首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three new dinoflagellate species, Gambierdiscus polynesiensis, sp. nov., Gambierdiscus australes, sp. nov., and Gambierdiscus pacificus, sp. nov., are described from scanning electron micrographs. The morphology of the three new Gambierdiscus species is compared with the type species Gambierdiscus toxicus Adachi et Fukuyo 1979, and two other species: Gambierdiscus belizeanus Faust 1995 and Gambierdiscus yasumotoi Holmes 1998. The plate formula is: Po, 3′, 7", 6C, 8S, 5‴, 1p, 2". Culture extracts of these three new species displayed both ciguatoxin- and maitotoxin-like toxicities. The following morphological characteristics differentiated each species. 1) Cells of G. polynesiensis are 68–85 μm long and 64–75 μm wide, and the cell’s surface is smooth. They are identified by a large triangular apical pore plate (Po), a narrow fish-hook opening surrounded by 38 round pores, and a large, broad posterior intercalary plate (1p) wedged between narrow postcingular plates 2‴ and 4‴. Plate 1p occupies 60% of the width of the hypotheca. 2) Cells of G. australes also have a smooth surface and are 76–93 μm long and 65–85 μm wide in dorsoventral depth. They are identified by the broad ellipsoid apical pore plate (Po) surrounded by 31 round pores and a long and narrow 1p plate wedged between postcingular plates 2‴ and 4‴. Plate 1p occupies 30% of the width of the hypotheca. 3) Cells of G. pacificus are 67–77 μm long and 60–76 μm wide in dorsoventral depth, and its surface is smooth. They are identified by the four-sided apical pore plate (Po) surrounded by 30 round pores. A short narrow 1p plate is wedged between the wide postcingular plates 2‴ and 4‴. Plate 1p occupies 20% of the width of the hypotheca. These three newly described species were also characterized by isozyme electrophoresis and DNA sequencing of the D8–D10 region of their large subunit (LSU) rRNA genes. The consistency between species designations based on SEM microscopy and classification inferred from biochemical and genetic heterogeneities was examined among seven isolates of Gambierdiscus. Their classification into four morphospecies was not consistent with groupings inferred from isozyme patterns. Three molecular types could be distinguished based on the comparison of their LSU rDNA sequences. Although G. toxicus TUR was found to be more closely related to G. pacificus, sp. nov. than to other G. toxicus strains, the molecular classification was able to discriminate G. polynesiensis, sp. nov. and G. australes, sp. nov. from G. toxicus. These results suggest the usefulness of the D8–D10 portion of the Gambierdiscus LSU rDNA as a valuable taxonomic marker.  相似文献   

2.
Dinoflagellate associations, including toxic and potentially toxic benthic species, were examined in sand from South Water Cay and Carrie Bow Cay, Belize. The inshore sand habitat in localized areas of warm shallow lagoonal waters supported blooms of toxic assemblages of dinoflagellates. In the sand, the dominant microalgae were dinoflagellates; cyanobacteria were a minor component and diatoms were absent. Ciliates and nematodes were present. Assemblages of microorganisms in colored sand were examined for 4 consecutive days after which a storm washed away the patch. The sand-dwelling dinoflagellate assemblage included 16 species where densities ranged from as low as 1.3% to 15% of total cell densities. The dominant species was Scrippsiella subsalsa, having 1.8 × 105 to 2.6 × 105 cells g-1 sand. Toxic dinoflagellates identified in the sand were Gambierdiscus toxicus, Ostreopsis lenticularis, Prorocentrum lima, Prorocentrum mexicanum, and Amphidinium carteri. The potentially toxic Ostreopsis labens, Gambierdiscus belizeanussp. nov., and Coolia tropicalis sp. nov. were also identified. Toxic and potentially toxic species represented 36% to 60% of total microalgal cell assemblage. The morphology of a new sand-dwelling species, Gambierdiscus belizeanus sp. nov., was examined with the scanning electron microscope. The plate formula was Po, 3′, 7″, 6c, s?, 5?, 1p, and 2″″.Dimensions of G. belizeanus cells were 53–67 pm long, 54–63 μm wide, and 92–98 μm in dorsoventral depth. Cells were deeply areolated, ellipsoid in apical view, and compressed anteroposteriorly. The cells of G. belizeanus were identified by the cell's long, narrow, pentagonal, posterior intercalary plate (1p) wedged between the wide postcingular plates 2″’and 4″; 1p occupied 20% of the width of the hypotheca. The plate formula for Coolia tropicalis sp. nov. was Po, 3′, 7″, 7c, 8s?, 5″″, and 2″″, Cell size ranges were 23–40 μm long, 25–39 μm wide, and 35–65 μm in dorsoventral diameter. Cells were spherical, smooth, and covered with scattered round pores. The epitheca was smaller than the hypotheca. Precingular plates 1″ and 7″ were small and narrow, and the first apical plate 1″ and precingular plate 6″ were the largest plates on the epitheca. The apical pore was straight and 7 μm long, and was situated in the apical plate complex. Cells of C. tropicalis were distinguished from C. monotis by the wedge-shaped plate 1′, a four-sided 3’plate, and a short apical pore.  相似文献   

