首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Berntson  G.M.  Bazzaz  F.A. 《Plant and Soil》1997,190(2):211-216
The impact of elevated atmospheric CO2 on belowground plant growth is poorly understood relative to its effects on aboveground growth. We carried out a study of the seasonal dynamics of gross root production and death to determine how elevated CO2 affected the dynamics of net and gross root production through a full growing season. We quantified gross root production and root loss from sequential, in situ images of fine roots of t Betula papyrifera in ambient (375 ppm.) and elevated (700 ppm) CO2 atmospheres from 2 weeks following germination through leaf senescence. We found that elevated CO2 led to increases in the magnitude of cumulative gross production (P) and cumulative gross loss (L) of roots. However, the effect of elevated CO2 on these processes was seasonally dependent. Elevated CO2 led to greater levels of enhancement in P early in the growing season, prior to maximum standing root length (NP). In contrast, elevated CO2 led to greater levels of enhancement in L in the last half of the growing season, after maximum NP had been reached. This difference in the timing of when elevated CO2 affects P and L led to a transitory, early enhancement in NP. By the end of the growing season, there was no significant effect of elevated CO2 on NP, and P was 87% greater than NP for ambient CO2 and 117% greater in elevated CO2. We conclude that static assessments of belowground productivity may greatly underestimate gross fine root productivity and turnover and this bias can be exaggerated with elevated CO2.  相似文献   

2.
Root dynamics are important for plant, ecosystem and global carbon cycling. Changes in root dynamics caused by rising atmospheric CO2 not only have the potential to moderate further CO2 increases, but will likely affect forest function. We used FACE (Free‐Air CO2 Enrichment) to expose three 30‐m diameter plots in a 13‐year‐old loblolly pine (Pinus taeda) forest to elevated (ambient + 200 µL L?1) atmospheric CO2. Three identical fully instrumented plots were implemented as controls (ambient air only). We quantified root dynamics from October 1998 to October 1999 using minirhizotrons. In spite of 16% greater root lengths and 24% more roots per minirhizotron tube, the effects of elevated atmospheric CO2 on root lengths and numbers were not statistically significant. Similarly, production and mortality were also unaffected by the CO2 treatment, even though annual root production and mortality were 26% and 46% greater in elevated compared to ambient CO2 plots. Average diameters of live roots present at the shallowest soil depth were, however, significantly enhanced in CO2‐enriched plots. Mortality decreased with increasing soil depth and the slopes of linear regression lines (mortality vs. depth) differed between elevated and ambient CO2 treatments, reflecting the significant CO2 by depth interaction. Relative root turnover (root flux/live root pool) was unchanged by exposure to elevated atmospheric CO2. Results from this study suggest modest, if any, increases in ecosystem‐level root productivity in CO2‐enriched environments.  相似文献   

3.
Fine root litter derived from birch (Betula pendula Roth.) and Sitka spruce (Picea sitchensis (Bong.) Carr.) plants grown under two CO2 atmospheric concentrations (350 ppm and 600 ppm) and two nutrient regimes was used for decomposition studies in laboratory microcosms. Although there were interactions between litter type, CO2/fertiliser treatments and decomposition rates, in general, an increase in the C/N ratio of the root tissue was observed for roots of both species grown under elevated CO2 in unfertilized soil. Both weight loss and respiration of decomposing birch roots were significantly reduced in materials derived from enriched CO2, whilst the decomposition of spruce roots showed no such effect. A parallel experiment was performed using Betula pendula root litter grown under different N regimes, in order to test the relationship between C/N ratio of litter and root decomposition rate. A highly significant (p<0.001) negative correlation between C/N ratio and root litter respiration was found, with an r2=0.97. The results suggest that the increased C/N ratio of plant tissues induced by elevated CO2 can result in a reduction of decomposition rate, with a resulting increase in forest soil C stores.  相似文献   

