首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Jellyfish eggs neither undergo apparent cortical reaction nor show any significant change in the membrane potential at fertilization, but nevertheless show monospermy. Utilizing the perfectly transparent eggs of the hydrozoan jellyfish Cytaeis uchidae, here we show that the polyspermy block is accomplished via a novel mechanism: a collaboration between Ca2+ and mitogen-activated protein kinase (MAPK). In Cytaeis, adhesion of a sperm to the animal pole surface of an egg was immediately followed by sperm–egg fusion and initiation of an intracellular Ca2+ rise from this site. The elevated Ca2+ levels lasted for several minutes following the sperm–egg fusion. The Ca2+ rise proved to be necessary and sufficient for a polyspermy block, as inhibiting a Ca2+ rise with EGTA promoted polyspermy, and conversely, triggering a Ca2+ rise by inositol 1,4,5-trisphosphate (IP3) or excess K+ immediately abolished the egg’s capacity for sperm–egg fusion. A Ca2+ rise at fertilization or by artificial stimulations evoked dephosphorylation of MAPK in eggs. The eggs in which phosphorylated MAPK was maintained by injection of mRNA for MAPK kinase kinase (Mos), like intact eggs, exhibited a Ca2+ rise at fertilization or by IP3 injection, and shut down the subsequent sperm–egg fusion. However, the Mos-expressing eggs became capable of accepting sperm following the arrest of Ca2+ rise. In contrast, addition of inhibitors of MAPK kinase (MEK) to unfertilized eggs caused MAPK dephosphorylation without elevating Ca2+ levels, and prevented sperm–egg fusion. Rephosphorylation of MAPK by injecting Mos mRNA after fertilization recovered sperm attraction, which is known to be another MAPK-dependent event, but did not permit subsequent sperm–egg fusion. Thus, it is possible that MAPK dephosphorylation irreversibly blocks sperm–egg fusion and reversibly suppresses sperm attraction. Collectively, our data suggest that both the fast and late mechanisms dependent on Ca2+ and MAPK, respectively, ensure a polyspermy block in jellyfish eggs.  相似文献   

2.
Calcium (Ca2+) signals triggered at fertilization initiate resumption of the cell cycle and initial steps of embryonic development. In mammals, the sperm factor phospholipase Cζ triggers the release of Ca2+ from the endoplasmic reticulum (ER), initiating an oscillatory pattern of Ca2+ transients that is modulated by egg factors including Ca2+ influx channels, Ca2+ transporters, and phosphoinositide‐regulating enzymes. Here we compared characteristics of Ca2+ oscillations following in vitro fertilization (IVF) and ER Ca2+ stores among nine common laboratory mouse strains: CF1, C57BL6, SJL, CD1, DBA, FVB, 129X1, BALBc, 129S1, and the F1 hybrid B6129SF1. Sperm from B6SJLF1/J males was used for all IVF experiments. There were significant differences among the strains with respect to duration and maximum amplitude of the first Ca2+ transient, frequency of oscillations, and ER Ca2+ stores. With male strain held constant, the differences in Ca2+ oscillation patterns observed result from variation in egg factors across different mouse strains. Our results support the importance of egg‐intrinsic properties in determining Ca2+ oscillation patterns and have important implications for the interpretation and comparison of studies on Ca2+ dynamics at fertilization.  相似文献   

3.
Ca2+-dependent mechanisms are critical for successful completion of fertilization. Here, we demonstrate that CRISP1, a sperm protein involved in mammalian fertilization, is also present in the female gamete and capable of modulating key sperm Ca2+ channels. Specifically, we show that CRISP1 is expressed by the cumulus cells that surround the egg and that fertilization of cumulus–oocyte complexes from CRISP1 knockout females is impaired because of a failure of sperm to penetrate the cumulus. We provide evidence that CRISP1 stimulates sperm orientation by modulating sperm hyperactivation, a vigorous motility required for penetration of the egg vestments. Moreover, patch clamping of sperm revealed that CRISP1 has the ability to regulate CatSper, the principal sperm Ca2+ channel involved in hyperactivation and essential for fertility. Given the critical role of Ca2+ for sperm motility, we propose a novel CRISP1-mediated fine-tuning mechanism to regulate sperm hyperactivation and orientation for successful penetration of the cumulus during fertilization.  相似文献   

