首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Development of the Populus leaf is presented as a model system to illustrate the sequence of events that occur during the sink to source transition. A Populus leaf is served by three leaf traces, each of which consists of an original procambial trace bundle that differentiates acropetally and continuously from more mature procambium in the stem and a complement of subsidiary bundles that differentiates bidirectionally from a leaf basal meristem. During development these subsidiary bundles maintain continuity through the meristematic region of the node. The basipetally developing subsidiary bunles form phloem bridges that serve to integrate adjacent leaf traces of the stem vasculature. Distal to the node the acropetally developing bundles from all three leaf traces are reoriented in a precise and orderly sequence to form tiers of petiolar bundles. These tiers of bundles extend into the midrib where bundles diverge at intervals as the major lateral veins. The dorsal-most tier of bundles extends to the lamina tip and each successive tier of bundles contributes to lateral veins situated more proximally in the lamina. Although the midrib and the major vein system differentiate acropetally in the lamina, they mature basipetally. Maturation of the mesophyll and other lamina tissues also mature basipetally. As a consequence of the basi-petal maturation process, the lamina tip matures very early and begins exporting photosynthates while the lamina base is still importing from other leaves. The transition of a leaf from sink to source status must therefore be considered as a progression of structural and functional events that occur in synchrony.  相似文献   

2.
We evaluated the association of red coloration with senescence in sugar maple (Acer saccharum Marsh.) leaves by assessing differences in leaf retention strength and the progression of the abscission layer through the vascular bundle of green, yellow, and red leaves of 14 mature open-grown trees in October 2002. Computer image analysis confirmed visual categorization of leaves as predominantly green, yellow or red, and chemical quantification of leaf pigment concentrations verified that leaf color reflected underlying differences in leaf biochemistry. Significantly lower chlorophyll concentrations within red and yellow leaves indicated that senescence was more advanced in leaves from these color categories relative to green leaves. Among leaf types, only red leaves contained high concentrations of anthocyanins. There were significant differences in leaf retention capacity among color categories, with the petioles of green leaves being the most firmly attached to twigs, followed by red and then yellow leaves. Microscopic analysis indicated that yellow leaves had the most advanced extension of the abscission layer through the vasculature, with green and red leaves having significantly less abscission layer progression than yellow. A more limited progression of the abscission layer through vascular bundles may be evidence of delayed leaf senescence that could extend resorption of mobile leaf constituents. Together, results from this study suggest an association between leaf anthocyanin content and functional delays in senescence.  相似文献   

3.
KNOX (knotted1-like homeobox) genes have a widely conserved role in the generation of dissected leaves. Ectopic KNOX activity in leaves in various angiosperm lineages causes leaf form changes that can elucidate how the configuration of leaf development evolved. We present an analysis of leaf morphology and morphogenesis in transgenic Kohleria lines overexpressing a heterologous KNOX gene. Kohleria, like many members of Gesneriaceae, has simple-serrated leaves with pinnate venation. KNOX overexpression causes prolonged segment proliferation in proximal, but not distal, parts of leaf blades. Elaborate dissected segments reiterate the zonation of the whole leaf, with organogenic activity persisting between a distal maturation zone and a proximal intercalary elongation zone. The architecture of vascular bundles is severely altered, with a reduced midvein and a more palmate venation. The initial establishment of organogenically competent primordial margins (marginal blastozones) and the onset of tissue differentiation in early stages of leaf development were similar in wild-type and KNOX overexpressing lines. However, leaves overexpressing KNOX often failed to fully mature, and persistent marginal blastozones were found at the base of blades in mature portions of the shoot. We conclude that KNOX-mediated perpetuation of marginal blastozones in Kohleria is sufficient to induce a set of processes that result in highly dissected leaflets, which are unusual in this plant family. Spatial confinement of blastozones between an early maturing tip and a late elongating petiole zone reflects the presence of distinct maturation processes that limit the ability of the leaf margins to respond to ectopic KNOX gene expression.  相似文献   

