首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Strobe photographs were taken of over 200 spinning samaras from seven species of trees. These were used to measure the rate of descent, angular velocity, orientation, and other parameters of the samaras as they fell. These data were then used to compare the aerodynamic behavior of samaras, helicopters, and theoretical ideal rotors. Plotting morphological data for each samara against its rate of descent showed that this rate was highly correlated with the square root of the samara's wing loading (samara weight divided by wing-surface area). This plot demonstrated the existence of two distinct groups of samaras, distinguished by their morphology, spinning motion, and rate of descent. These results are of greatest use in characterizing local dispersal patterns.  相似文献   

2.
The distribution of wind‐dispersed seeds around a parent tree depends on diaspore and tree traits, as well as wind conditions and surrounding vegetation. This study of a neotropical canopy tree, Platypodium elegans, explored the extent to which parental variation in diaspore and tree traits explained (1) rate of diaspore descent in still air, (2) distributions of diaspores dispersed from a 40‐m tower in the forest, and (3) natural diaspore distributions around the parent tree. The geometric mean rate of descent in still air among 20 parents was highly correlated with geometric mean wing loading1/2 (r = 0.84). However, diaspore traits and rate of descent predicted less variation in dispersal distance from the tower, although descent rate−1 consistently correlated with dispersal distance. Measured seed shadows, particularly their distribution edges, differed significantly among six parents (DBH range 62–181 cm) and were best fit by six separate anisotropic dispersal kernels and surveyed fecundities. Measured rate of descent and tree traits, combined in a mechanistic seed dispersal model, did not significantly explain variation among parents in natural seed dispersal distances, perhaps due to the limited power to detect effects with only six trees. Seedling and sapling distributions were at a greater mean distance from the parents than seed distributions; saplings were heavily concentrated at far distances. Variation among parents in the distribution tails so critical for recruitment could not be explained by measured diaspore or tree traits with this sample size, and may be determined more by wind patterns and the timing of abscission in relation to wind conditions. Studies of wind dispersal need to devote greater field efforts at recording the “rare” dispersal events that contribute to far dispersal distances, following their consequences, and in understanding the mechanisms that generate them.  相似文献   

3.
翅果的风媒传播是槭属植物的主要扩散方式之一,且与种子萌发有着密切关联,但具体机理一直还并不明确。以分布于长白山的9种槭树为对象,探讨翅果的形态特征,测定它们在空气中的垂直沉降速度、不同风速下的水平扩散距离以及在扩散距离上的种子萌发率,进而比较并分析翅果的形态性状与沉降速度、水平扩散距离的相关性以及萌发率在不同扩散距离上的差异性。结果表明:(1) 9种槭树的翅果长、宽和面积与沉降速度、水平扩散距离均呈负相关;尽管如此,翅果形态并不是风传播物种的最佳分类指标,而翅载力能较好地反应物种的风传播能力;(2)翅果垂直沉降速度和水平扩散距离间存在显著负相关,表明沉降速度越小,翅果在空气中停留的时间越长,水平方向上扩散距离越远,且强风有助于提高翅果的扩散能力;(3)沉降速度最慢的花楷槭在不同风速下的水平扩散距离均最远,而沉降速度最快的拧筋槭水平扩散距离最短;(4)种子萌发率随扩散距离的增加呈下降趋势。上述结果不仅为深入理解翅果的风力传播机制以及种子萌发对水平扩散距离的响应机制提供科学依据,还可为种群实生更新方面的理论研究提供参考。  相似文献   

4.
We examined influences on wing and body size in 11 species (12 strains) of Drosophila. Six measures of wing length and width were closely correlated with wing area and suggested little variation in wing shape among the species. Among ten species wing loading, an important factor in flight costs and manoeuvrability, increased as body mass increased at a rate consistent with expectations from allometric scaling of wing area and body mass to body length. Intraspecific variation in wing loading showed similar relationships to body mass. Density and temperature during larval development influenced wing loading through general allometric relations of body size and wing area. Temperature during the pupal stage, but not during wing hardening after eclosion, influenced wing area independently of body size. Wing area increased as growth temperature decreased. Individuals reared at cooler temperatures thus compensated for a potential allometric increase in wing loading by differentially enlarging the wing area during pupal development.  相似文献   