4.
Although desert ecosystems are predicted to be the most responsive to elevated CO2, low nutrient availability may limit increases in productivity and cause plants in deserts to allocate more resources to root biomass or activity for increased nutrient acquisition. We measured root respiration of two Mojave Desert shrubs, Ambrosia dumosa and Larrea tridentata, grown under ambient (~375 ppm) and elevated (~517 ppm) CO2 concentrations at the Nevada Desert FACE Facility (NDFF) over five growing seasons. In addition, we grew L. tridentata seedlings in a greenhouse with similar CO2 treatments to determine responses of primary and lateral roots to an increase in CO2. In both field and greenhouse studies, root respiration was not significantly affected by elevated CO2. However, respiration of A. dumosa roots <1 month old was significantly greater than respiration of A. dumosa roots between 1 and 4 months old. For both shrub species, respiration rates of very fine (<1.0 mm diameter) roots were significantly greater than those of fine (1–2 mm diameter) roots, and root respiration decreased as soil water decreased. Because specific root length was not significantly affected by CO2 and because field minirhizotron measurements of root production were not significantly different, we infer that root growth at the NDFF has not increased with elevated CO2. Furthermore, other studies at the NDFF have shown increased nutrient availability under elevated CO2, which reduces the need for roots to increase scavenging for nutrients. Thus, we conclude that A. dumosa and L. tridentata root systems have not increased in size or activity, and increased shoot production observed under elevated CO2 for these species does not appear to be constrained by the plant's root growth or activity.  相似文献   

5.
We studied the three‐way interaction of elevated CO2, nitrogen (N), and temperature (T), and the two‐way interaction of elevated CO2 and early‐season defoliation on the secondary chemistry and resistance of Eurasian silver birch (Betula pendula) and North American paper birch (B. papyrifera) against the Eurasian hare (Lepus timidus) and the North American eastern cottontail rabbit (Sylvilagus floridanus), respectively. Elevated CO2 decreased the palatability of winter‐dormant silver and paper birch stems to both hares and rabbits, respectively. But the effect on hares was only apparent at intermediate levels of N fertilization. Elevated T had no effect on palatability. The effects of elevated CO2, N, and T on levels of silver birch bark phenolics and terpenoids were dominated by two‐way interactions between N and CO2, and N and T. Generally, however, N amendments elicited a parabolic response in carbon partitioning to most biosynthetic classes of silver birch phenolics (i.e. highest concentrations occurring at intermediate N). CO2 elevation was most enhancing at highest levels of N. On the other hand, T increases, more often than not, elicited reductions in phenolics, but especially so at the highest N level. In the case of B. papyrifera, elevated CO2 increased carbon partitioning to Folin‐Denis stem and branch phenolics and condensed tannins. Early‐season defoliation, on the other hand, had no effect on phenolics and tannins but lowered both N and energy levels of branches. Elevated CO2 substantially ameliorated the negative effects of severe defoliation on tree growth. These results support the hypothesis that continuing anthropogenic alterations of the atmosphere may trigger significant changes in plant phenotypic resistance to mammalian herbivores owing to an increasing net carbon balance between the highly vagile supply and demand capacities of plant carbon sources and sinks.  相似文献   

6.
The physiology, morphology and growth of first-year Betula papyrifera Marsh., Betula alleghaniensis Britton, Ostrya virginiana (Mill.) K. Koch, Acer saccharum Marsh., and Quercus rubra L. seedlings, which differ widely in reported successional affinity and shade tolerance, were compared in a controlled high-resource environment. Relative to late-successional, shade-tolerant Acer and Ostrya species, early-successional, shade-intolerant Betula species had high relative growth rates (RGR) and high rates of photosynthesis, nitrogen uptake and respiration when grown in high light. Fire-adapted Quercus rubra had intermediate photosynthetic rates, but had the lowest RGR and leaf area ratio and the highest root weight ratio of any species. Interspecific variation in RGR in high light was positively correlated with allocation to leaves and rates of photosynthesis and respiration, and negatively related to seed mass and leaf mass per unit area. Despite higher respiration rates, early-successional Betula papyrifera lost a lower percentage of daily photosynthetic CO2 gain to respiration than other species in high light. A subset comprised of the three Betulaceae family members was also grown in low light. As in high light, low-light grown Betula species had higher growth rates than tolerant Ostrya virainiana. The rapid growth habit of sarly-successional species in low light was associated with a higher proportion of biomass distributed to leaves, lower leaf mass per unit area, a lower proportion of biomass in roots, and a greater height per unit stem mass. Variation in these traits is discussed in terms of reported species ecologies in a resource availability context.  相似文献   