4.
Mature field- and growth-chamber-grown leaves of Populus deltoides Bartr. ex Marsh. were examined with light and scanning electron microscopes to determine their vasculature and the spatial relationships of the various orders of vascular bundles to the mesophyll. Three leaf traces, one median and two lateral, enter the petiole at the node. Progressing acropetally in the petiole these bundles are rearranged and gradually form as many as 13 tiers of vascular tissue in the petiole at the base of the lamina. (Most leaves contained seven vertically stacked tiers.) During their course through the midrib the tiers “unstack” and portions diverge outward and continue as secondary veins toward the margin on either side of the lamina. As the midvein approaches the leaf tip it is represented by a single vascular bundle which is a continuation of the original median bundle. Tertiary veins arise from the secondary veins or the midvein, and minor veins commonly arise from all orders of veins. All major veins–primaries, secondaries, intersecondaries, and tertiaries–are associated with rib tissue, while minor veins are completely surrounded by a parenchymatous bundle sheath. The bundle sheaths of tertiary, quaternary, and portions of quinternary veins are associated with bundle-sheath extensions. Minor veins are closely associated spatially with both ad- and abaxial palisade parenchyma of the isolateral leaf and also with one or two layers of paraveinal mesophyll that extend horizontally between the veins. The leaves of growth-chamber-grown plants had thinner blades, a higher proportion of air space, and greater interveinal distances than those of field-grown plants.  相似文献   

5.
Xylem anatomy and water relations were studied in holly fern (Cyrtomium falcatum, Aspidiaceae) to determine the details of the pathway for water flow through an entire plant and the influence of tracheid number and lumen diameter on water flow. Each leaf has two adaxial traces and an abaxial trace, which are supplied by diarch adventitious roots attached to the dictyostele of the rhizome near the leaf base. Anatomical observations and dye experiments showed that each adaxial bundle vascularizes the approximately seven pinnae on its side of a leaf. An abaxial bundle is intermittently connected to an adaxial bundle as well as other abaxial bundles, forming a minor vascular pathway between the bundles of the leaf axis. Changes in both number and diameter of tracheids result in an acropetal decrease in hydraulic conductance per unit length along the rachis, although tracheid number locally increases when the trace for a pinna is produced in an adaxial bundle. Water flow was determined from the transpiration distal to the point in question or by forcing a solution through an axis with applied pressure. The water potential gradient along the plant axis was quite constant, indicating that hydraulic conductance per unit length varied with leaf area to be supplied. About 40% of the overall water potential drop occurred from the rachis into the pinnae, which reflected factors controlling water potential gradients in the lamina and not a very low conductance in the petiolule xylem. Hydraulic conductances calculated using the Hagen-Poiseuille equation and tracheid diameters were generally double those of measured conductances. Since the values tended to vary by a constant factor, tracheid number and diameter may largely control water flow in the xylem.  相似文献   

6.
Leaf developmental patterns were characterized for three tropical tree species with delayed greening. Changes in the pigment contents, photosynthetic capacity, stomata development, photosystem 2 efficiency, rate of energy dissipation, and the activity of partial protective enzymes were followed in developing leaves in an attempt to elucidate the relative importance of various photoprotective mechanisms during leaf ontogeny. Big leaves of Anthocephalus chinensis, a fast-growing light demanding species, expanded following an exponential pattern, while relatively small leaves of two shade-tolerant species Litsea pierrei and Litsea dilleniifolia followed a sigmoidal pattern. The juvenile leaves of A. chinensis and L. pierrei contained anthocyanin located below the upper epidermis, while L. dilleniifolia did not contain anthocyanin. Leaves of A. chinensis required about 12 d for full leaf expansion (FLE) and photosynthetic development was delayed 4 d, while L. pierrei and L. dilleniifolia required 18 or 25 d for FLE and photosynthetic development was delayed 10 or 15 d, respectively. During the leaf development the increase in maximum net photosynthetic rate was significantly related to changes in stomatal conductance and the leaf maturation period was positively related to the steady-state leaf dry mass per area for the three studied species. Dark respiration rate of leaves at developing stages was greater, and pre-dawn initial photochemical efficiency was lower than that of mature leaves. Young leaves displayed greater energy dissipation than mature leaves, but nevertheless, the diurnal photoinhibition of young L. dilleniifolia leaves was higher than that of mature leaves. The young red leaves of A. chinensis and L. pierrei with high anthocyanin contents and similar diurnal photoinhibition contained more protective enzymes (superoxide dismutase, ascorbate peroxidase) than mature leaves. Consequently, red leaves may have higher antioxidant ability.  相似文献   

