首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 547 毫秒
1.
The impact of elevated carbon dioxide on plants is a growing concern in evolutionary ecology and global change biology. Characterizing patterns of phenotypic integration and multivariate plasticity to elevated carbon dioxide can provide insights into ecological and evolutionary dynamics in future human‐altered environments. Here, we examined univariate and multivariate responses to carbon enrichment in six functional traits among six European accessions of Arabidopsis thaliana. We detected phenotypic plasticity in both univariate and multivariate phenotypes, but did not find significant variation in plasticity (genotype by environment interactions) within or among accessions. Eigenvector, eigenvalue variance, and common principal components analyses showed that elevated carbon dioxide altered patterns of trait covariance, reduced the strength of phenotypic integration, and decreased population‐level differentiation in the multivariate phenotype. Our data suggest that future carbon dioxide conditions may influence evolutionary dynamics in natural populations of A. thaliana.  相似文献   

2.
The univariate and multivariate study of variation for phenotypic plasticity is central to providing a clear understanding of hypotheses about the genetic control and evolution of reaction norms in natural populations. Arabidopsis thaliana is an ideal organism for the study of Genotype × Environment interactions (i.e., genetic variation for plasticity), because of the ease with which it can be grown in large numbers and due to the amount of information already available on its genetics, physiology and developmental biology. In this paper, we report on the plasticity, genetic variation and G × E interactions of four populations of A. thaliana in response to three environmental gradients (water, light and nutrients), each characterized by four levels of the controlled parameter. We measured nine traits and obtained their reaction norms. Path analysis was used to study the plasticity of character correlations. We found a tendency for A. thaliana reaction norms to be linear (either flat, i.e. no plasticity, or with a significant slope), in accordance with previous studies. We detected substantial amounts of genetic variation for plasticity in the light and nutrient gradients, but not in the water gradient. Dramatic restructuring of character correlations was induced by changes in environmental conditions, although some paths tended to be stable irrespective of the environment, thereby suggesting some degree of canalization.  相似文献   

3.
Species can respond to environmental pressures through genetic and epigenetic changes and through phenotypic plasticity, but few studies have evaluated the relationships between genetic differentiation and phenotypic plasticity of plant species along changing environmental conditions throughout wide latitudinal ranges. We studied inter‐ and intrapopulation genetic diversity (using simple sequence repeats and chloroplast DNA sequencing) and inter‐ and intrapopulation phenotypic variability of 33 plant traits (using field and common‐garden measurements) for five populations of the invasive cordgrass Spartina densiflora Brongn. along the Pacific coast of North America from San Francisco Bay to Vancouver Island. Studied populations showed very low genetic diversity, high levels of phenotypic variability when growing in contrasted environments and high intrapopulation phenotypic variability for many plant traits. This intrapopulation phenotypic variability was especially high, irrespective of environmental conditions, for those traits showing also high phenotypic plasticity. Within‐population variation represented 84% of the total genetic variation coinciding with certain individual plants keeping consistent responses for three plant traits (chlorophyll b and carotenoid contents, and dead shoot biomass) in the field and in common‐garden conditions. These populations have most likely undergone genetic bottleneck since their introduction from South America; multiple introductions are unknown but possible as the population from Vancouver Island was the most recent and one of the most genetically diverse. S. densiflora appears as a species that would not be very affected itself by climate change and sea‐level rise as it can disperse, establish, and acclimate to contrasted environments along wide latitudinal ranges.  相似文献   

4.
While phenotypic plasticity has been the focus of much research and debate in the recent ecological and evolutionary literature, the developmental nature of the phenomenon has been mostly overlooked. A developmental perspective must ultimately be an integral part of our understanding of how organisms cope with heterogeneous environments. In this paper I use the rapid cycling Arabidopsis thaliana to address the following questions concerning developmental plasticity. (1) Are there genetic and/or environmental differences in parameters describing ontogenetic trajectories? (2) Is ontogenetic variation produced by differences in genotypes and/or environments for two crucial traits of the reproductive phase of the life cycle, stem elongation and flower production? (3) Is there ontogenetic variability for the correlation between the two characters? I found genetic variation, plasticity, and variation for plasticity affecting at least some of the growth parameters, indicating potential for evolution via heterochronic shifts in ontogenetic trajectories. Within-population differences among families are determined before the onset of the reproductive phase, while among-population variation is the result of divergence during the reproductive phase of the ontogeny. Finally, the ontogenetic profiles of character correlations are very distinct between the ecologically meaningful categories of early- and late-flowering “ecotypes” in this species, and show susceptibility to environmental change.  相似文献   