4.
The newt, Cynops pyrrhogaster, exhibits physiological polyspermic fertilization, in which several sperm enter an egg before egg activation. An intracellular Ca2+ increase occurs as a Ca2+ wave at each sperm entry site in the polyspermic egg. Some Ca2+ waves are preceded by a transient spike-like Ca2+ increase, probably caused by a tryptic protease in the sperm acrosome at the contact of sperm on the egg surface. The following Ca2+ wave was induced by a sperm factor derived from sperm cytoplasm after sperm–egg membrane fusion. The Ca2+ increase in the isolated, cell-free cytoplasm indicates that the endoplasmic reticulum is the major Ca2+ store for the Ca2+ wave. We previously demonstrated that citrate synthase in the sperm cytoplasm is a major sperm factor for egg activation in newt fertilization. In the present study, we found that the activation by the sperm factor as well as by fertilizing sperm was prevented by an inhibitor of citrate synthase, palmitoyl CoA, and that an injection of acetyl-CoA or oxaloacetate caused egg activation, indicating that the citrate synthase activity is necessary for egg activation at fertilization. In the frog, Xenopus laevis, which exhibits monospermic fertilization, we were unable to activate the eggs with either the homologous sperm extract or the Cynops sperm extract, indicating that Xenopus sperm lack the sperm factor for egg activation and that their eggs are insensitive to the newt sperm factor. The mechanism of egg activation in the monospermy of frog eggs is quite different from that in the physiological polyspermy of newt eggs.  相似文献   

5.
Fertilization activates development by stimulating a plethora of ATP consuming processes that must be provided for by an up-regulation of energy production in the zygote. Sperm-triggered Ca2+ oscillations are known to be responsible for the stimulation of both ATP consumption and ATP supply but the mechanism of up regulation of energy production at fertilization is still unclear. By measuring [Ca2+] and [ATP] in the mitochondria of fertilized mouse eggs we demonstrate that sperm entry triggers Ca2+ oscillations in the cytosol that are transduced into mitochondrial Ca2+ oscillations pacing mitochondrial ATP production. This results, during fertilization, in an increase in both [ATP]mito and [ATP]cyto. We also observe the stimulation of ATP consumption accompanying fertilization by monitoring [Ca2+]cyto and [ATP]cyto during fertilization of starved eggs. Our observations reveal that lactate, in contrast to pyruvate, does not fuel mitochondrial ATP production in the zygote. Therefore lactate-derived pyruvate is somehow diverted from mitochondrial oxidation and may be channeled to other metabolic routes. Together with our earlier findings, this study confirms the essential role for exogenous pyruvate in the up-regulation of ATP production at the onset of development, and suggests that lactate, which does not fuel energetic metabolism may instead regulate the intracellular redox potential.  相似文献   