7.
Morphological and anatomical changes in shoots of vigorously growing cottonwood plants (Populus deltoides Bartr.) were studied during dormancy induction in 8-hr short days (SD) and in control plants grown in 18-hr long days (LD). Pronounced structural changes occurred in terminal buds after 4 wk and full dormancy was achieved in 7 wk of SD. Leaf expansion ceased after 5 wk of SD as foliage leaves matured to the terminal bud base at leaf plastochron index 0 (LPI 0). Within the bud, total leaf length (lamina + petiole) decreased and stipule length increased progressively each week; thus, the ratio total leaf length/stipule length decreased rapidly, especially at the position of incipient bud-scale leaves LPI - 1 and LPI - 2. These bud-scale leaves were fully developed by wk 6 and were derived from enlarged stipules and aborted laminae. The full complement of primordia within the bud at the start of SD eventually matured as foliage leaves and the first bud-scale leaf (LPI - 1) was initiated immediately following transfer to SD. Acropetal advance of the primary-secondary vascular transition zone (TZ) was associated with leaf maturation. However, it did not advance throughout the entire vascular cylinder as in LD, but only in those leaf traces serving mature leaves beneath the terminal bud. In both LD and SD treatments the same linear relationship was maintained between LPI of the TZ and LPI of the most recently matured leaf; both parameters simultaneously increased in LD and decreased in SD. Thus, the relationship between leaf maturation and advance of the TZ was maintained irrespective of environment.  相似文献   

8.
Microautoradiography was used to follow the translocation pathways of 14C-labeled photosynthate from mature source leaves, through the stem, to immature sink leaves three nodes above. Translocation occurred in specific bundles of the midveins and petioles of both the source and sink leaves and in the interjacent internodes. When each of six major veins in the lamina of an exporting leaf was independently spot-fed 14CO2, label was exported through specific bundles in the petiole associated with that vein. When the whole lamina of a mature source leaf was fed 14CO2, export occurred through all bundles of the lamina, but acropetal export in the stem was confined to bundles serving certain immature sink leaves. Cross-transfer occurred within the stem via phloem bridges. Leaves approaching maturity translocated photosynthate bidirectionally in adjacent subsidiary bundles of the petiole. That is, petiolar bundles serving the lamina apex were exporting unlabeled photosynthate while those serving the lamina base were simultaneously importing labeled photosynthate. The petioles and midveins of maturing leaves were strong sinks for photosynthate, which was diverted from the export front to differentiating structural tissues. The data support the idea of bidirectional transport in adjacent bundles of the petiole and possibly in adjacent sieve tubes within an individual bundle.Abbreviations C central leaf trace - L left leaf trace - LPI leaf plastochron index - R right leaf trace  相似文献   

9.
The various primary vascular systems of shoots of Anagallis arvensis L. (Primulaceae) can be distinguished in relation to the number of leaves (two, three, or four) at each node. In this study, shoot segments (single intemodes and the nodes above them) were examined. The arrangement of segments within shoots was also recorded. The vasculature forms a closed system with the number of sets of bundles usually equal to twice the number of leaves. Irregularities are found in the following features of the system: the number of bundles composing leaf half-traces; occurrence of anastomosing bundles; the number of intemodes through which bundles extend; levels of leaf attachment to the stem at the node; and distribution of parenchyma within the vascular cylinder, which determines the number of bundles in sets and the number of bundle sets. The irregularities occur with different frequencies for segments exhibiting different phyllotactic patterns. Comparison of these frequencies leads to the following conclusions: anastomosing bundles occur only in decussate or trimerous shoot segments, whereas sets of bundles united within intemodes and displaced leaves occur only in tetramerous or trimerous ones; decrease of the number of bundles per leaf and displacement of leaves at the nodal level are correlated; variation between segments exhibiting the same phyllotactic pattern is greatest for trimerous, less for tetramerous, and least for decussate segments; the vascular system of decussate shoot segments is more stable than that of the other systems; and trimerous segments seem to be intermediate between the other two segment types.  相似文献   

10.
The leaf and stem of the potato plant (Solanum tuberosum L. cv. Russet Burbank) were studied by light microscopy to determine their morphology and vasculature; scanning electron microscopy provided supplemental information on the leaf's morphology. The morphology of the basal leaves of the potato shoot is quite variable, ranging from simple to pinnately compound. The upper leaves of the shoot are more uniform, being odd pinnate with three major pairs of lateral leaflets and a number of folioles. The primary vascular system of the stem is comprised of six bundles, three large and three small ones. The three large bundles form a highly interconnected system through a repeated series of branchings and arch-producing mergers. Two of the three large bundles give rise to short, lateral leaf traces at each node. Each of the small bundles in the stem is actually a median leaf trace which extends three internodes before diverging into a leaf. The three leaf traces enter the petiole through a single gap; thus the nodel anatomy is three-trace unilacunar. Upon entering the petiole, each of the laterals splits into an upper and a lower lateral. Whereas the upper laterals diverge entirely into the first pair of leaflets, the lower laterals feed all of the lateral leaflets through a series of bifurcations. Prior to their entering the terminal leaflet, the lower laterals converge on the median bundle to form a single vascular crescent which progresses acropetally into the terminal leaflet as the midvein, or primary vein. In the midrib, portions of the midvein diverge outward and continue as secondaries to the margin on either side of the lamina. Near the tip of the terminal leaflet, the midvein consists of a single vascular bundle which is a continuation of the median bundle. Six to seven orders of veins occur in the terminal leaflet.  相似文献   