5.
Phenotypic plasticity is important for species responses to global change and species coexistence. Phenotypic plasticity differs among species and traits and changes across environments. Here, we investigated phenotypic plasticity of the widespread grass Arrhenatherum elatius in response to winter warming and frost stress by comparing phenotypic plasticity of 11 geographically and environmentally distinct populations of this species to phenotypic plasticity of populations of different species originating from a single environment. The variation in phenotypic plasticity was similar for populations of a single species from different locations compared to populations of functionally and taxonomically diverse species from one environment for the studied traits (leaf biomass production and root integrity after frost) across three indices of phenotypic plasticity (RDPI, PIN, slope of reaction norm). Phenotypic plasticity was not associated with neutral genetic diversity but closely linked to the climate of the populations’ origin. Populations originating from warmer and more variable climates showed higher phenotypic plasticity. This indicates that phenotypic plasticity can itself be considered as a trait subject to local adaptation to climate. Finally, our data emphasize that high phenotypic plasticity is not per se positive for adaptation to climate change, as differences in stress responses are resulting in high phenotypic plasticity as expressed by common plasticity indices, which is likely to be related to increased mortality under stress in more plastic populations.  相似文献   

6.
Heritable phenotypic variation in plants can be caused not only by underlying genetic differences, but also by variation in epigenetic modifications such as DNA methylation. However, we still know very little about how relevant such epigenetic variation is to the ecology and evolution of natural populations. We conducted a greenhouse experiment in which we treated a set of natural genotypes of Arabidopsis thaliana with the demethylating agent 5-azacytidine and examined the consequences of this treatment for plant traits and their phenotypic plasticity. Experimental demethylation strongly reduced the growth and fitness of plants and delayed their flowering, but the degree of this response varied significantly among genotypes. Differences in genotypes’ responses to demethylation were only weakly related to their genetic relatedness, which is consistent with the idea that natural epigenetic variation is independent of genetic variation. Demethylation also altered patterns of phenotypic plasticity, as well as the amount of phenotypic variation observed among plant individuals and genotype means. We have demonstrated that epigenetic variation can have a dramatic impact on ecologically important plant traits and their variability, as well as on the fitness of plants and their ecological interactions. Epigenetic variation may thus be an overlooked factor in the evolutionary ecology of plant populations.  相似文献   

7.
Thigmomorphogenesis, the characteristic phenotypic changes by which plants react to mechanical stress, is a widespread and probably adaptive type of phenotypic plasticity. However, little is known about its genetic basis and population variation. Here, we examine genetic variation for thigmomorphogenesis within and among natural populations of the model system Arabidopsis thaliana. Offspring from 17 field-collected European populations was subjected to three levels of mechanical stress exerted by wind. Overall, plants were remarkably tolerant to mechanical stress. Even high wind speed did not significantly alter the correlation structure among phenotypic traits. However, wind significantly affected plant growth and phenology, and there was genetic variation for some aspects of plasticity to wind among A. thaliana populations. Our most interesting finding was that phenotypic traits were organized into three distinct and to a large degree statistically independent covariance modules associated with plant size, phenology, and growth form, respectively. These phenotypic modules differed in their responsiveness to wind, in the degree of genetic variability for plasticity, and in the extent to which plasticity affected fitness. It is likely, therefore, that thigmomorphogenesis in this species evolves quasi-independently in different phenotypic modules.  相似文献   

8.
Studies on divergence of phenotypic plasticity in closely related species have suggested that character means and plasticity of these characters may evolve independently. Similar patterns of divergence between populations within a species have been reported although few plant species have been studied. Thus, in this paper, the patterns of differentiation between character means and phenotypic plasticity among eight populations of Arabis serrata are documented. Mean response and magnitude and pattern of phenotypic plasticity were measured and compared in plants growing under an environmental gradient of nutrients. Differences in means and coefficients of variation (CV as indicators of plasticity) among populations were compared using the Canberra metric and generating unrooted Wagner trees. Populations showed significant differences in character means in nine morphological traits. Magnitude and patterns of phenotypic plasticity showed a complex pattern of differentiation for each trait and population. Biomass traits were more plastic, in general, than characters associated with linear size. Comparisons between pairs of populations for nine morphological traits showed that in 28.6% of 252 possible cases, populations differed in means, magnitude and patterns of phenotypic plasticity. In almost 90% of the cases, populations differed in magnitude and/or pattern of plasticity. Considering all characters together, populations from similar habitats and with common life history features tended to respond in similar ways. The patterns of divergence, however, suggest that character means and character plasticities among populations are able to evolve independently.  相似文献   