6.
Mammalian reproduction is one of the most complex and fascinating biological phenomenon, which aims to transfer maternal and paternal genetic material to the next generation. At the end of oogenesis and spermatogenesis, both haploid gametes contain a single set of chromosomes ready to form the zygote, the first cell of the newly developing individual. The mature oocyte and spermatozoa remain in a quiescent state, during which the oocyte is characterized by nuclear and cytoplasmic arrest, while the spermatozoa necessitates further maturation within the epididymis and female reproductive track prior to egg fertilization. Either in vivo or in vitro, the sperm initiates a series of irreversible biochemical and physiological modifications in the oocyte. The earliest detected signal after fertilization is cytosolic Ca2+ oscillations, a prerequisite step for embryo development. These oscillations trigger the release of the oocyte from the second meiosis arrest towards embryogenesis, also known as “oocyte activation”. Phospholipase C zeta (PLCζ) is a unique sperm-soluble protein responsible for triggering the InsP3/Ca2+ pathway within the oocyte, leading to Ca2+ oscillations and consequently to embryo development. The specific structure of PLCζ (compared to other PLCs) enables its specialized activity via the preserved X and Y catalytic domains, as well as distinct features such as rapid onset, high sensitivity to Ca2+ and cession of oscillations upon zygote formation. The emerging discoveries of PLCζ have stimulated studies focusing on the possible clinical applications of this protein in male infertility evaluation and management during IVF/ICSI. Fertilization failure is attributed to lack of oocyte second meiosis resumption, suggesting that ICSI failure may be related to impaired PLCζ activity. Microinjection of recombinant human PLCζ to human oocytes after ICSI fertilization failure may trigger Ca2+ oscillations and achieve successful fertilization, offering new hope for couples traditionally referred to sperm donation. However, more studies are still required prior to the routine implementation of this approach in the clinic. Directions for future studies are discussed.  相似文献   

7.
Background information. At fertilization in mammalian eggs, the sperm induces a series of Ca2+ oscillations via the production of inositol 1,4,5‐trisphosphate. Increased inositol 1,4,5‐trisphosphate production appears to be triggered by a sperm‐derived PLCζ (phospholipase C‐ζ) that enters the egg after gamete fusion. The specific phosphatidylinositol 4,5‐bisphosphate hydrolytic activity of PLCζ implies that DAG (diacylglycerol) production, and hence PKC (protein kinase C) stimulation, also occurs during mammalian egg fertilization. Fertilization‐mediated increase in PKC activity has been demonstrated; however, its precise role is unclear. Results. We investigated PLCζ‐ and fertilization‐mediated generation of DAG in mouse eggs by monitoring plasma‐membrane translocation of a fluorescent DAG‐specific reporter. Consistent plasma‐membrane DAG formation at fertilization, or after injection of physiological concentrations of PLCζ, was barely detectable. However, when PLCζ is overexpressed in eggs, significant plasma‐membrane DAG production occurs in concert with a series of unexpected secondary high‐frequency Ca2+ oscillations. We show that these secondary Ca2+ oscillations can be mimicked in a variety of situations by the stimulation of PKC and that they can be prevented by PKC inhibition. The way PKC leads to secondary Ca2+ oscillations appears to involve Ca2+ influx and the loading of thapsigargin‐sensitive Ca2+ stores. Conclusions. Our results suggest that overproduction of DAG in PLCζ‐injected eggs can lead to PKC‐mediated Ca2+ influx and subsequent overloading of Ca2+ stores. These results suggest that DAG generation in the plasma membrane of fertilizing mouse eggs is minimized since it can perturb egg Ca2+ homoeostasis via excessive Ca2+ influx.  相似文献   

8.
Fertilization in mammals is associated with the generation of intracellular calcium ([Ca2+]i) oscillations. The site of, or mechanism(s) utilized by, the sperm to initiate and maintain these Ca2+ responses is not known. In this study, we tested the hypothesis that a factor from the sperm is capable, upon release into the oocyte's cytosol, of initiating oscillations. A sperm factor, prepared from porcine semen, was injected into mouse oocytes and bovine eggs that had been loaded with fura-2 dextran, a fluorescent Ca2+ indicator. The resulting Ca2+ responses were monitored and compared to those characteristic of each species. Our results show that injection of sperm factor triggered long-lasting [Ca2+]i oscillations, and that the observed patterns were species-specific. In mouse oocytes, sperm factor-induced [Ca2+]i rises exhibited high frequency, whereas in bovine eggs, Ca2+ responses were separated by long intervals. Further characterization of the sperm factor revealed that it was predominantly present in sperm preparations, that it contained a protein moiety, and that it was unlikely to be a protease. The intracellular Ca2+ channels/receptors through which the sperm factor-mediated Ca2+ release was investigated by using heparin, a competitive inhibitor of the inositol 1,4,5 trisphosphate receptor (InsP3R), and ryanodine, which binds the ryanodine receptor (RyR). The sperm factor appeared to stimulate InsP3R, at least in mouse oocytes, because sperm factor-induced oscillations were delayed or blocked in all oocytes by injection of heparin. RyR may be involved in the modulation of these oscillations, since addition of ryanodine modified Ca2+ responses to the sperm factor. The present results support the hypothesis that a factor from the sperm is involved in the generation of fertilization associated [Ca2+]i oscillations. Mol Reprod Dev 46:176–189, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

