK, molecular phylogenetics, nrITS, Orchidaceae, Prescottiinae, resupination, trnL-trnF  相似文献   

19.
Indigenous to Europe, the blackberry rust fungus Phragmidium violaceum was introduced to Australia and subsequently appeared in New Zealand, with the most recent authorised introductions to Australia specifically for the biological control of European blackberry. Markers for ‘selective amplification of microsatellite polymorphic loci’ (SAMPL) were developed for studying the population genetics of P. violaceum. Modification of one of the two SAMPL primers with a HaeIII adapter (H) revealed significantly greater levels of genetic variation than primers used to generate AFLPs, the latter revealing little or no variation among 25 Australasian and 19 European isolates of P. violaceum. SAMPL was used to describe genetic variation among these 44 isolates of P. violaceum from 51 loci generated using primer pairs (GACA)4 + H–G and R1 + H–G. The European isolates were more diverse than Australasian isolates, with 37 and 22 % polymorphic loci, respectively. Cluster analysis revealed geographic clades, with Australasian isolates forming one cluster separated from two clusters comprising the European isolates. However, low bootstrap support at these clades suggested that Australian isolates had not differentiated significantly from European isolates since the first record of P. violaceum in Australia in 1984. In general, the results support two hypotheses. First, that the population of P. violaceum in Australia was founded from a subset of individuals originating from Europe. Second, that P. violaceum in New Zealand originated from the Australian population of P. violaceum, probably by wind dispersal of urediniospores across the Tasman Sea. The application of SAMPL markers to the current biological control programme for European blackberry is discussed.  相似文献   

20.
Primula cuneifolia Ledeb. (Primulaceae), we analyzed intraspecific variation of the nucleotide sequences of non-coding regions of chloroplast DNA: the intergenic spacers between trnT (UGU) and the trnL (UAA) 5′exon, the trnL (UAA) 3′exon and trnF (GAA), and atpB and rbcL. In 20 populations of P. cuneifolia, 22 nucleotide substitutions and five insertions/deletions were inferred, and their genetic distances ranged from 0.001 to 0.008. Eight distinct haplotypes could be recognized and each haplotype was found to be geographically structured. Three major clades (the Northern, Hokkaido and Southern clades) were revealed in phylogenetic analyses of the haplotypes. The haplotypes of the Northern clade had a wider distribution area in the populations of Mt. Rausu and Rishiri Island of eastern and northern Hokkaido in Japan, northward to Unalaska Island in the Aleutians, and those of the Hokkaido clade were distributed in the populations of central Hokkaido and Mt. Iwaki of the northern Honshu in Japan; in addition, those of the Southern clade were observed only in the populations of the central Honshu. It was shown that the genetic diversifications of the Southern clade were higher than those of the Northern and Hokkaido clades. Furthermore, it was shown that the topology within the Southern clade was hierarchical, and the haplotypes of the Southern populations in the clade were derivative. From these results, we concluded that the cpDNA haplotypes of the three clades in P. cuneifolia arose and assumed the present distribution areas through several cycles of glacial advance and retreat in the Pleistocene. Received 24 June 1998/ Accepted in revised form 28 December 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号