7.
White birch (Betula papyrifera Marsh.) seedlings were exposed to ambient or doubled ambient carbon dioxide concentration ([CO2]), three soil temperatures (Tsoil) (low, intermediate, high), and three phosphorus (P) regimes (low, medium, high) in environment‐controlled greenhouses. Height (H), root‐collar diameter (RCD), biomass, and leaf phosphorus concentration (leaf P) were determined four months after initiation of treatments. The low Tsoil reduced H, RCD, shoot biomass, root biomass and total seedling biomass whereas the high‐P level and the [CO2] elevation increased all the growth and biomass parameters. Elevated [CO2] significantly reduced leaf P. There were significant two‐factor interactions suggesting that the effect of elevated [CO2] on (1) H, total biomass, biomass of plant components, and leaf P was dependent on Tsoil, (2) total biomass was contingent on P regime. For instance, the positive response of H and total biomass to elevated [CO2] was limited to seedlings raised under the intermediate and high Tsoil, respectively. In addition, [CO2] elevation increased total biomass only at the high‐P regime but not at the low‐ or medium‐P level where the effect of [CO2] was statistically insignificant. No significant main effect of treatment or interaction was observed for root to shoot biomass ratio.  相似文献   

8.
A fast growing high density Populus plantation located in central Italy was exposed to elevated carbon dioxide for a period of three years. An elevated CO2 treatment (550 ppm), of 200 ppm over ambient (350 ppm) was provided using a FACE technique. Standing root biomass, fine root turnover and mycorrhizal colonization of the following Populus species was examined: Populus alba L., Populus nigra L., Populus x euramericana Dode (Guinier). Elevated CO2 increased belowground allocation of biomass in all three species examined, standing root biomass increased by 47–76% as a result of FACE treatment. Similarly, fine root biomass present in the soil increased by 35–84%. The FACE treatment resulted in 55% faster fine root turnover in P. alba and a 27% increase in turnover of roots of P. nigra and P. x euramericana. P. alba and P. nigra invested more root biomass into deeper soil horizon under elevated CO2. Response of the mycorrhizal community to elevated CO2 was more varied, the rate of infection increased only in P. alba for both ectomycorrhizal (EM) and arbuscular mycorrhizas (AM). The roots of P. nigra showed greater infection only by AM and the colonization of the root system of P. x euramericana was not affected by FACE treatment. The results suggest that elevated atmospheric CO2 conditions induce greater belowground biomass investment, which could lead to accumulation of assimilated C in the soil profile. This may have implications for C sequestration and must be taken into account when considering long‐term C storage in the soil.  相似文献   

9.
Increased below-ground carbon allocation in forest ecosystems is a likely consequence of rising atmospheric CO2 concentration. If this results in changes to fine root growth, turnover and distribution long-term soil carbon cycling and storage could be altered. Bi-weekly measurements were made to determine the dynamics and distribution of fine roots (< 1 mm diameter) for Pinus radiata trees growing at ambient (350 μmol mol–1) and elevated (650 μmol mol–1) CO2 concentration in large open-top chambers. Measurements were made using minirhizotrons installed horizontally at depths of 0.1, 0.3, 0.5 and 0.9 m. During the first year, at a depth of 0.3 m, the increase in relative growth rate of roots occurred 6 weeks earlier in the elevated CO2 treatment and the maximum rate was reached 10 weeks earlier than for trees in the ambient treatment. After 2 years, cumulative fine root growth (Pt) was 36% greater for trees growing at elevated CO2 than at ambient CO2 concentration, although this difference was not significant. A model of root growth driven by daily soil temperature accounted for between 43 and 99% of root growth variability. Total root loss (Lt) was 9% in the ambient and 14% in the elevated CO2 treatment, although this difference was not significant. Root loss was greatest at 0.3 m. In the first year, 62% of fine roots grown between mid-summer and late-autumn disappeared within a year in the elevated CO2 treatment, but only 18% in the ambient CO2 treatment (P < 0.01). An exponential model relating Lt to time accounted for between 74 and 99% of the variability. Root cohort half-lives were 951 d for the ambient and 333 d for the elevated treatment. Root length density decreased exponentially with depth in both treatments, but relatively more fine roots grown in the elevated CO2 treatment tended to occur deeper in the soil profile.  相似文献   