3.
4.
A small, broadly ovoidal and heterotrophic dinoflagellate containing round, brownish, and spiny cyst was found in the water column of Huibertsplaat in the Wadden Sea off the coast of the Netherlands. This dinoflagellate had these conspicuous morphological characters: a five‐sided first apical plate (1′), only three cingular plates, and an extremely small first antapical plate. Based on these morphological features, Protoperidinium tricingulatum Kawami, vanWezel, Koeman et Matsuoka is described as a new species. The flagellar pore of P. tricingulatum is covered with a small fin, which rises from the left side of the right sulcal plate to the large V‐shaped posterior sulcal plate. This feature suggests that P. tricingulatum is assigned to the Abé's Monovela Group. The cyst stage of P. tricingulatum was positively linked to the vegetative stage by comparison of the ribosomal 5.8S rDNA, internal transcribed spacers (ITS1 and ITS2). Living cysts of P. tricingulatum are round, brownish, and covered with many slender spines bearing capitate or cauliforate distal ends. The cyst also possesses a theropylic archeopyle formed by a slit corresponding to parasutures between three apical and two apical intercaraly plates. These morphological characters indicate that this species is morphologically related to two dinoflagellate cyst‐genera Islandinium and Echinidinium.  相似文献   

5.
Amphidiniopsis is a benthic, heterotrophic and thecate dinoflagellate genus that has a smaller epitheca and larger hypotheca. The genus contains 24 described species, but is considered to be polyphyletic based on morphological characters and molecular phylogenetics. In this study, two new species were discovered from two distant sampling localities, Amphidiniopsis crumena sp. nov. from Japan, and Amphidiniopsis nileribanjensis sp. nov., from Australia. These species have a uniquely shaped, additional second postcingular plate. Both species are dorsoventrally flattened, an apical hook is present, and have six postcingular plates. The plate formula is: APC 4′ 3a 7″ ?C 4?S 6″′ 2″″. The cells of these species were examined with LM and SEM, and molecular phylogenic analyses were performed using 18S and 28S rDNA. These species are distinguished by the presence of spines on the hypotheca and touching of the sixth postcingular plate and the anterior sulcal plate. Their shape and disposition of several thecal plates also differ. Molecular phylogenetic analyses showed that the two new species formed a monophyletic clade and did not belong to any morphogroup proposed by previous studies. Considering the morphological features and the molecular phylogenetic results, a new morphogroup is proposed, Amphidiniopsis morphogroup VI (‘crumena group’).  相似文献   

