首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Key innovations may allow lineages access to new resources and facilitate the invasion of new adaptive zones, potentially influencing diversification patterns. Many studies have focused on the impact of key innovations on speciation rates, but far less is known about how they influence phenotypic rates and patterns of ecomorphological diversification. We use the repeated evolution of pharyngognathy within acanthomorph fishes, a commonly cited key innovation, as a case study to explore the predictions of key innovation theory. Specifically, we investigate whether transitions to pharyngognathy led to shifts in the rate of phenotypic evolution, as well as shifts and/or expansion in the occupation of morphological and dietary space, using a dataset of 8 morphological traits measured across 3,853 species of Acanthomorpha. Analyzing the 6 evolutionarily independent pharyngognathous clades together, we found no evidence to support pharyngognathy as a key innovation; however, comparisons between individual pharyngognathous lineages and their sister clades did reveal some consistent patterns. In morphospace, most pharyngognathous clades cluster in areas that correspond to deeper-bodied morphologies relative to their sister clades, while occupying greater areas in dietary space that reflects a more diversified diet. Additionally, both Cichlidae and Labridae exhibited higher univariate rates of phenotypic evolution compared with their closest relatives. However, few of these results were exceptional relative to our null models. Our results suggest that transitions to pharyngognathy may only be advantageous when combined with additional ecological or intrinsic factors, illustrating the importance of accounting for lineage-specific effects when testing key innovation hypotheses. Moreover, the challenges we experienced formulating informative comparisons, despite the ideal evolutionary scenario of multiple independent evolutionary origins of pharyngognathous clades, illustrates the complexities involved in quantifying the impact of key innovations. Given the issues of lineage specific effects and rate heterogeneity at macroevolutionary scales we observed, we suggest a reassessment of the expected impacts of key innovations may be warranted.  相似文献   

2.
Systematic relationships among monarch flycatchers (genus Monarcha) are poorly understood despite dramatic patterns of morphological differentiation that have long attracted the attention of evolutionary biologists. With sequence data from the mitochondrial ND2 gene and Control Region, we produced a phylogenetic hypothesis for evolutionary relationships within Monarcha and among the biogeographically complex Solomon Island endemics. Outgroup analyses contradicted monophyly of the genus by imbedding a representative of the genus Clytorhynchus within one of two major clades recovered within Monarcha. These two monarch clades generally correspond with ecological and morphological distinctions, suggesting the genus may warrant revision pending the inclusion of taxa currently allied with Clytorhynchus (e.g., Neolalage spp.). Maximum likelihood reconstructions support monophyletic groupings of the two endemic Solomon Island monarch radiations, however, two currently recognized superspecies (Monarcha manadensis and M. melanopsis) were polyphyletic and paraphyletic, respectively. Interestingly, molecular and morphological differentiation were strikingly decoupled among several Solomon Island endemics and between migratory and non-migratory forms of Monarcha trivirgatus in eastern Australia, suggesting morphological evolution has masked the true history of speciation in these groups. This initial phylogeny provides a novel platform for ongoing exploration of the history underlying dramatic patterns of geographic variation among tropical Pacific flycatchers.  相似文献   

3.
Nearly forty years ago R. L. Berg proposed that plants with specialized pollination ecology evolve genetic and developmental systems that decouple floral morphology from phenotypic variation in vegetative traits. These species evolve separate floral and vegetative trait clusters, or as she termed them, "correlation pleiades." The predictions of this hypothesis have been generally supported, but only a small sample of temperate-zone herb and grass species has been tested. To further evaluate this hypothesis, especially its applicability to plants of other growth forms, we examined the patterns of phenotypic variation and covariation of floral and vegetative traits in nine species of Neotropical plants. We recognized seven specific predictions of Berg's hypothesis. Our results supported some predictions but not others. Species with specialized pollination systems usually had floral traits decoupled (weak correlation; Canna and Eichornia) or buffered (relationship with shallow proportional slope; Calathea and Canna) from variation in vegetative traits. However, the same trend was also observed in three species with unspecialized pollination systems (Echinodorus, Muntingia, and Wedelia). One species with unspecialized pollination (Croton) and one wind-pollinated species (Cyperus) showed no decoupling or buffering, as predicted. While species with specialized pollination usually showed lower coefficients of variation for floral traits than vegetative traits (as predicted), the same was also true of species with unspecialized or wind pollination (unlike our prediction). Species with specialized pollination showed less variation in floral traits than did species with unspecialized or wind pollination, as predicted. However, the same was true of the corresponding vegetative traits, which was unexpected. Also in contrast to our prediction, plants with specialized pollination systems did not exhibit tighter phenotypic integration of floral characters than did species with generalized pollination systems. We conclude that the patterns of morphological integration among floral traits and between floral and vegetative traits tend to be species specific, not easily predicted from pollination ecology, and generally more complicated than R. L. Berg envisaged.  相似文献   