10.
Elevated atmospheric carbon dioxide (CO2) often stimulates the growth of fine roots, yet there are few reports of responses of intact root systems to long‐term CO2 exposure. We investigated the effects of elevated CO2 on fine root growth using open top chambers in a scrub oak ecosystem at Kennedy Space Center, Florida for more than 7 years. CO2 enrichment began immediately after a controlled burn, which simulated the natural disturbance that occurs in this system every 10–15 years. We hypothesized that (1) root abundance would increase in both treatments as the system recovered from fire; (2) elevated CO2 would stimulate root growth; and (3) elevated CO2 would alter root distribution. Minirhizotron tubes were used to measure fine root length density (mm cm?2) every three months. During the first 2 years after fire recovery, fine root abundance increased in all treatments and elevated CO2 significantly enhanced root abundance, causing a maximum stimulation of 181% after 20 months. The CO2 stimulation was initially more pronounced in the top 10 cm and 38–49 cm below the soil surface. However, these responses completely disappeared during the third year of experimental treatment: elevated CO2 had no effect on root abundance or on the depth distribution of fine roots during years 3–7. The results suggest that, within a few years following fire, fine roots in this scrub oak ecosystem reach closure, defined here as a dynamic equilibrium between production and mortality. These results further suggest that elevated CO2 hastens root closure but does not affect maximum root abundance. Limitation of fine root growth by belowground resources – particularly nutrients in this nutrient‐poor soil – may explain the transient response to elevated CO2.  相似文献   

11.
We investigated the effects of elevated atmospheric CO2 concentrations (ambient + 200 ppm) on fine root production and soil carbon dynamics in a loblolly pine (Pinus taeda) forest subject to free‐air CO2 enrichment (FACE) near Durham, NC (USA). Live fine root mass (LFR) showed less seasonal variation than dead fine root mass (DFR), which was correlated with seasonal changes in soil moisture and soil temperature. LFR mass increased significantly (by 86%) in the elevated CO2 treatment, with an increment of 37 g(dry weight) m?2 above the control plots after two years of CO2 fumigation. There was no long‐term increment in DFR associated with elevated CO2, but significant seasonal accumulations of DFR mass occurred during the summer of the second year of fumigation. Overall, root net primary production (RNPP) was not significantly different, but annual carbon inputs were 21.7 gC m?2 y?1 (68%) higher in the elevated CO2 treatment compared to controls. Specific root respiration was not altered by the CO2 treatment during most of the year; however, it was significantly higher by 21% and 13% in September 1997 and May 1998, respectively, in elevated CO2. We did not find statistically significant differences in the C/N ratio of the root tissue, root decomposition or phosphatase activity in soil and roots associated with the treatment. Our data show that the early response of a loblolly pine forest ecosystem subject to CO2 enrichment is an increase in its fine root population and a trend towards higher total RNPP after two years of CO2 fumigation.  相似文献   

12.
Couture JJ  Meehan TD  Lindroth RL 《Oecologia》2012,168(3):863-876
This study examined the independent and interactive effects of elevated carbon dioxide (CO2) and ozone (O3) on the foliar quality of two deciduous trees species and the performance of two outbreak herbivore species. Trembling aspen (Populus tremuloides) and paper birch (Betula papyrifera) were grown at the Aspen FACE research site in northern Wisconsin, USA, under four combinations of ambient and elevated CO2 and O3. We measured the effects of elevated CO2 and O3 on aspen and birch phytochemistry and on gypsy moth (Lymantria dispar) and forest tent caterpillar (Malacosoma disstria) performance. Elevated CO2 nominally affected foliar quality for both tree species. Elevated O3 negatively affected aspen foliar quality, but only marginally influenced birch foliar quality. Elevated CO2 slightly improved herbivore performance, while elevated O3 decreased herbivore performance, and both responses were stronger on aspen than birch. Interestingly, elevated CO2 largely offset decreased herbivore performance under elevated O3. Nitrogen, lignin, and C:N were identified as having strong influences on herbivore performance when larvae were fed aspen, but no significant relationships were observed for insects fed birch. Our results support the notion that herbivore performance can be affected by atmospheric change through altered foliar quality, but how herbivores will respond will depend on interactions among CO2, O3, and tree species. An emergent finding from this study is that tree age and longevity of exposure to pollutants may influence the effects of elevated CO2 and O3 on plant–herbivore interactions, highlighting the need to continue long-term atmospheric change research.  相似文献   