6.
A new genus of Pfiesteria‐like heterotrophic dinoflagellate, Luciella gen. nov., and two new species, Luciella masanensis sp. nov. and Luciella atlantis sp. nov., are described. These species commonly occur with other small (<20 μm) heterotrophic and mixotrophic dinoflagellates in estuaries from Florida to Maryland and the southern coast of Korea, suggesting a possible global distribution. An SEM analysis indicates that members of the genus Luciella have the enhanced Kofoidian plate formula of Po, cp, X, 4′, 2a, 6″, 6c, PC, 5+s, 5?, 0p, and 2″″. The two four‐sided anterior intercalary plates are diamond shaped. The genus Luciella differs from the other genera in the Pfiesteriaceae by a least one plate in the plate tabulation and in the configuration of the two anterior intercalary plates. An SSU rDNA phylogenetic analysis confirmed the genus as monophyletic and distinct from the other genera in the Pfiesteriaceae. The morphology of Luciella masanensis closely resembles Pfiesteria piscicida Steid. et J. M. Burkh. and other Pfiesteria‐like dinoflagellates in size and shape, making it easily misidentified using LM. Luciella atlantis, in contrast, has a more distinctive morphology. It can be distinguished from L. masanensis and other Pfiesteria‐like organisms by a larger cell size, a more conical‐shaped epitheca and hypotheca, larger rhombic‐shaped intercalary plates, and an asymmetrical hypotheca. The genus Luciella is assigned to the order Peridiniales and the family Pfiesteriaceae based on plate tabulation, plate pattern, general morphology, and phylogenetic analysis.  相似文献   

7.
A new armored dinoflagellate species, Heterocapsa psammophila Tamura, Iwataki et Horiguchi sp. nov. is described from Kenmin‐no‐hama beach, Hiroshima, Japan using light and electron microscopy. This dinoflagellate possesses the typical thecal plate arrangement of the genus Heterocapsa, Po, cp, 5′, 3a, 7′′, 6c, 5s, 5′′′, 2′′′′; and the 3‐D body scales of Heterocapsa on the plasma membrane. The cell shape is ovoidal. The spherical nucleus and the pyrenoid are situated in the hypotheca and the epitheca, respectively. The ultrastructure of H. psammophila is typical of dinoflagellates and the pyrenoid is invaginated by cytoplasmic tubules. H. psammophila is distinguished from all other hitherto‐described Heterocapsa species by the cell shape, the relative position of the nucleus and pyrenoid and the structure of the body scale. The habitat and behavior of this new species in culture suggest that the organism is truly a sand‐dwelling species.  相似文献   

8.
A new species of marine sand‐dwelling dinoflagellate, Plagiodinium ballux N. Yamada, Dawut, R. Terada & T. Horiguchi is described from a deep (36 m) seafloor off Takeshima Island, Kagoshima Prefecture, Japan in the subtropical region of the northwest Pacific. The species is thecate and superficially resembles species of Prorocentrum, but possesses an extremely small epitheca. The cell varies from ovoid to a rounded square, and is small (15.0–22.5 μm in length) and laterally compressed. The thecal plates are smooth and the thecal plate arrangement (Po, 1′, 0a, 5″, 5C, 2S, 5?, 0p, 1″″) is similar to that of Plagiodinium belizeanum, the type species of the genus. Molecular phylogenetic analyses based on SSU rDNA and partial LSU rDNA reveal that the dinoflagellate is closely related to P. belizeanum, but it can be clearly distinguished by its size and cell shape. This suite of morphological and molecular differences leads to the conclusion that this deep benthic dinoflagellate represents a new species of the genus Plagiodinium.  相似文献   

9.
A new species, Ostreopsis labens Faust et Morton sp. nov., is described from three marine habitats: lagoonal water and lagoonal sand from the barrier reef of Belize, and associated with macroalgae from coral reef habitats of Oshigaki and Iriomote Islands, Japan. Dimensions of Ostreopsis labens cells are 60–86 μm long, 70–80 μm wide, and 81–110 μm in dorsoventral depth. Cells are broadly ovoid, anterioposteriorly compressed bearing a spherical nucleus and many chloroplasts. The epitheca is convex and composed of three apical plates, seven precingular plates, and an apical pore plate. The cingulum is composed of six plates. The hypotheca is constructed of five postcingular plates, one posterior intercalary, and two antapical plates. The sulcus is small, recessed, and hidden and exhibits a ventral pore and a ridged, curved plate. The thecal arrangement of O. labens is Po, 3′, 7″ 6C, 6S(?), Vp, Rp, 5″, 1p, 2″. Only one sulcal list is present. The thecal plates have a smooth surface with distinct round pores. The intercalary band between the thecal plates is smooth. A row of marginal pores line the lipped cingulum. Ostreopsis species are anteroposteriorly flattened, photosynthetic, benthic dinoflagellates that are more diverse in ecology than previously known. Ostreopsis labens is capable of living in three marine habitats: in the water column, in sand, and on macroalgal surfaces. It was most numerous in sand and less in lagoonal waters, and only a few cells were associated with macroalgae. Light and scanning electron microscopy studies revealed engulfed cells within O. labens, which indicates mixotrophic/phagotrophic behavior. A ventral opening situated in the cingulum of O. labens exhibits size variability; it may serve as an opening for engulfiing food particles because it varies in size. We propose that ingestion of prey by O. labens occurs through the ventral opening, the proposed feeding apparatus of this species, which is similar to the function of the peduncle-like structure of mixotrophic dinoflagellates. The behavior of O. labens appears similar to that previously described for Dinophysis species.  相似文献   