5.
In order to determine if red maple dispersal potential or seed size change during secondary succession, samaras were collected from five populations located in early successional environments and five populations located in late successional environments. Wing loading ratios (samara mass—mg/samara area—cm2), which are inversely proportional to dispersal ability, were computed for all samaras, and seeds were excised from each samara and weighed. Samaras from the early successional red maples showed slightly but significantly lower wing loading ratios than those from the late successional environments. This result corresponds with the conclusions reached by several theoretical investigations of seed dispersal evolution that predict that recently founded populations will show greater dispersal abilities than more established populations. The earlier successional populations had slightly heavier seeds than the later successional populations, which suggests that the changes in community composition and dynamics that occur during this successional sequence do not select for heavier seeds in older red maple populations. Coefficients of variation for wing loading and seed size showed no consistent trends with successional stage, which indicates that variation in these characters does not decrease as succession proceeds.  相似文献   

6.
Seeds and fruit of 38 anemochorous species were dropped in still air to simulate their descent under natural conditions. Fall rate and lateral distance were recorded as indices of wind-borne dispersal capability. Differences in fall rates among plumed species were dependent on interspecific variation in diaspore weight and plume area, while fall rates of winged species were strongly differentiated by contrasting wing shapes. In Acer platanoides and Asclepias syriaca, representing wing and plume architectures, respectively, the range of diaspore weight was artificially extended by removing embryos or adding lead weights. In both of these species, rate of descent of altered diaspores was controlled by weight relative to wing or plume area. The wing morphology of A. platanoides showed lower fall rates than the plumed A. syriaca above 45 mg, while the plume morphology of A. syriaca achieved lower fall rates below this weight. Compared with wide variation in diaspore weight, members of the Compositae showed relatively low variation in plume loading (diaspore weight/plume area) and fall speed. These observations suggest functional and phyletic constraints on diaspore architecture. Such constraints may limit evolutionary change in diaspore size and performance.  相似文献   

7.
Morphological and aerodynamic traits affecting mean potential dispersal distance are quantified for wind-dispersed diaspores of tree species on Barro Colorado Island, Panama. The sample includes 34 species in 16 families and represents six aerodynamic groups. Mass and area (maximum cross section) each vary over six orders of magnitude among the species. In contrast, wing-loading, defined as weight divided by area, varies over only one order of magnitude, as does the rate of descent. While the regression of rate of descent on the square root of wing-loading is significant overall, the slopes vary significantly among five aerodynamic groups. At comparable wing-loading values, diaspores of fluffy kapok fall faster than four other aerodynamic groups and rolling autogyros fall faster than non-rolling autogyros. Assuming the diaspores are released from their typical tree height and experience a mean windspeed of 1.75 m sec−-1, the expected mean dispersal distance varies among the 34 species from 22 to 194 m. Rate of descent is weakly correlated with shade tolerance of seedlings for a subset of 18 species; rate of descent is more strongly correlated with the log of dry mass of seed for all 34 species. Given these wide differences in dispersal potential, any generalizations about tropical trees that use wind dispersal are of dubious value.  相似文献   

8.
Nestling birds often maintain nutritional reserves to ensure continual growth during interruptions in parental provisioning. However, mass-dependent flight costs require the loss of excess mass before fledging. Here we test whether individual variable mass loss prior to fledging is controlled through facultative adjustments by nestlings, or whether it reflects physiologically inflexible developmental schedules. We show that in the face of natural and experimental variation in nestling body mass and wing length, swifts always achieve very similar wing loadings (body mass per wing area) prior to fledging, presumably because this represents the optimum for flight. Experimental weights (approx. 5% body mass) temporarily attached to nestlings caused additional reductions in mass, such that final wing loadings still matched those of control siblings. Experimental reductions in nestling wing length (approx. 5% trimmed from feather tips) resulted in similar additional mass reductions, allowing wing loadings at fledging to approach control levels. We suggest that nestlings may assess their body mass relative to wing area via wing flapping and special 'push-ups' (on the tips of extended wings) performed in the nest. Thus, by facultatively adjusting body mass, but not wing growth, nestling swifts are always able to fledge with aerodynamically appropriate wing loadings.  相似文献   