4.
Body shape has a fundamental impact on organismal function, but it is unknown how functional morphology and locomotor performance and kinematics relate across a diverse array of body shapes. We showed that although patterns of body shape evolution differed considerably between lizards of the Phrynosomatinae and Lerista, patterns of locomotor evolution coincided between clades. Specifically, we found that the phrynosomatines evolved a stocky phenotype through body widening and limb shortening, whereas Lerista evolved elongation through body lengthening and limb shortening. In both clades, relative limb length played a key role in locomotor evolution and kinematic strategies, with long‐limbed species moving faster and taking longer strides. In Lerista, the body axis also influenced locomotor evolution. Similar patterns of locomotor evolution were likely due to constraints on how the body can move. However, these common patterns of locomotor evolution between the two clades resulted in different kinematic strategies and levels of performance among species because of their morphological differences. Furthermore, we found no evidence that distinct body shapes are adaptations to different substrates, as locomotor kinematics did not change on loose or solid substrates. Our findings illustrate the importance of studying kinematics to understand the mechanisms of locomotor evolution and phenotype‐function relationships.  相似文献   

5.
A major goal of evolutionary biology and ecology is to understand why species richness varies among clades. Previous studies have suggested that variation in richness among clades might be related to variation in rates of morphological evolution among clades (e.g., body size and shape). Other studies have suggested that richness patterns might be related to variation in rates of climatic‐niche evolution. However, few studies, if any, have tested the relative importance of these variables in explaining patterns of richness among clades. Here, we test their relative importance among major clades of Plethodontidae, the most species‐rich family of salamanders. Earlier studies have suggested that climatic‐niche evolution explains patterns of diversification among plethodontid clades, whereas rates of morphological evolution do not. A subsequent study stated that rates of morphological evolution instead explained patterns of species richness among plethodontid clades (along with “ecological limits” on richness of clades, leading to saturation of clades with species, given limited resources). However, they did not consider climatic‐niche evolution. Using phylogenetic multiple regression, we show that rates of climatic‐niche evolution explain most variation in richness among plethodontid clades, whereas rates of morphological evolution do not. We find little evidence that ecological limits explain patterns of richness among plethodontid clades. We also test whether rates of morphological and climatic‐niche evolution are correlated, and find that they are not. Overall, our results help explain richness patterns in a major amphibian group and provide possibly the first test of the relative importance of climatic niches and morphological evolution in explaining diversity patterns.  相似文献   

6.

Background

Although variation provides the raw material for natural selection and evolution, few empirical data exist about the factors controlling morphological variation. Because developmental constraints on variation are expected to act by influencing trait correlations, studies of modularity offer promising approaches that quantify and summarize patterns of trait relationships. Modules, highly-correlated and semi-autonomous sets of traits, are observed at many levels of biological organization, from genes to colonies. The evolutionary significance of modularity is considerable, with potential effects including constraining the variation of individual traits, circumventing pleiotropy and canalization, and facilitating the transformation of functional structures. Despite these important consequences, there has been little empirical study of how modularity influences morphological evolution on a macroevolutionary scale. Here, we conduct the first morphometric analysis of modularity and disparity in two clades of placental mammals, Primates and Carnivora, and test if trait integration within modules constrains or facilitates morphological evolution.