13.
Future ecosystem properties of grasslands will be driven largely by belowground biomass responses to climate change, which are challenging to understand due to experimental and technical constraints. We used a multi-faceted approach to explore single and combined impacts of elevated CO2 and warming on root carbon (C) and nitrogen (N) dynamics in a temperate, semiarid, native grassland at the Prairie Heating and CO2 Enrichment experiment. To investigate the indirect, moisture mediated effects of elevated CO2, we included an irrigation treatment. We assessed root standing mass, morphology, residence time and seasonal appearance/disappearance of community-aggregated roots, as well as mass and N losses during decomposition of two dominant grass species (a C3 and a C4). In contrast to what is common in mesic grasslands, greater root standing mass under elevated CO2 resulted from increased production, unmatched by disappearance. Elevated CO2 plus warming produced roots that were longer, thinner and had greater surface area, which, together with greater standing biomass, could potentially alter root function and dynamics. Decomposition increased under environmental conditions generated by elevated CO2, but not those generated by warming, likely due to soil desiccation with warming. Elevated CO2, particularly under warming, slowed N release from C4—but not C3—roots, and consequently could indirectly affect N availability through treatment effects on species composition. Elevated CO2 and warming effects on root morphology and decomposition could offset increased C inputs from greater root biomass, thereby limiting future net C accrual in this semiarid grassland.  相似文献   

14.
根系作为植物与土壤物质交换和养分循环的桥梁,长期以来一直是生态学研究的热点。于2017年7月植物生长季,对长白山模拟11年氮(N)沉降控制试验样地的白桦(Betula platyphylla)山杨(Populus davidiana)天然次生林进行了根系采样,并利用根序法研究了根系形态特征和解剖结构对不同梯度N添加处理的响应,旨在探求两物种根系之间潜在生态联系。本试验共设置了三个N添加梯度,分别为对照(CK,0 g N m~(-2 )a~(-1))、低N处理(T_L,2.5 g N m~(-2 )a~(-1))和高N处理(T_H,5.0 g N m~(-2 )a~(-1))。研究结果如下:1)T_L显著抑制白桦和山杨前三级细根皮层厚度的生长。白桦通过增加皮层细胞直径(一级根增加了72.77%,二级根增加了53.22%,三级根增加了39.96%)但减少皮层层数来降低皮层厚度,而山杨主要通过皮层细胞直径的减少(一级根下降了40.80%,二级根下降了28.17%)来降低其皮层厚度。2)T_H显著抑制山杨前三级细根生长。主要通过增加皮层厚度(一级根增加了68.78%,二级根增加了50.81%,三级根增加了88.53%)以及降低导管横截面积来抑制吸收养分,从而达到影响生长的目的。3)白桦T_H相比于T_L细根直径呈抑制生长状态。其主要通过抑制中柱直径(一级根下降了17.61%,二级根下降了16.89%,三级根下降了20.62%)的生长来实现。以上结果表明,在同一立地条件下,白桦和山杨的细根对不同浓度N沉降的响应方式不同。  相似文献   