11.
The vascular system of the leaves of Saccharum officinarum L. is composed in part of a system of longitudinal strands that in any given transverse section may be divided into three types of bundle according to size and structure: small, intermediate, and large. Virtually all of the longitudinal strands intergrade, however, from one type bundle to another. For example, virutually all of the strands having large bundle anatomy appear distally in the blade as small bundles, which intergrade into intermediates and then large bundles as they descend the leaf. These large bundles, together with the intermediates that arise midway between them, extend basipetally into the sheath and stem. Most of the remaining longitudinal strands of the blade do not enter the sheath but fuse with other strands above and in the region of the blade joint. Despite the marked decrease in number of bundles at the base of the blade, both the total and mean cross-sectional areas (measured with a digitizer from electron micrographs) of sieve tubes and tracheary elements increase as the bundles continuing into the sheath increase in size. Linear relationships exist between leaf width and total bundle number, and between cross-sectional area of vascular bundles and both total and mean cross-sectional areas of sieve tubes and tracheary elements.  相似文献   

12.
Developmental study of the stem-node-leaf vascular continuum of Austrobaileya scandens White reveals that the vasculature within each leaf originates from a single procambial strand, that becomes separated into two strands only at the junction of leaf and stem. At lower levels in the stem the two strands become incorporated into independent portions of the stele. At later stages of development the solitary vascular bundle within the young leaf undergoes considerable lateral growth, resulting in an essentially continuous arc of vascular tissue. Ontogenetic evidence indicates that the vascular bundle in the midrib of the lamina should be regarded as a fundamentally single bundle and not interpreted as two bundles that have undergone various degrees of secondary fusion. A condition of two totally separate bundles extending the entire length of the leaf was not encountered. Our observations confirm the characterization of Austrobaileya as an example of “second rank” level of leaf vasculature. Nodal anatomy emphasizes the extremely isolated taxonomic position of Austrobaileya within the primitive dicotyledons.  相似文献   

13.
Phenolic compounds are commonly regarded as the main chemical defenses of deciduous woody plants against insects. To examine how indices of leaf maturation (water content, toughness, and sugar/protein ratio) modified larval consumption and growth relative to phenolics and phenolic-related leaf traits, we measured consumption and growth of fourth-instar Epirrita autumnata (Bkh.) (Lepidoptera: Geometridae) larvae on three different days on young, normal, and mature leaves, respectively, from the same mountain birch (Betula pubescens ssp. czerepanovii (Orlova) Hämet-Ahti) trees. The larvae achieved the same growth rates on young and normal leaves, but had to consume 40% more on the latter. On more mature leaves, larval growth was poorer and was positively correlated with sugar/protein ratios (although the ratio peaked at that time). Indices of leaf maturation correlated with several phenolics in data pooled over the three study days, but poorly in any individual day. Similarly, in the pooled data, larval consumption and growth correlated with several leaf traits, but correlations between leaf and insect traits were few on any of the three days, and no trait was significant on each of the three days.We next examined whether variation in the maturation indices modified the associations of phenolics with insect consumption and growth. When interactions between phenolics and leaf maturation indices were taken into account, the number of phenolic compounds displaying significant associations with insect traits more than doubled. The relative importance of interactive versus direct associations increased with leaf maturation: on young leaves five phenolics showed direct and eleven interactive associations with insect traits, while in mature leaves we found two phenolics to display direct and thirteen phenolics interactive associations. Leaf water content, either alone or together with toughness and sugar/protein ratio, generally explained more of the variance in Epirrita growth (up to 59%) than any phenolic or phenolic-related trait alone (highest value 20%). Including interactive effects between phenolics and indices of leaf maturation in the model increased the proportion explained of variance in larval growth between 49 and 73%. Maturation indices explained 0 to 23% of variance in consumption, and the phenolic compound with the highest (positive!) correlation alone up to 28%, but taking into account interactions between phenolics and maturation indices raised the degree of explanation much (namely, 32 to 53%) over that explained by indices of leaf maturation alone. This indicates strong interactive effects on consumption between phenolics and indices of leaf maturation.  相似文献   