10.
Thecadinium inclinatum Balech and four new marine sand‐dwelling species of the dinoflagellate genus Thecadinium are described from the sandy beaches along the coast of Shikoku, Japan. Thecadinium inclinatum is thecate, bilaterally flattened, elliptical in shape, non‐photosynthetic, and measures 55–75 μ in length and 43–59 μ in depth. The epi‐ and hypotheca theca are semielliptical and the thecal surface is smooth with small pores. The plate formula is Po (pore plate), 3′, 7″,?c,?s, 5″′1″′.Thecadinium ovatum sp. nov. is thecate, non‐photosynthetic, bilaterally flattened and almost oval in lateral view. The cell measures 40–50 μm in length and 33–40 μm in depth. The hypotheca has two or three strong antapical spines. The plate formula is 3′, 6″,6c, 5s?, 5″′, 1″′. Thecadinium striatum sp. nov. is thecate, non‐photosynthetic, bilaterally flattened and somewhat elliptical in lateral view. The cell is 33–41 μm long and 23–30 μm deep. Several striae are present on the hypotheca. The plate formula is 3′, 6″, 6c, 5s?, 5″′, 1″″. Thecadinium yashimaense sp. nov. is bilaterally flattened, photosynthetic and elliptical in ventral view. The cell is 44–65 μm long and 23–36 μm wide. The thecal surface is smooth with small pores. he cingulum forms a steep left–handed spiral. The plate formula is Po, 3′, la, 6″, 5c, 4s, 5″′, 1″′. Thecadinium arenarium sp. nov. is somewhat wedge‐shaped in ventral view, photosynthetic with brownish chloroplasts and almost rounded in cross section. The cingulum forms a steep left‐handed spiral. The cell measures 35–41 μm in length and 25–30 μm in width. The thecal surface is weakly reticulated with small pores. The hypotheca is conical. The plate formula is Po, 3′, la, 6″, 5c, 4s, 5″′, 1″″.  相似文献   

11.
The dinoflagellates Amphidinium carterae and Amphidinium corpulentum have been previously characterized as having Δ8(14)-nuclear unsaturated 4α-methyl-5α-cholest-8(14)-en-3β-ol (C28:1) and 4α-methyl-5α-ergosta-8(14),24(28)-dien-3β-ol (amphisterol; C29:2) as predominant sterols, where they comprise approximately 80% of the total sterol composition. These two sterols have hence been considered as possible major sterol biomarkers for the genus. Here, we have examined the sterols of four recently identified species of Amphidinium (Amphidinium fijiense, Amphidinium magnum, Amphidinium theodori, and Amphidinium tomasii) that are closely related to Amphidinium operculatum as part of what is termed the Operculatum Clade to show that each species has its sterol composition dominated by the common dinoflagellate sterol cholesterol (cholest-5-en-3β-ol; C27:1), which is found in many other dinoflagellate genera, rather than Δ8(14) sterols. While the Δ8(14) sterols 4α-methyl-5α-cholest-8(14)-en-3β-ol and 4α,23,24-trimethyl-5α-cholest-8(14),22E-dien-3β-ol (C30:2) were present as minor sterols along with another common dinoflagellate sterol, 4α,23,24-trimethyl-5α-cholest-22E-en-3β-ol (dinosterol; C30:1), in some of these four species, amphisterol was not conclusively observed. From a chemotaxonomic perspective, while this does reinforce the genus Amphidinium's ability to produce Δ8(14) sterols, albeit here as minor sterols, these results demonstrate that caution should be used when considering Δ8(14) sterols, especially amphisterol, as Amphidinium-specific biomarkers within these species where cholesterol is the predominant sterol.  相似文献   