Principal Findings

We used both randomization methods and direct comparisons of landmark variance to compare disparity in the six cranial modules identified in previous studies. The cranial base, a highly-integrated module, showed significantly low disparity in Primates and low landmark variance in both Primates and Carnivora. The vault, zygomatic-pterygoid and orbit modules, characterized by low trait integration, displayed significantly high disparity within Carnivora. 14 of 24 results from analyses of disparity show no significant relationship between module integration and morphological disparity. Of the ten significant or marginally significant results, eight support the hypothesis that integration within modules constrains morphological evolution in the placental skull. Only the molar module, a highly-integrated and functionally important module, showed significantly high disparity in Carnivora, in support of the facilitation hypothesis.

Conclusions

This analysis of within-module disparity suggested that strong integration of traits had little influence on morphological evolution over large time scales. However, where significant results were found, the primary effect of strong integration of traits was to constrain morphological variation. Thus, within Primates and Carnivora, there was some support for the hypothesis that integration of traits within cranial modules limits morphological evolution, presumably by limiting the variation of individual traits.  相似文献   

7.
The tempo and mode of species diversification and phenotypic evolution vary widely across the tree of life, yet the relationship between these processes is poorly known. Previous tests of the relationship between rates of phenotypic evolution and rates of species diversification have assumed that species richness increases continuously through time. If this assumption is violated, simple phylogenetic estimates of net diversification rate may bear no relationship to processes that influence the distribution of species richness among clades. Here, we demonstrate that the variation in species richness among plethodontid salamander clades is unlikely to have resulted from simple time-dependent processes, leading to fundamentally different conclusions about the relationship between rates of phenotypic evolution and species diversification. Morphological evolutionary rates of both size and shape evolution are correlated with clade species richness, but are uncorrelated with simple estimators of net diversification that assume constancy of rates through time. This coupling between species diversification and phenotypic evolution is consistent with the hypothesis that clades with high rates of morphological trait evolution may diversify more than clades with low rates. Our results indicate that assumptions about underlying processes of diversity regulation have important consequences for interpreting macroevolutionary patterns.  相似文献   

8.
Allometry constitutes an important source of morphological variation. However, its influence in head development in anurans has been poorly explored. By using geometric morphometrics followed by statistical and comparative methods we analyzed patterns of allometric change during cranial postmetamorphic ontogeny in species of Nest‐building frogs Leptodactylus (Leptodactylidae). We found that the anuran skull is not a static structure, and allometry plays an important role in defining its shape in this group. Similar to other groups with biphasic life‐cycle, and following a general trend in vertebrates, ontogenetic changes mostly involve rearrangement in rostral, otoccipital, and suspensorium regions. Ontogenetic transformations are paralleled by shape changes associated with evolutionary change in size, such that the skulls of species of different intrageneric groups are scaled to each other, and small and large species show patterns of paedomorphic/peramorphic features, respectively. Allometric trajectories producing those phenotypes are highly evolvable though, with shape change direction and magnitude varying widely among clades, and irrespective of changes in absolute body size. These results reinforce the importance of large‐scale comparisons of growth patterns to understand the plasticity, evolution, and polarity of morphological changes in different clades.  相似文献   

9.
The mammalian skull performs a variety of functions and its growth and development mirrors this complexity. Cranial growth and development have been actively studied for many years. Despite this interest, the variation in the patterns and processes of skull growth has attracted little attention. An important and unanswered question is the extent to which patterns of cranial covariation and variation are dynamically reworked throughout postnatal growth. To address this question, we examine patterns of variability in random-bred mouse skulls aged 35, 90, and 150 days. Using a battery of both Procrustes coordinate and Euclidean distance-based methods, we measure mean shape, canalization, developmental stability, and morphological integration in these skulls. We predict that the patterns of variability are dynamic, particularly between the youngest and the two oldest age groups due to the influence of functional effects such as postweaning mastication. We also hypothesize that patterns of variability are structured by the same functional and developmental factors that have been shown to influence cranial growth in primates. Our results indicate that contrary to our predictions, patterns of canalization, developmental stability, and morphological integration are stabilized before 35 days. The mean shape, however, changed significantly with growth. We found that only the facial region showed significant integration as predicted by the functional matrix model used in other studies of integration. These results indicate that phenotypic integration in these mice does not closely match those found for primate species, suggesting that comparisons between species should be made with care.  相似文献   