14.
Population structure, leaf phenology and leaf turnover were followed over a 29-month period in Zamia debilis L.f. ex Aiton (Zamiaceae), an understory species in the Cambalache Forest in northern Puerto Rico. It was not possible to determine plant age or to measure the subterranean stems; size classes based on leaf number and leaf × leaflet number indices were used to determine population structure. Despite seasonal and year to year fluctuations in leaf number at the individual and population level, population profiles remained relatively constant. At any one time, over 50% of the population was composed of unbranched individuals with one or two leaves. Only 7% of the plants were branched. Plants with seven or more leaves comprised at a maximum 8% of the population, but accounted for 28% of the total foliage. Size classes based on leaf number and on a leaf × leaflet index gave approximately reverse J-shaped curves typical of trees with shade tolerant seedlings and saplings. New leaves emerged throughout the year, with a peak at the beginning of the rainy season in May or June and lowest production during the dry months of February through April. Average leaf life expectancy was approximately 2.3 years. Leaf death occurred over an extended period of time by the loss of individual leaflets. Patterns in leaf production and loss differed between few- and many-leaved plants. On the average, as the number of mature leaves on a plant increased, time between emergence of new leaves decreased. In many-leaved plants more than one event of new leaf emergence per year was common. Individuals with one to three mature leaves and individuals with four or more mature leaves differed in their response to water stress: few-leaved plants generally reduced the rate of new leaf production and retained old leaves longer. Plants with more than three leaves continued to produce new leaves, but the rate of leaf mortality increased so that most had a net leaf loss. There was no evidence that leaf emergence or retention were affected by cone production or seed maturation.  相似文献   

15.
The structural patterns of the primary vascular systems in some species of Leguminosae and Rosaceae have been determined by tracing the longitudinal course of the vascular bundles in terminal stem segments. These systems are interpreted as consisting of sympodia. Each sympodium is composed of an axial bundle which is continuous through the length of the segment and from which arise trace bundles that supply leaves and axillary buds. A compact arrangement of vascular bundles seems to correlate with the woody habit. Regardless of the degree of compactness of the primary vascular system, the structural identity of the individual sympodia is maintained. The total number of vascular bundles at a particular level is related to the number of axial bundles in the system, the number of traces per leaf and per axillary bud, and the number of internodes traversed by the traces prior to entering a lateral appendage. Shrubs and trees have more vascular bundles than herbs. Data from this study and the literature indicate that the vascular system is predominantly of the open type in dicotyledonous plants which have helically arranged leaves and, further, that in such plants with a 3-trace, trilacunar nodal structure, the number of sympodia coincides with the number of orthostichies (which is also the denominator of the phyllotactic fraction). In open systems leaf gaps cannot be morphologically delimited. Because of the resemblance of the open type of angiosperm vascular system to that of certain gymnosperms, previously interpreted to have evolved from a protostele, we suggest that the eustele of angiosperms is homologous with the stele of gymnosperms. We believe, also, that angiosperms, like gymnosperms, are probably not characterized by leaf gaps of filicinean type. We provide, furthermore, a rationale for the view that the axial bundle of a sympodium is a cauline structure.  相似文献   

16.
Xylem maturation in elongating leaf blades of tall fescue ( Festuca arundinacea ) was studied using staining and microcasting. Three distinctive regions were identified in the blade: (1) a basal region, in which elongation was occurring and protoxylem (PX) vessels were functioning throughout; (2) a maturation region, in which elongation had stopped and narrow (NMX) and large (LMX) metaxylem vessels were beginning to function; (3) a distal, mature region in which most of the longitudinal water movements occurred in the LMX. The axial hydraulic conductivity ( K h) was measured in leaf sections from all these regions and compared with the theoretical axial hydraulic conductivity ( K t) computed from the diameter of individual inner vessels. K t was proportional to K h throughout the leaf, but K t was about three times K h. The changes in K h and K t along the leaf reflected the different stages of xylem maturation. In the basal 60 mm region, K h was about 0.30±0.07 mmol s−1 mm MPa−1. Beyond that region, K h rapidly increased with metaxylem element maturation to a maximum value of 5.0±0.3 mmol s−1 mm MPa−1, 105 mm from the leaf base. It then decreased to 3.5±0.2 mmol s−1 mm MPa−1 near the leaf tip. The basal expanding region was observed to restrict longitudinal water movement. There was a close relationship between the water deposition rate in the elongation zone and the sum of the perimeters of PX vessels. The implications of this longitudinal vasculature on the partitioning of water between growth and transpiration is discussed.  相似文献   