9.
Mechanism of Ca2+ release at fertilization in mammals.   总被引:5,自引:0,他引:5  
At fertilization in mammals the sperm triggers a series of oscillations in intracellular Ca2+ within the egg. These Ca2+ oscillations activate the development of the egg into an embryo. It is not known how the sperm triggers these Ca2+ oscillations. There are currently three different theories for Ca2+ signaling in eggs at fertilization. One idea is that the sperm acts as a conduit for Ca2+ entry into the egg after membrane fusion. Another idea is that the sperm acts upon plasma membrane receptors to stimulate a phospholipase C (PLC) within the egg which generates inositol 1,4, 5-trisphosphate (InsP(3)). We present a third idea that the sperm causes Ca2+ release by introducing a soluble protein factor into the egg after gamete membrane fusion. In mammals this sperm factor is also referred to as an oscillogen because, after microinjection, the factor causes sustained Ca2+ oscillations in eggs. Our recent data in sea urchin egg homogenates and intact eggs suggests that this sperm factor has phospholipase C activity that leads to the generation of InsP(3). We then present a new version of the soluble sperm factor theory of signaling at fertilization. J. Exp. Zool. (Mol. Dev. Evol.) 285:267-275, 1999.  相似文献   

10.
Phospholipase Cζ (PLCζ) is a sperm-specific PLC capable of causing repetitive intracellular Ca2+ ([Ca2+]i) release ([Ca2+]i oscillations) in mammalian eggs. Accumulating evidence suggests that PLCζ is the sperm factor responsible for inducing egg activation. Nevertheless, some sperm fractions devoid of 72-kDa PLCζ showed [Ca2+]i oscillation-inducing and PLCζ-like PLC activity (Kurokawa et al., (2005) Dev. Biol. 285, 376-392). Here, we report that PLCζ remains functional after proteolytic cleavage at the X-Y linker region. We found that N-terminal (33 and 37 kDa) and C-terminal fragments (27 kDa), presumably the result of PLCζ cleavage at the X-Y linker region, were present in fresh sperm as well as in sperm extracts and remained associated as functional complexes. Protease V8 cleaved 72-kDa PLCζ into 33/37 and 27 kDa fragments, while PLC activity and [Ca2+]i oscillation-inducing activity persisted until degradation of the fragments. Immunodepletion or affinity depletion of these fragments abolished PLC activity and [Ca2+]i oscillation-inducing activity from sperm extracts. Lastly, co-expression of cRNAs encoding residues 1-361 and 362-647 of mouse PLCζ, mimicking cleavage at the X-Y linker region, induced [Ca2+]i oscillations and embryo development in mouse eggs. Our results support the hypothesis that PLCζ is the sole mammalian sperm factor and that its linker region may have important regulatory functions during mammalian fertilization.  相似文献   