9.
  • 1 A samara is a winged fruit or seed that autorotates when falling, thereby reducing the sinking speed of the diaspore and increasing the distance it may be transported by winds. Samaras have evolved independently in a large number of plants.
  • 2 Aerodynamical, mechanical, and structural properties crucial for the inherent self-stability are analysed, and formulae for calculation of performance data are given.
  • 3 The momentum theorem is applied to samaras to calculate induced air velocities. As a basis for blade element analysis, and for directional stability analysis, various velocity components are put together into resultant relative air velocities normal to the blade's span axis for a samara in vertical autorotation and also in autorotation with side-slip.
  • 4 When falling, a samara is free to move in any sense, but in autorotation it possesses static and dynamic stability. Mainly qualitative aspects on static stability are pre sented. Simple experiments on flat plates at Reynolds numbers about 2000 as in samaras, showed that pitch stability prevails when the C. M. (centre of mass) is located 27–35 % of the chord behind the leading edge. The aerodynamic c.p. (centre of pressure) moves forward upon a decrease of the angle of attack, backward upon an increase. In samara blades the c.m. lies ca. one-third chord behind the leading edge, and hence the aerodynamic and centrifugal forces interact so as to give pitch stability, involving stability of the angles of attack and gliding angles.
  • 5 Photographs show that the centre of rotation of the samara approximately coincides with its c.m.
  • 6 The coning angle (blade angle to tip path plane) taken up by the samara is determined by opposing moments set up by the centrifugal and aerodynamic forces. It is essentially the centrifugal moment (being a tangent function of the coning angle, which is small) that changes upon a change of coning angle, until the centrifugal and aerodynamic moments cancel out at the equilibrium coning angle.
  • 7 Directional stability is maintained by keeping the tip path plane horizontal whereby a vertical descent path relative to the ambient air is maintained. Tilting of the tip path plane results in side-slip. Side-slip leads to an increased relative air speed at the blade when advancing, a reduced speed when retreating. The correspondingly fluctuating aerodynamic force and the gyroscopic action of the samara lead to restoring moments that bring the tip path plane back to the horizontal.
  • 8 Entrance into autorotation is due to interaction between aerodynamic forces, the force of gravity, and inertial forces (when the blade accelerates towards a trailing position behind the c.m. of the samara).
  • 9 The mass distribution must be such that the c.m. lies 0–30 % of the span from one end. In Acer and Plcea samaras the C.M. lies 10–20% from one end, thereby making the disk area swept by the blade large and the sinking speed low.
  • 10 The blade plan-form is discussed in relation to aerodynamics. The width is largest far out on the blade where the relative air velocities are large. The large width of the blade contributes to a high Re number and thus probably to a better L/D (lift/drag) ratio and a slower descent.
  • 11 The concentration of vascular bundles at the leading edge of the blade and the tapering of the blade thickness towards the trailing edge are essential for a proper chord wise mass distribution.
  • 12 Data are given for samaras of Acer and Plcea, and calculations of performance are made by means of the formulae given in the paper. Some figures for an Acer samara are: sinking speed 0.9 m/sec, tip path inclination 15°, average total force coefficient 1.7 (which is discussed), and a L/D ratio of the blade approximately 3.
  • 13 The performances of samaras are compared with those of insects, birds, bats, a flat plate, and a parachute. They show the samara to be a relatively very efficient structure in braking the sinking speed of the diaspore.
  • 14 In samaras the mass, aerodynamic, and torsion axes coincide, whereas in insect wings the torsicn axis often lies ahead of the other two. Location of the torsion axis in front of the aerodynamic axis in insects tends towards passive wing twisting and passive adjustment of the angles of attack relative to the incident air stream, the direction of which varies along the wing because of wing flapping.
  • 15 Location of the mass axis behind the torsion axis may lead to unfavourable
  相似文献   

10.
Data on 12 factors presumed to influence the distribution of aggressive nest defence in 111 species of waders (incubation-sharing by the parents, number of parents present near the nest, incubation time, nest habitat, breeding latitude, body mass, wing loading, wing structure, detectability on the nest, predator regime, coloniality and alternative prey) were collected from literature and field researchers. Body mass and number of parents present on the nest territory (within response range when avian predators appear) explain 50% of the variation in aggressive defence behaviour. The results support the notion that ecological conditions like predation pressure are important in shaping wader parental care systems, with implications for mating systems. Altogether, the investigated factors explain around 70% of the variation in the samples. Future research on the level of individuals is suggested in order to explain the remaining variation.  相似文献   