12.
A new photosynthetic, sand‐dwelling marine dinoflagellate, Ailadinium reticulatum gen. et sp. nov., is described from the Jordanian coast in the Gulf of Aqaba, northern Red Sea, based on detailed morphological and molecular data. A. reticulatum is a large (53–61 μm long and 38–48 μm wide), dorsoventrally compressed species, with the epitheca smaller than the hypotheca. The theca of this new species is thick and peculiarly ornamented with round to polygonal depressions forming a foveate‐reticulate thecal surface structure. The Kofoidian thecal tabulation is APC (Po, cp), 4′, 2a, 6′′, 6c, 4s, 6′′′, 1p, 1′′′′ or alternatively it can be interpreted as APC, 4′, 2a, 6′′, 6c, 4s, 6′′′, 2′′′′. The plate pattern of A. reticulatum is noticeably different from described dinoflagellate genera. Phylogenetic analyses based on the SSU and LSU rDNA genes did not show any supported affinities with currently known thecate dinoflagellates.  相似文献   

13.
The heterotrophic sand-dwelling dinoflagellate Thecadinium inclinatum has been re-examined by light and scanning electron microscopy in order to resolve the discrepancies on its plate pattern from the literature, and to obtain its phylogenetic information single-cell PCR technique has been used. The comparison of morphological and molecular information available for other Thecadinium species confirms the genus is polyphyletic and T. inclinatum seems not related to other representatives of the genus sensu lato. Thus, a new genus and combination for the species, Psammodinium inclinatum gen. nov., comb. nov. is proposed. Cells are heterotrophic and strongly laterally flattened, with sulcal pocket. The revised tabulation is: APC 3' 7” 7c 7s? 5”' 1p 2”” with a long-shank fishhook-shaped apical pore and descending cingulum. The cingulum inclines ventrally and declines on the right lateral side producing an asymmetrical epitheca. The epitheca is much smaller than the hypotheca. The phylogenetic results showed a strong relationship with the autotrophic epiphytic genera Gambierdiscus and Fukuyoa, being closely related with the latter. The Gambierdiscus species typically have a tropical and sub-tropical distribution and produce ciguatoxins, causing thousands of intoxications every year by consumption of contaminated fish. Fukuyoa representatives have a wider distribution including warm and temperate waters, and it has been demonstrated that they are also able to produce ciguatoxins, even though at lower amounts. P. inclinatum, which potential toxicity remains to be determined, represents an interesting independent evolutionary branch that resulted in the loss of chloroplasts, the strong lateral compression and the adaptation to sandy habitats in temperate and cold waters.  相似文献   

14.
A new sand-dwelling dinoflagellate is described from Sesoko Beach, Okinawa Island, subtropical Japan and its micromorphology is studied by means of light and electron microscopy. The cell consists of a small epitheca and a large hypothecs superficially resembling members of the unarmored genus Amphidinium. The cell is dorso-ventrally flattened and possesses a single chloroplast with a large conspicuous pyrenoid. Transmission electron microscopy revealed that the dinoflagellate possesses typical dinoflagellate cellular organization. Scanning electron microscopy demonstrated that the organism is thecate and the thecal plate arrangement is Po, 4′, 1a, 7″, 5c, 4s, 6″′, 2″″. Most of the characteristics suggest gonyaulacalean affinity of the new species. These are the presence of ventral pore, lack of canal plate, direct contact between the sulcal anterior plate and the flagellar pore, possession of six postcingular plates and asymmetrical arrangement of the antapical plates. Affinity to existing families of the order Gonyaulacales has not been determined. Based on the unique cell shape, thecal plate arrangement and the presence of ventral pore, a new genus, Amphidiniella, is established for this organism and the species is named A. sedentaria Horiguchi gen. et sp. nov.  相似文献   