10.
The order Primates is composed of many closely related lineages, each having a relatively well established phylogeny supported by both the fossil record and molecular data. 1 Primate evolution is characterized by a series of adaptive radiations beginning early in the Cenozoic era. Studies of these radiations have uncovered two major trends. One is that substantial amounts of morphological diversity have been produced over short periods of evolutionary time. 2 The other is that consistent and repeated patterns (variational tendencies 3 ) are detected. Taxa within clades, such as the strepsirrhines of Madagascar and the platyrrhines of the Neotropics, have diversified in body size, substrate preference, and diet. 2 , 4 - 6 The diversification of adaptive strategies within such clades is accompanied by repeated patterns of change in cheiridial proportions 7 , 8 (Fig. 1) and tooth‐cusp morphology. 9 There are obvious adaptive, natural‐selection based explanations for these patterns. The hands and feet are in direct contact with a substrate, so their form would be expected to reflect substrate preference, whereas tooth shape is related directly to the functional demands of masticating foods having different mechanical properties. What remains unclear, however, is the role of developmental and genetic processes that underlie the evolutionary diversity of the primate body plan. Are variational tendencies a signature of constraints in developmental pathways? What is the genetic basis for similar morphological transformations among closely related species? These are a sampling of the types of questions we believe can be addressed by future research integrating evidence from paleontology, comparative morphology, and developmental genetics.  相似文献   

11.
Marine tetrapod clades (e.g. seals, whales) independently adapted to marine life through the Mesozoic and Caenozoic, and provide iconic examples of convergent evolution. Apparent morphological convergence is often explained as the result of adaptation to similar ecological niches. However, quantitative tests of this hypothesis are uncommon. We use dietary data to classify the feeding ecology of extant marine tetrapods and identify patterns in skull and tooth morphology that discriminate trophic groups across clades. Mapping these patterns onto phylogeny reveals coordinated evolutionary shifts in diet and morphology in different marine tetrapod lineages. Similarities in morphology between species with similar diets—even across large phylogenetic distances—are consistent with previous hypotheses that shared functional constraints drive convergent evolution in marine tetrapods.  相似文献   

12.
Evidence of the morphological evolution of metazoans has been preserved, in varying degrees of completeness, in the fossil record of the last 600 million years. Although extinction has been incessant at lower taxonomic levels, genomic comparisons among surviving members of higher taxa suggest that much of the developmental systems that pattern their bodyplans has been conserved from early in their history. Comparisons between the origin of morphological disparity in the record and patterns of genomic disparity among living taxa promise to be interesting. For example, Hox cluster composition varies among major taxa, and the fossil record suggests that many of the changes in Hox clusters may have been associated with late Neoproterozoic evolution among minute benthic vermiform clades, from which crown bilaterian phyla arose just before or during the Cambrian explosion. Study of genomic differences among crown classes and orders whosetiming and mode of origin can be inferred from morphological data inthefossil record should throw further light on the timing and mode of origin of genomic disparities.  相似文献   

13.

Objectives

Synovial joints in human limbs strike a balance between mobility, stability, and articular fit, yet little is known about how these conflicting demands pattern intraspecific variation in articular shape. In this study, we use geometric morphometrics to establish the apportionment and magnitude of morphological variance of the articular surfaces of the human shoulder, elbow, hip, and knee. We hypothesize that variances will be comparable between articulating surfaces within a joint and will be larger in joints with smaller ranges of motion, given their plurality of functional demands.

Materials and Methods

Three-dimensional landmarks were taken on the articular surfaces of the glenohumeral, humeroulnar, acetabulofemoral, and tibiofemoral joints from CT scans of 200 skeletons from the University of Tennessee Donated Skeletal Collection (84 females, 116 males). Root mean-squared distances between articulations calculated from Procrustes shape coordinates were used to determine variance distributions.

Results

We found no difference in variances for each articular surface between the sexes or between left and right articular surfaces. A high range of motion is associated with greater morphological variance; however, this pattern is largely driven by the concave articular surfaces of each joint, which consistently exhibit statistically greater variance than their convex counterparts.