11.
Flight speed is expected to increase with mass and wing loading among flying animals and aircraft for fundamental aerodynamic reasons. Assuming geometrical and dynamical similarity, cruising flight speed is predicted to vary as (body mass)1/6 and (wing loading)1/2 among bird species. To test these scaling rules and the general importance of mass and wing loading for bird flight speeds, we used tracking radar to measure flapping flight speeds of individuals or flocks of migrating birds visually identified to species as well as their altitude and winds at the altitudes where the birds were flying. Equivalent airspeeds (airspeeds corrected to sea level air density, Ue) of 138 species, ranging 0.01–10 kg in mass, were analysed in relation to biometry and phylogeny. Scaling exponents in relation to mass and wing loading were significantly smaller than predicted (about 0.12 and 0.32, respectively, with similar results for analyses based on species and independent phylogenetic contrasts). These low scaling exponents may be the result of evolutionary restrictions on bird flight-speed range, counteracting too slow flight speeds among species with low wing loading and too fast speeds among species with high wing loading. This compression of speed range is partly attained through geometric differences, with aspect ratio showing a positive relationship with body mass and wing loading, but additional factors are required to fully explain the small scaling exponent of Ue in relation to wing loading. Furthermore, mass and wing loading accounted for only a limited proportion of the variation in Ue. Phylogeny was a powerful factor, in combination with wing loading, to account for the variation in Ue. These results demonstrate that functional flight adaptations and constraints associated with different evolutionary lineages have an important influence on cruising flapping flight speed that goes beyond the general aerodynamic scaling effects of mass and wing loading.  相似文献   

12.
Biparental care is common in birds, with the allocation of effort being highly variable between the sexes. In most songbird species, the female typically provides the most care early in the breeding cycle with both parents providing care when provisioning young. Food provisioning should be directly related to offspring quality; however, the relative influence each parent has on offspring quality has rarely been assessed at the nest level. Consequently, we were interested in assessing the relative influence male and female provisioning has on one measurement of offspring quality, nestling mass, in the black‐throated blue warbler Dendroica caerulescens. Over a six year period, 2003–2008, we collected information on average nestling mass per brood on day 6 of the nestling cycle and parental provisioning rates on day 7 of the nestling cycle from 182 first brood nests on three different study plots. We found that average nestling mass was directly related to male provisioning rate, while it was not related to female provisioning rate. On the other hand, estimated biomass provisioned had little influence on average nestling mass, calling into question its utility in assessing parental quality. Finally, there was some indication that parental influence on average nestling mass was dependent on the other parent's provisioning rate, suggesting that parents work in concert to influence nestling quality.  相似文献   

13.
Riseman  Andrew  Craig  Richard 《Plant and Soil》2000,219(1-2):41-47
Interspecific hybrids of Exacum exhibit variation in the expression of zinc efficiency. This research investigated the genetic basis for this variation and evaluated a series of physiological and morphological traits for their association with zinc efficiency. Chi-square analyses of self-pollinated progeny from both zinc-efficient and zinc-inefficient parents indicate a significant genetic component. One hundred percent of the progeny from the inefficient parent were classified as inefficient, while the progeny from the efficient parent segregated 32% inefficient to 68% efficient. Six plants from each phenotypic class (efficient and inefficient) of the efficient parent were utilized in analyses of plant traits. Statistically significant associations were identified between the zinc-efficient phenotype and mol Zn uptake mg-1 root, root-to-shoot ratio, specific root length, mol Zn uptake cm-2 root surface area, and Zn uptake cm-1 root length. No association was identified between zinc-efficient phenotype and root diameter, transpiration rate, or H+ production. Zinc uptake cm-1 root length had the greatest association with the zinc-efficiency phenotype and was able to discriminate the two phenotypic classes. We suggest that Zn uptake cm-1 root length is the most significant factor explaining the variation between the zinc-efficient and zinc-inefficient phenotypes in Exacum.  相似文献   

14.
Many organisms adjust their parental expenditure to offspring in response to resource quality. However, the mechanisms underlying the adjustment in parental expenditure are not well understood. We examined the adjustments in parental expenditure and subsequent offspring performance in two sympatric, closely related dung beetles, Onthophagus ater and O. fodiens, that were provided either monkey, deer, horse, or cow dung. The egg contained within each dung brood mass provisioned by the parent beetles develops to adulthood underground. Thus, the size of the brood mass roughly represents the amount of parental expenditure. The brood mass size differed between the two species and among the four dung types. Results of offspring performance suggested that O. ater parents optimally adjusted the brood mass size in response to dung quality, whereas O. fodiens parents did not. We hypothesized that brood mass size in O. ater may increase with prolonged egg maturation caused by the lower nutrition level of cow dung. In addition, our complex results may be explained in part by the specific threshold concept of dung quality (i.e., water content and nutritional level).  相似文献   