11.
Fertilization of mammalian eggs is characterized by a series of Ca2+ oscillations triggered by a phospholipase C activity. These Ca2+ increases and the parallel generation of diacylglycerol (DAG) stimulate protein kinase C (PKC). However, the dynamics of PKC activity have not been directly measured in living eggs. Here, we have monitored the dynamics of PKC‐induced phosphorylation in mouse eggs, alongside Ca2+ oscillations, using fluorescent C‐kinase activity reporter (CKAR) probes. Ca2+ oscillations triggered either by sperm, phospholipase C zeta (PLCζ) or Sr2+ all caused repetitive increases in PKC‐induced phosphorylation, as detected by CKAR in the cytoplasm or plasma membrane. The CKAR responses lasted for several minutes in both the cytoplasm and plasma membrane then returned to baseline values before subsequent Ca2+ transients. High frequency oscillations caused by PLCζ led to an integration of PKC‐induced phosphorylation. The conventional PKC inhibitor, Gö6976, could inhibit CKAR increases in response to thapsigargin or ionomycin, but not the repetitive responses seen at fertilization. Repetitive increases in PKCδ activity were also detected during Ca2+ oscillations using an isoform‐specific δCKAR. However, PKCδ may already be mostly active in unfertilized eggs, since phorbol esters were effective at stimulating δCKAR only after fertilization, and the PKCδ‐specific inhibitor, rottlerin, decreased the CKAR signals in unfertilized eggs. These data show that PKC‐induced phosphorylation outlasts each Ca2+ increase in mouse eggs but that signal integration only occurs at a non‐physiological, high Ca2+ oscillation frequency. The results also suggest that Ca2+‐induced DAG formation on intracellular membranes may stimulate PKC activity oscillations at fertilization. J. Cell. Physiol. 228: 110–119, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

12.
Injection of sperm preparations into mammalian oocytes and eggs has been shown to elicit persistent [Ca2+]i oscillations that closely resemble fertilization-associated Ca2+ release. However, the ability of these sperm fractions to initiate egg activation has not been clearly demonstrated. In the present experiments, mouse eggs injected with a porcine sperm preparation were evaluated for early and late events of activation. Events monitored included, among early events, the generation of [Ca2+]i oscillations and cortical granule exocytosis and, among late events, the decrease in histone H1 and myelin basic protein kinase activities, polar body extrusion, pronuclear formation, and cleavage to the two-cell stage. Injection of sperm fractions consistently evoked [Ca2+]i oscillations that, in turn, initiated all events of activation. Uninjected control eggs or eggs injected with buffer or heat-treated sperm fractions failed to show Ca2+ responses or activation. In addition, injection of sperm fractions into recently ovulated eggs (experiments were concluded within 15 hr after human chorionic gonadotropin administration) induced high rates of activation, while similarly aged eggs exposed to 7% ethanol for 5 min, a known parthenogenetic treatment, failed to activate. Together these results indicate that injection of sperm fractions elicits [Ca2+]i oscillations that are capable of initiating normal egg activation. These results support the hypothesis that a sperm component participates in the generation of fertilization-associated [Ca2+]i oscillations. Mol. Reprod. Dev. 49:37–47, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

13.
Since the first demonstration of sperm entry into the fertilized eggs of Mediterranean sea urchin Paracentrotus lividus by Hertwig (1876), enormous progress and insights have been made on this topic. However, the precise molecular mechanisms underlying fertilization are largely unknown. The two most dramatic changes taking place in the zygote immediately after fertilization are: (i) a sharp increase of intracellular Ca2+ that initiates at the sperm interaction site and traverses the egg cytoplasm as a wave, and (ii) the concomitant dynamic rearrangement of the actin cytoskeleton. Traditionally, this has been studied most extensively in the sea urchin eggs, but another echinoderm, starfish, whose eggs are much bigger and transparent, has facilitated experimental approaches using microinjection and fluorescent imaging methodologies. Thus in starfish, it has been shown that the sperm-induced Ca2+ increase in the fertilized egg can be recapitulated by several Ca2+-evoking second messengers, namely inositol 1,4,5-trisphosphate (InsP3), cyclic ADP-ribose (cADPr) and nicotinic acid adenine dinucleotide phosphate (NAADP), which may play distinct roles in the generation and propagation of the Ca2+ waves. Interestingly, it has also been found that the dynamic rearrangement of the actin cytoskeleton in the fertilized eggs plays pivotal roles in guiding monospermic sperm entry and in the fine modulation of the intracellular Ca2+ signaling. As it is well known that Ca2+ regulates the structure of the actin cytoskeleton, our finding that Ca2+ signaling can be reciprocally affected by the state of the actin cytoskeleton raises an intriguing possibility that actin and Ca2+ signaling may form a ‘positive feedback loop’ that accelerates the downstream events of fertilization. Perturbation of the cortical actin networks also inhibits cortical granules exocytosis. Polymerizing actin bundles also compose the ‘acrosome process,’ a tubular structure protruding from the head of fertilizing sperm. Hence, actin, which is one of the most strictly conserved proteins in eukaryotes, modulates almost all major aspects of fertilization.  相似文献   