17.
刘萍  宋磊  任毅  田先华  张小卉 《西北植物学报》2006,26(11):2208-2213
应用解剖学方法,对铁筷子(Helleborus thibetanusFranch.)(毛茛科)营养器官的结构进行了研究。结果表明,铁筷子根的初生结构观察到三原型、四原型和六原型。营养器官中的维管束在横切面上木质部中的导管分子不呈“V”字形排列;根状茎的次生结构由外向内为表皮、皮层和维管柱,髓射线发达。茎的初生结构中多个维管束排列成环状,维管束鞘分化不明显,节部为单隙三迹,叶迹分别来自于3条维管束或同一条维管束。叶为两面叶,表皮细胞不规则;气孔器只分布于下表皮,为毛茛科典型的无规则型气孔。从铁筷子营养器官的解剖学特点来看,与毛茛科其它植物基本相同,但在营养器官中维管束木质部不呈“V”字形、维管束鞘分化不明显、节部具单叶隙等特征上与其它毛茛科植物不同。  相似文献   

18.
采用植物解剖学、显微切片技术等,分别对海南龙血树含有树脂的茎、不含树脂的茎、幼根和叶片等进行了系统的组织学研究。结果表明:老茎主要由栓化层、皮层、形成层和基本组织4部分组成,树脂主要分布在基本组织内维管束的导管和纤维中。叶片为等面叶,气孔主要分布在下表皮上、具有明显的孔下室,上下表皮内侧分布着大量的纤维束。幼根由根被细胞、皮层和维管柱组成。根、茎、叶的部分薄壁细胞中均含有晶束。海南龙血树营养器官的结构特征与干旱、高温和贫瘠的生态环境相适应。这些结果可为海南龙血树的开发和利用提供基本的解剖学证据。  相似文献   

19.
The anatomy and organization of the stem vascular system was analyzed in representative taxa of Nymphaea (subgenera Anecphya, Lotos, and Brachyceras). The stem vascular system consists of a series of concentric axial stem bundles from which traces to lateral organs depart. At the node each leaf is supplied with a median and two lateral leaf traces. At the same level a root trace supplies vascular tissue to adventitious roots borne on the leaf base. Flowers and vegetative buds occupy leaf sites in the genetic spiral and in the parastichies seen on the stem exterior. Certain leaves have flowers related to them spatially and by vascular association. Flowers (and similarly vegetative buds) are vascularized by a peduncle trace that arises from a peduncle fusion bundle located in the pith. The peduncle fusion bundle is formed by the fusion of vascular tissue derived from axial stem bundles that supply traces to certain leaves. The organization of the vascular system in the investigated taxa of Nymphaea is unique to angiosperms but similar to other subgenera of Nymphaea.  相似文献   

20.
The ontogeny of vascular bundles in the nodal region of Populus deltoides Bartr. was examined to understand more thoroughly the structure-function relation between leaf and stem. Three vascular traces from the stem independently enter each leaf in the nodal region. At the base of each developing leaf a region was observed in which both bundle size and vascular development was reduced; this region was referred to as the constricted zone. The constricted zone was described quantitatively at 13 locations within the nodal region of a leaf at LPI 5 by determining the number of metaxylem vessels and the total metaxylem vessel area in each of the three leaf traces. A plot of these data showed a distinct minimum value for total metaxylem vessel area within the constricted zone of each trace; the location of this minimum value was referred to as the constriction plane. Each vascular bundle within the nodal region is composed of independent subsidiary bundles that originate within the constricted zone. These bundles provide a direct connection between the leaf lamina and the stem. The node was defined anatomically on the basis of the ontogenetic development of the subsidiary bundles. The node began at the initial exit point of the central trace from the vascular cylinder and extended distally to the constriction plane. This definition allowed us to quantify the limits of each node. The origin of the initiating layer and metacambium was also examined within the nodal region. These precursors of the cambium develop continuously and acropetally from the stem into the leaf. The developmental implications of the constricted zone and the metacambium within the nodal region are discussed with respect to wood formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号