Discussion

The striking pattern of differential variance between articulating morphologies points to potential disparities in development between them. Consistently higher variance in concave surfaces may relate to chondral modeling theory for the formation of joints. Establishing intraspecific morphological variance patterns is a first step in understanding coordinated evolution among articular features.  相似文献   

14.
The magnitude of morphological integration is a major aspect of multivariate evolution, providing a simple measure of the intensity of association between morphological traits. Studies concerned with morphological integration usually translate phenotypes into morphometric representations to quantify how different morphological elements covary. Geometric and classic morphometric representations translate biological form in different ways, raising the question if magnitudes of morphological integration estimates obtained from different morphometric representations are compatible. Here we sought to answer this question using the relative eigenvalue variance of the covariance matrix obtained for both geometric and classical representations of empirical and simulated datasets. We quantified the magnitude of morphological integration for both shape and form and compared results between representations. Furthermore, we compared integration values between shape and form to evaluate the effect of the inclusion or not of size on the quantification of the magnitude of morphological integration. Results show that the choice of morphological representation has significant impact on the integration magnitude estimate, either for shape or form. Despite this, ordination of the integration values within representations is relatively the same, allowing for similar conclusions to be reached using different methods. However, the inclusion of size in the dataset significantly changes the estimates of magnitude of morphological integration, hindering the comparison of this statistic obtained from different spaces. Morphometricians should be aware of these differences and must consider how biological hypothesis translate into predictions about integration in each particular choice of representation.  相似文献   

15.
Evolutionary lineages differ with regard to the variety of forms they exhibit. We investigated whether comparisons of morphological diversity can be used to identify differences in ecological diversity in two sister clades of centrarchid fishes. Species in the Lepomis clade (sunfishes) feed on a wider range of prey items than species in the Micropterus clade (black basses). We quantified disparity in morphology of the feeding apparatus as within-clade variance on principal components and found that Lepomis exhibits 4.4 and 7.4 times more variance than Micropterus on the first two principal components. However, lineages are expected to diversify morphologically and ecologically given enough time, and this pattern could have arisen due to differences in the amount of time each clade has had to accumulate variance. Despite being sister groups, the age of the most recent common ancestor of Lepomis is approximately 14.6 million years ago and its lineages have a total length of 86.4 million years while the age of the most recent common ancestor of Micropterus is only about 8.4 million years ago, and it has a total branch length of 42.9 million years. We used the Brownian motion model of character evolution to test the hypothesis that time of independent evolution of each clade's lineages accounts for differences in morphological disparity and determined that the rates of evolution of the first two principal components are 4.4 and 7.7 times greater in Lepomis. Thus, time and phylogeny do not account for the differences in morphological disparity observed in Lepomis and Micropterus, and other diversity-promoting mechanisms should be investigated.  相似文献   

16.
Reproductive proteins often diverge rapidly between species. This pattern is frequently attributed to postmating sexual selection. Heliconius butterflies offer a good opportunity to examine this hypothesis by contrasting patterns of reproductive protein evolution between clades with divergent mating systems. Pupal-mating Heliconius females typically mate only once, limiting opportunity for postmating sexual selection. In contrast, adult-mating females remate throughout life. Reproductive protein evolution is therefore predicted to be slower and show little evidence of positive selection in the pupal-mating clade. We examined this prediction by sequencing 18 seminal fluid protein genes from a dozen Heliconius species and a related outgroup. Two proteins exhibited dN/dS > 1, implicating positive selection in the rapid evolution of at least a few Heliconius seminal fluid proteins. However, contrary to predictions, the average evolutionary rate of seminal fluid proteins was greater among pupal-mating Heliconius. Based on these results, we suggest that positive selection and relaxed constraint can generate conflicting patterns of reproductive protein evolution between mating systems. As predicted, some loci may show elevated evolutionary rates in promiscuous taxa relative to monandrous taxa resulting from adaptations to postmating sexual selection. However, when monandry is derived (as in Heliconius), the opposite pattern may result from relaxed selective constraints.  相似文献   