15.
While investigations into shoot responses to elevated atmospheric CO2 are extensive, few studies have focused on how an elevated atmospheric CO2 environment might impact root functions such as water uptake and transport. Knowledge of functional root responses may be particularly important in ecosystems where water is limiting if predictions about global climate change are true. In this study we investigated the effect of elevated CO2 on the root hydraulic conductivity (Lp) of a C3 perennial, Larrea tridentata, and a C3 annual, Helianthus annuus. The plants were grown in a glasshouse under ambient (360 μmol mol–1) and elevated (700 μmol mol–1) CO2. The Lp through intact root systems was measured using a hydrostatic pressure-induced flow system. Leaf gas exchange was also determined for both species and leaf water potential (ψleaf) was determined in L. tridentata. The Lp of L. tridentata roots was unchanged by an elevated CO2 growth environment. Stomatal conductance (gs) and transpiration (E) decreased and photosynthetic rate (Anet) and Ψleaf increased in L. tridentata. There were no changes in biomass, leaf area, stem diameter or root : shoot (R : S) ratio for L. tridentata. In H. annuus, elevated CO2 induced a nearly two-fold decrease in root Lp. There was no effect of growth under elevated CO2 on Anet, gs, E, above- and below-ground dry mass, R : S ratio, leaf area, root length or stem diameter in this species. The results demonstrate that rising atmospheric CO2 can impact water uptake and transport in roots in a species-specific manner. Possible mechanisms for the observed decrease in root Lp in H. annuus under elevated CO2 are currently under investigation and may relate to either axial or radial components of root Lp.  相似文献   

16.
To determine whether an elevated carbon dioxide concentration ([CO2]) can induce changes in the wood structure and stem radial growth in forest trees, we investigated the anatomical features of conduit cells and cambial activity in 4‐year‐old saplings of four deciduous broadleaved tree species – two ring‐porous (Quercus mongolica and Kalopanax septemlobus) and two diffuse‐porous species (Betula maximowicziana and Acer mono) – grown for three growing seasons in a free‐air CO2 enrichment system. Elevated [CO2] had no effects on vessels, growth and physiological traits of Q. mongolica, whereas tree height, photosynthesis and vessel area tended to increase in K. septemlobus. No effects of [CO2] on growth, physiological traits and vessels were seen in the two diffuse‐porous woods. Elevated [CO2] increased larger vessels in all species, except B. maximowicziana and number of cambial cells in two ring‐porous species. Our results showed that the vessel anatomy and radial stem growth of Q. mongolica, B. maximowicziana and A. mono were not affected by elevated [CO2], although vessel size frequency and cambial activity in Q. mongolica were altered. In contrast, changes in vessel anatomy and cambial activity were induced by elevated [CO2] in K. septemlobus. The different responses to elevated [CO2] suggest that the sensitivity of forest trees to CO2 is species dependent.  相似文献   

17.
Increases in atmospheric CO2 and tropospheric O3 may affect forest N cycling by altering plant litter production and the availability of substrates for microbial metabolism. Three years following the establishment of our free‐air CO2–O3 enrichment experiment, plant growth has been stimulated by elevated CO2 resulting in greater substrate input to soil; elevated O3 has counteracted this effect. We hypothesized that rates of soil N cycling would be enhanced by greater plant productivity under elevated CO2, and that CO2 effects would be dampened by O3. We found that elevated CO2 did not alter gross N transformation rates. Elevated O3 significantly reduced gross N mineralization and microbial biomass N, and effects were consistent among species. We also observed significant interactions between CO2 and O3: (i) gross N mineralization was greater under elevated CO2 (1.0 mg N kg?1 day?1) than in the presence of both CO2 and O3 (0.5 mg N kg?1 day?1) and (ii) gross NH4+ immobilization was also greater under elevated CO2 (0.8 mg N kg?1 day?1) than under CO2 plus O3 (0.4 mg N kg?1 day?1). We used a laboratory 15N tracer method to quantify transfer of inorganic N to organic pools. Elevated CO2 led to greater recovery of NH4+15N in microbial biomass and corresponding lower recovery in the extractable NO3? pool. Elevated CO2 resulted in a substantial increase in NO3?15N recovery in soil organic matter. We observed no O3 main effect and no CO2 by O3 interaction effect on 15N recovery in any soil pool. All of the above responses were most pronounced beneath Betula papyrifera and Populus tremuloides, which have grown more rapidly than Acer saccharum. Although elevated CO2 has increased plant productivity, the resulting increase in plant litter production has yet to overcome the influence of the pre‐existing pool of soil organic matter on soil microbial activity and rates of N cycling. Ozone reduces plant litter inputs and also appears to affect the composition of plant litter in a way that reduces microbial biomass and activity.  相似文献   