15.
During the Neogene of South America, Anhingidae was represented by several species, mainly with greater sizes than the extant members. In the present contribution, body mass and locomotor habits of Anhinga minuta, the smallest known darter, were inferred. Body mass was estimated using two methods, one with measures of a tibiotarsus (the holotype) and the other, with measurements of a humerus; locomotor habits were inferred through muscular reconstructions and wing parameters (wing span, wing area and wing loading). Estimates of wing span and wing area were based on the length of humerus, assuming a condition of isometry with respect to Anhinga anhinga; wing loading was obtained through a relation formula between wing area and body mass. The results obtained indicate a body mass of about 729 g, a wing span of 0.958 m, a wing area of 0.117 m2 and a corresponding wing loading of 61 N/m2. These values and also the proximal insertion of the musculus pectoralis are consistent with those of a soaring bird but with more frequent flapping than extant anhingids. Furthermore, the inferred musculature for tibiotarsus indicates abilities for swimming, climbing and moving through the vegetation as in extant representatives.  相似文献   

16.
Butterflies have distinctively large wings relative to body size, but the functional and fitness consequences of wing size for butterflies are largely unknown. I use natural and experimentally generated variation in wing surface area to examine how decreased wing size affects flight and survival in a population of the western white butterfly, Pontia occidentalis. In the laboratory, experimental reductions in wing area (reduced-wings manipulation) significantly increased wingbeat frequencies of hovering butterflies, whereas a control manipulation had no detectable effects. In contrast, behavioral observations and mark-release-recapture (MRR) studies in the field detected no significant differences in flight activity, initial dispersal rates, or recapture probabilities among treatment groups. Estimated selection coefficients indicated that natural variation in wing size, body mass, and wing loading in the population were not significantly correlated with survival in the two MRR studies. In two mark-recapture studies with manipulated butterflies, survival probabilities were not significantly different for reduced-wings individuals compared with control or unmanipulated individuals. In summary, experimental reductions in wing area significantly altered aspects of flight in the laboratory, but did not detectably alter flight or survival in the field for this population. The large wing size typical of butterflies may reduce the functional and survival consequences of wing size variation within populations.  相似文献   

17.
Summary The seeds of the halophyte Spergularia marina differ both within and between individuals in that they either possess or lack a membranaceous border. This paper presents a morphological study of the length, weight and area of the seed types, and their dispersal characteristics under experimental conditions of wind and water dispersal. The winged seeds are shown to be larger both by length and by weight. Their rate of descent increases with wing loading. If the wing is lacking, however, the rate of descent increases with weight only. The distance of dispersal is equal for both seed types except at low wind speeds, when the winged seeds disperse farther. If the seed wing is removed, the excised seeds have shorter dispersal distances. When dispersed by water, a difference in the distance seeds are dispersed can only be detected in the presence of vegetation. The winged seeds are more frequently trapped in the vegetation as compared to the unwinged seeds. The hypothesis that the seed dimorphism is an adaptation for differential dispersal distances is discussed.  相似文献   

18.
This paper details the development of a nano-scale (>15 cm) robotic samara, or winged seed. The design of prototypes inspired by naturally occurring geometries is presented along with a detailed experimental process which elucidates similarities between mechanical and robotic samara flight dynamics. The helical trajectories of a samara in flight were observed to differ in-flight path and descent velocity. The body roll and pitch angular rates for the differing trajectories were observed to be coupled to variations in wing pitch, and thus provide a means of control. Inspired by the flight modalities of the bio-inspired samaras, a robotic device has been created that mimics the autorotative capability of the samara, whilst providing the ability to hover, climb and translate. A high-speed camera-based motion capture system is used to observe the flight dynamics of the mechanical and robotic samara. Similarities in the flight dynamics are compared and discussed as it relates to the design of the robotic samara.  相似文献   

19.
20.
Through the concerted use of doubled haploidy (DH), molecular markers and off-season nurseries, maize (Zea mays L.) breeders have unprecedented capabilities to quickly and precisely create progeny with desired levels of similarity to either parents of a commercial hybrid. Genotypic data from both simulated and from actual populations created either by single seed descent or through doubled haploidy were examined for the initial and subsequent generations. Simulation data showed that DH progeny inherited larger blocks of parental chromosomes; approximately seven out of 10 chromosomes had intact segments of 50% or greater. By the third DH generation progeny can be selected that are more than 90% similar to either parent of the initial commercial hybrid. Actual marker data from the initial DH generation showed a maximum parental contribution of 88.4% compared to 78.7% for progeny developed by single seed descent (SSD). The number of intact chromosomes was higher among DH progeny than among progeny bred by SSD. Use of DH facilitates access to germplasm that is already present in commercial maize hybrids. Available technologies coupled with the intellectual property protection regime will influence decisions made by plant breeders in the balance of exotic compared to well-adapted germplasm they choose to access for further cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号