17.
Some major evolutionary theories predict a relationship between rates of proliferation of new species (species diversification) and rates of morphological divergence between them. However, this relationship has not been rigorously tested using phylogeny-based approaches. Here, we test this relationship with morphological and phylogenetic data from 190 species of plethodontid salamanders. Surprisingly, we find that rates of species diversification and morphological evolution are not significantly correlated, such that rapid diversification can occur with little morphological change, and vice versa. We also find that most clades have undergone remarkably similar patterns of morphological evolution (despite extensive sympatry) and that those relatively novel phenotypes are not associated with rapid diversification. Finally, we find a strong relationship between rates of size and shape evolution, which has not been previously tested.  相似文献   

18.
Phenotypic integration is a pervasive characteristic of organisms. Numerous analyses have demonstrated that patterns of phenotypic integration are conserved across large clades, but that significant variation also exists. For example, heterochronic shifts related to different mammalian reproductive strategies are reflected in postcranial skeletal integration and in coordination of bone ossification. Phenotypic integration and modularity have been hypothesized to shape morphological evolution, and we extended simulations to confirm that trait integration can influence both the trajectory and magnitude of response to selection. We further demonstrate that phenotypic integration can produce both more and less disparate organisms than would be expected under random walk models by repartitioning variance in preferred directions. This effect can also be expected to favour homoplasy and convergent evolution. New empirical analyses of the carnivoran cranium show that rates of evolution, in contrast, are not strongly influenced by phenotypic integration and show little relationship to morphological disparity, suggesting that phenotypic integration may shape the direction of evolutionary change, but not necessarily the speed of it. Nonetheless, phenotypic integration is problematic for morphological clocks and should be incorporated more widely into models that seek to accurately reconstruct both trait and organismal evolution.  相似文献   

19.
Socio-sexual selection is predicted to be an important driver of evolution, influencing speciation, extinction and adaptation. The fossil record provides a means of testing these predictions, but detecting its signature from morphological data alone is difficult. There are, nonetheless, some specific patterns of growth and variation which are expected of traits under socio-sexual selection. The distinctive parietal-squamosal frill of ceratopsian dinosaurs has previously been suggested as a socio-sexual display trait, but evidence for this has been limited. Here, we perform a whole-skull shape analysis of an unprecedentedly large sample of specimens of Protoceratops andrewsi using a high-density landmark-based geometric morphometric approach to test four predictions regarding a potential socio-sexual signalling role for the frill. Three predictions—low integration with the rest of the skull, significantly higher rate of change in size and shape during ontogeny, and higher morphological variance than other skull regions—are supported. One prediction, sexual dimorphism in shape, is not supported, suggesting that sexual differences in P. andrewsi are likely to be small. Together, these findings are consistent with mutual mate choice or selection for signalling quality in more general social interactions, and support the hypothesis that the frill functioned as a socio-sexual signal in ceratopsian dinosaurs.  相似文献   

20.
Animals from different clades but subject to similar environments often evolve similar body shapes and physiological adaptations due to convergent evolution, but this has been rarely tested at the transcontinental level and across entire classes of animal. Australia's biome diversity, isolation and aridification history provide excellent opportunities for comparative analyses on broad‐scale macroevolutionary patterns. We collected morphological and environmental data on eighty‐four (98%) Australian hylid frog species and categorized them into ecotypes. Using a phylogenetic framework, we tested the hypothesis that frogs from the same ecotype display similar body shape patterns: (i) across all the Australian hylids, and (ii) through comparison with a similar previous study on 127 (97%) Australian myobatrachid species. Body size and shape variation did not follow a strong phylogenetic pattern and was not tightly correlated with environment, but there was a stronger association between morphotype and ecotype. Both arboreal and aquatic frogs had long limbs, whereas limbs of fossorial species were shorter. Other terrestrial species were convergent on the more typical frog body shape. We quantified the strength of morphological convergence at two levels: (i) between fossorial myobatrachid and hylid frogs, and (ii) in each ecomorph within the hylids. We found strong convergence within ecotypes, especially in fossorial species. Ecotypes were also reflected in physiological adaptations: both arboreal and cocooned fossorial frogs tend to have higher rates of evaporative water loss. Our results illustrate how adaptation to different ecological niches plays a crucial role in morphological evolution, boosting phenotypic diversity within a clade. Despite phylogenetic conservatism, morphological adaptation to repeatedly emerging new environments can erase the signature of ancestral morphotypes, resulting in phenotypic diversification and convergence both within and between diverse clades.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号