14.
Both isotopic and microelectrode studies reveal a significant Ca2+ influx at fertilization which if freely distributed in the cytoplasm would equal 1–2 × 10−5 M. The role, if any, of this influx is disputed. We have attempted to reevaluate contradictory findings by others on this role. Our results with Strongylocentrotus purpuratus and Lytechinus pictus eggs, assessing fertilization with acrosome-reacted sperm in EGTA-buffered media (free [Ca2+], 4.4 × 10−8 M) indicate that exogenous Ca2+ is not required for fertilization and subsequent cleavage. The contradictory findings by others may have resulted from reduced fertilizability in Ca2+-free seawater, which can be circumvented by higher sperm concentration and by a sensitivity to temperature in Ca2+-free medium, which can be bypassed by carrying out fertilization at lower temperature. Also consistent with the absence of a requirement for this Ca2+ influx, we found that Ca2+ uptake can be induced in eggs by depolarizing the membrane with high [K+], but there is no resultant activation of egg metabolism. Under our conditions for fertilization in Ca2+-free media, there is no effect on the block to polyspermy but the initiation of the cortical reaction may be delayed. The data support the hypothesis that sperm induce release of Ca2+ from intracellular stores, perhaps by affecting an equilibrium between Ca2+ sequestration and Ca2+ release.  相似文献   

15.
The mechanisms underlying the Ca2+ release at fertilization of several animal organisms are reported. Four main classical theories are described, i.e., that of Ca2+ release following simple sperm contact and a G protein stimulation; that of simple sperm contact followed by a tyrosine kinase receptor activation; that of the necessity of introduction by sperm into the egg of molecules for Ca2+ release; and that the molecule introduced into the marine eggs for Ca2+ release is the same Ca2+. Two other mechanisms for Ca2+ release are also illustrated: that of ryanodine receptor stimulation and that of NAADP formation.  相似文献   

16.
The initiation of normal embryo development depends on the completion of all events of egg activation. In all species to date, egg activation requires an increase(s) in the intracellular concentration of calcium ([Ca2+]i), which is almost entirely mediated by inositol 1,4,5‐trisphosphate receptor 1 (IP3R1). In mammalian eggs, fertilization‐induced [Ca2+]i responses exhibit a periodic pattern that are called [Ca2+]i oscillations. These [Ca2+]i oscillations are robust at the beginning of fertilization, which occurs at the second metaphase of meiosis, but wane as zygotes approach the pronuclear stage, time after which in the mouse oscillations cease altogether. Underlying this change in frequency are cellular and biochemical changes associated with egg activation, including degradation of IP3R1, progression through the cell cycle, and reorganization of intracellular organelles. In this study, we investigated the system requirements for IP3R1 degradation and examined the impact of the IP3R1 levels on the pattern of [Ca2+]i oscillations. Using microinjection of IP3 and of its analogs and conditions that prevent the development of [Ca2+]i oscillations, we show that IP3R1 degradation requires uniform and persistently elevated levels of IP3. We also established that progressive degradation of the IP3R1 results in [Ca2+]i oscillations with diminished periodicity while a near complete depletion of IP3R1s precludes the initiation of [Ca2+]i oscillations. These results provide insights into the mechanism involved in the generation of [Ca2+]i oscillations in mouse eggs. J. Cell. Physiol. 222:238–247, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
Egg activation is a universal process that includes a series of events to allow the fertilized egg to complete meiosis and initiate embryonic development. One aspect of egg activation, conserved across all organisms examined, is a change in the intracellular concentration of calcium (Ca2+) often termed a ''Ca2+ wave''. While the speed and number of oscillations of the Ca2+ wave varies between species, the change in intracellular Ca2+ is key in bringing about essential events for embryonic development. These changes include resumption of the cell cycle, mRNA regulation, cortical granule exocytosis, and rearrangement of the cytoskeleton.In the mature Drosophila egg, activation occurs in the female oviduct prior to fertilization, initiating a series of Ca2+-dependent events. Here we present a protocol for imaging the Ca2+ wave in Drosophila. This approach provides a manipulable model system to interrogate the mechanism of the Ca2+ wave and the downstream changes associated with it.  相似文献   