15.
A new, sand-dwelling, armored dinoflagellate, Roscoffia minor sp. nov., is described from Ishikari beach, Hokkaido, Japan. The dinoflagellate has been collected from sand samples taken both near the water's edge and further upshore (25 m from the water's edge at a depth of 1 m), indicating that it is a true sand-dwelling species. Roscoffia minor is heterotrophic and lacks both a chloroplast and an eye-spot. The cell consists of a flattened cap-shaped epitheca and a large hemispheroidal hypotheca, and it is quite different from cells of the typical armored dinoflagellates. The thecal plate formula is: Po, 3′, la, 5″, 3c, 3s, 5″, 1″″. Its distinct cell shape and the thecal plate arrangement indicate affinity to the monotypic genus Roscoffia. Roscoffia minor is distinguished from Roscoffia capitata, the type species, by its smaller size and the possession of a finger-like apical projection. The thecal arrangement of the epitheca is similar to those of the members of the family Podolampaceae, while the hypothecal arrangement is the same as that of members of the subfamily Diplopsalioideae (family Congruentidiaceae). The organism seems to be positioned somewhere intermediate between these two families, but the family to which this dinoflagellate should be affiliated could not be determined.  相似文献   

16.
Amphidoma is an old though poorly studied thecate dinophyte that has attracted attention recently as a potential producer of azaspiracids (AZA), a group of lipophilic phycotoxins. A new species, Amphidoma parvula, sp. nov. is described from the South Atlantic shelf of Argentina. With a Kofoidean thecal plate pattern Po, cp, X, 6′, 6′′, 6C, 5S, 6′′′, 2′′′′, the cultivated strain H-1E9 (from which the type material of Am. parvula, sp. nov. was prepared) shared the characteristic plate arrangement of Amphidoma each with six apical, precingular and postcingular plates. Amphidoma parvula, sp. nov. differs from other species of Amphidoma by a characteristic combination of small size (10.7–13.6 µm in length), ovoid shape, high length ratio between epitheca and hypotheca, and small length ratio between apical and precingular plates. Other morphological details, such as the number and arrangement of sulcal plates and the fine structure of the apical pore complex support the close relationship between Amphidoma and the other known genus of Amphidomataceae, Azadinium. However, Am. parvula, sp. nov. lacks a ventral pore, a characteristically structured pore found in all contemporary electron microscopy studies of Amphidoma and Azadinium. As inferred from liquid chromatography coupled with tandem mass spectrometry, Am. parvula, sp. nov. did not produce AZA in measurable amounts. Molecular phylogenetics confirmed the systematic placement of Am. parvula, sp. nov. in Amphidoma (as sister species of Amphidoma languida) and the Amphidomataceae. The results of this study have improved the knowledge of Amphidomataceae biodiversity.  相似文献   

17.
18.
19.
The chlorophylls and carotenoids of 22 species of dinoflagellates were analysed by thin layer chromatography, using 2-dimensional sucrose plates, and 1-dimensional polyethylene plates for chlorophylls c1 and c2. Peridinin was the major carotenoid in 19 of the species, while fucoxanthin was the major carotenoid in 3. In the peridinin-containing species, 5 carotenoid fractions, constituting more than 95% of the total carotenoids, were always present. These were peridinin (± neo-peridinin), averaging 64% of the total carotenoid, diadinoxanthin, dinoxanthin, β-carotene and a polar, unidentified pink xanthophyll. Six other carotenoid fractions occurred in minor or trace quantities among the species, but were not identified. Two of these had, a wide distribution; the other 4 were restricted to one or 2 species. The chlorophyll content of the dinoflagellate cultures ranged from 1–141 μg chlorophyll a + c/106 cells, a pattern which was broadly correlated with cell size. In the peridinin-containing species the ratio of chlorophyll a to c on a molar basis was approximately 2 (range 1.60–4.39); in the fucoxanthin-containing species this ratio was approximately 4 (range 2.65–5.73). Both chlorophylls c1 and c2 occurred in the fucoxanthin-containing dinoflagellates, and only chlorophyll c2 (one exception) occurred in the peridinin-containing dinoflagellates. These patterns of chlorophyll c and major carotenoid correspond to patterns previously observed in the Pyrrhophyta and the Chrysophyta, suggesting different phylogenetic origins for the “dinoflagellate” chloroplasts.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号