18.
In this study, we investigated the impact of elevated atmospheric CO2 (ambient + 350 μmol mol–1) on fine root production and respiration in Scots pine (Pinus sylvestris L.) seedlings. After six months exposure to elevated CO2, root production measured by root in-growth bags, showed significant increases in mean total root length and biomass, which were more than 100% greater compared to the ambient treatment. This increased root length may have lead to a more intensive soil exploration. Chemical analysis of the roots showed that the roots in the elevated treatment accumulated more starch and had a lower C/N-ratio. Specific root respiration rates were significantly higher in the elevated treatment and this was probably attributed to increased nitrogen concentrations in the roots. Rhizospheric respiration and soil CO2 efflux were also enhanced in the elevated treatment. These results clearly indicate that under elevated atmospheric CO2 root production and development in Scots pine seedlings is altered and respiratory carbon losses through the root system are increased.  相似文献   

19.

Aims

This study examined the effect of elevated CO2 on plant growth, root morphology and Cd accumulation in S. alfredii, and assessed the possibility of using elevated CO2 as fertilizer to enhance phytoremediation efficiency of Cd-contaminated soil by S. alfredii.

Methods

Both soil pot culture and hydroponic experiments were carried out to characterize plant biomass, root morphological parameters, and cadmium uptake in S. alfredii grown under ambient (350 μL L?1) or elevated (800 μL L?1) CO2.

Results

Elevated CO2 prompted the growth of S. alfredii, shoot and root biomass were increased by 24.6–36.7% and 35.0–52.1%, respectively, as compared with plants grown in ambient CO2. After 10 days growth in medium containing 50 μM Cd under elevated CO2, the development of lateral roots and root hairs were stimulated, additionally, root length, surface area, root volume and tip number were increased significantly, especially for the finest diameter roots. The total Cd uptake per pot was significantly greater under elevated CO2 than under ambient CO2. After 60 d growth, Cd phytoextraction efficiency was increased significantly in the elevated CO2 treatment.

Conclusions

Results suggested that the use of elevated CO2 may be a useful way to improve phytoremediation efficiency of Cd-contaminated soil by S. alfredii.  相似文献   

20.
The dynamics and demography of roots were followed for 5 years that spanned wet and drought periods in native, semiarid shortgrass steppe grassland exposed to ambient and elevated atmospheric CO2 treatments. Elevated compared with ambient CO2 concentrations resulted in greater root‐length growth (+52%), root‐length losses (+37%), and total pool sizes (+41%). The greater standing pool of roots under elevated compared with ambient CO2 was because of the greater number of roots (+35%), not because individuals were longer. Loss rates increased relatively less than growth rates because life spans were longer (+41%). The diameter of roots was larger under elevated compared with ambient CO2 only in the upper soil profile. Elevated CO2 affected root architecture through increased branching. Growth‐to‐loss ratio regressions to time of equilibrium indicate very long turnover times of 5.8, 7.0, and 5.3 years for control, ambient, and elevated CO2, respectively. Production was greater under elevated compared with ambient CO2 both below‐ and aboveground, and the above‐ to belowground ratios did not differ between treatments. However, estimates of belowground production differed among methods of calculation using minirhizotron data, as well as between minirhizotron and root‐ingrowth methods. Users of minirhizotrons may need to consider equilibration in terms of both new growth and disappearance, rather than just growth. Large temporal pulses of root initiation and termination rates of entire individuals were observed (analogous to birth–death rates), and precipitation explained more of the variance in root initiation than termination. There was a dampening of the pulsing in root initiation and termination under elevated CO2 during both wet and dry periods, which may be because of conservation of soil water reducing the suddenness of wet pulses and duration and severity of dry pulses. However, a very low degree of synchrony was observed between growth and disappearance (production and decomposition).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号