18.
A highly glycosylated protein, which has unique, novel features in localization, structure, and potential function, is found in pig sperm, and named WGA-gp due to its high binding property with wheat germ agglutinin (WGA). WGA-gp is localized mainly in flagella and enriched in membrane microdomains or lipid rafts. It is not detected by ordinary protein staining methods due to a high content of both N- and O-glycans consisting of neutral monosaccharides. Interestingly, WGA-gp may be involved in intracellular Ca2+ regulation. Treatment of sperm with anti-WGA-gp antibody enhances the amplitude of Ca2+ oscillation without changing the basal intracellular Ca2+ concentrations. All these features of WGA-gp, except for different carbohydrate structures occupying most part of the molecules, are similar to those of flagellasialin in sea urchin sperm, which regulates the intracellular Ca2+ concentration. Presence of carbohydrate-enriched flagellar proteins involved in intracellular Ca2+ regulation may be a common feature among animal sperm.  相似文献   

19.
At fertilization the mature mammalian oocyte is activated to begin development by a sperm-induced series of increases in the cytosolic free Ca2+ concentration. These so called Ca2+ oscillations, or repetitive Ca2+ spikes, are also seen after intracytoplasmic sperm injection (ICSI) and are primarily triggered by a sperm protein called phospholipase Czeta (PLCζ). Whilst ICSI is generally an effective way to fertilizing human oocytes, there are cases where oocyte activation fails to occur after sperm injection. Many such cases appear to be associated with a PLCζ deficiency. Some IVF clinics are now attempting to rescue such cases of failed fertilization by using artificial means of oocyte activation such as the application of Ca2+ ionophores. This review presents the scientific background for these therapies and also considers ways to improve artificial oocyte activation after failed fertilization.  相似文献   

20.
Activation state of sperm motility named “hyperactivation” enables mammalian sperm to progress through the oviductal matrix, although a similar state of sperm motility is unknown in non‐mammalian vertebrates at fertilization. Here, we found a high motility state of the sperm in the newt Cynops pyrrhogaster. It was predominantly caused in egg jelly extract (JE) and characterized by a high wave velocity of the undulating membrane (UM) that was significantly higher at the posterior midpiece. An insemination assay suggested that the high motility state might be needed for sperm to penetrate the egg jelly, which is the accumulated oviductal matrix. Specific characteristics of the high motility state were completely abrogated by a high concentration of verapamil, which blocks the L‐type and T‐type voltage‐dependent Ca2+ channels (VDCCs). Mibefradil, a dominant blocker of T‐type VDCCs, suppressed the wave of the UM at the posterior midpiece with separate wave propagation from both the anterior midpiece and the posterior principal piece. In addition, nitrendipine, a dominant L‐type VDCC blocker, weakened the wave of the UM, especially in the anterior midpiece. Live Ca2+ imaging showed that, compared with the intact sperm in the JE, the relative intracellular Ca2+ level changed especially in the anterior and posterior ends of the midpiece of the blocker‐treated sperm. These suggest that different types of Ca2+ channels mediate the intracellular Ca2+ level predominantly in the anterior and posterior ends of the midpiece to maintain the high motility state of the newt sperm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号