9.
The evolution of phenotypic plasticity has rarely been examined within an explicitly phylogenetic framework, making use of modern comparative techniques. Therefore, the purpose of this study was to determine phylogenetic patterns in the evolution of phenotypic plasticity in response to vegetation shade (the ‘shade avoidance’ syndrome) in the annual plant Arabidopsis thaliana and its close relatives. Specifically, we asked the following questions: (i) Do A. thaliana and related species differ within or among clades in the magnitude and/or pattern of plasticity to shade? (ii) Are the phenotypic variance–covariance matrices (phenotypic integration) of these taxa plastic to the changes in light quality induced by the presence of a canopy? (iii) To what extent does the variation in uni- and multivariate plasticity match the phylogeny of Arabidopsis? In order to address these questions we grew individuals from six taxa of known phylogenetic relationship in a greenhouse under full sun and under a grass canopy. Taxa differed in the magnitude, but not in the pattern, of plasticities for all traits. At the univariate level, the late flowering species, A. pumila and A. griffithiana, as well as the late flowering Moscow ecotype of A. thaliana, showed greater plasticity for allocation to vegetative and reproductive meristems. At the multivariate level, several taxa displayed a very low stability of their variance–covariance structures to environmental change, with only one taxon sharing as many as three principal components across environments. We conclude that both univariate and multivariate plasticities to vegetation shade can evolve rapidly within a genus of flowering plants, with little evidence of historical constraints (phylogenetic inertia).  相似文献   

10.
Phenotypic plasticity in thermally-regulated traits enables close tracking of changing environmental conditions, and can thereby enhance the potential for rapid population increase, a hallmark of outbreak insect species. In a changing climate, exposure to conditions that exceed the capacity of existing phenotypic plasticity may occur. Combining information on genetic architecture and trait plasticity among populations that are distributed along a latitudinal cline can provide insight into how thermally-regulated traits evolve in divergent environments and the potential for adaptation. Dendroctonus ponderosae feed on Pinus species in diverse climatic regimes throughout western North America, and show eruptive population dynamics. We describe geographical patterns of plasticity in D. ponderosae development time and adult size by examining reaction norms of populations from multiple latitudes. The relative influence of additive and non-additive genetic effects on population differences in the two phenotypic traits at a single temperature is quantified using line-cross experiments and joint-scaling tests. We found significant genetic and phenotypic variation among D. ponderosae populations. Simple additive genetic variance was not the primary source of the observed variation, and dominance and epistasis contributed greatly to the genetic divergence of the two thermally-regulated traits. Hybrid breakdown was also observed in F2 hybrid crosses between northern and southern populations, further indication of substantial genetic differences among clinal populations and potential reproductive isolation within D. ponderosae. Although it is unclear what maintains variation in the life-history traits, observed plasticity in thermally-regulated traits that are directly linked to rapid numerical change may contribute to the outbreak nature of D. ponderosae, particularly in a changing climate.  相似文献   

11.
The evolutionary and environmental stability of character correlations has increasingly been the focus of ecological and quantitative genetic studies. Although the genetic stability of character correlations is a central assumption of quantitative genetic models of phenotypic evolution, theoretical considerations suggest that both the genetic and the phenotypic architecture should change in response to selection and to environmental heterogeneity. We investigate genetic (population) differences and plasticity to nutrient availability of the phenotypic architecture describing the whole-plant phenotype of Arabidopsis thaliana (Brassicaceae). We found significant genetic differences among early and late flowering ecotypes in the relationships between several traits, when a path-analytical model was used to estimate character correlations. Furthermore, we found significant plasticity of several path coefficients when nutrient levels were altered. A whole-plant analysis considering all paths in the model simultaneously confirmed that populations of A. thaliana are characterized by distinct phenotypic architectures, and that these are altered in different ways by environmental changes. We discuss the implications of these findings for our understanding of selective pressure on and response by multivariate phenotypes.  相似文献   

12.
Despite the increasing number of genomic tools, identifying the genetics underlying adaptive complex traits remains challenging in the model species Arabidopsis thaliana. This is due, at least in part, to the lack of data on the geographical scale of adaptive phenotypic variation. The aims of this study were (i) to tease apart the historical roles of adaptive and nonselective processes in shaping phenological variation in A. thaliana in France and (ii) to gain insights into the spatial scale of adaptive variation by identifying the putative selective agents responsible for this selection. Forty‐nine natural stands from four climatically contrasted French regions were characterized (i) phenologically for six traits, (ii) genetically using 135 SNP markers and (iii) ecologically for 42 variables. Up to 63% of phenological variation could be explained by neutral genetic diversity. The remaining phenological variation displayed stronger associations with ecological variation within regions than among regions, suggesting the importance of local selective agents in shaping adaptive phenological variation. Although climatic conditions have often been suggested as the main selective agents acting on phenology in A. thaliana, both edaphic conditions and interspecific competition appear to be strong selective agents in some regions. In a first attempt to identify the genetics of phenological variation at different geographical scales, we phenotyped worldwide accessions and local polymorphic populations from the French RegMap in a genome‐wide association (GWA) mapping study. The genomic regions associated with phenological variation depended upon the geographical scale considered, stressing the need to account for the scale of adaptive phenotypic variation when choosing accession panels for GWAS.  相似文献   

13.
A long-standing question in ecology is whether phenotypic plasticity, rather than selection per se, is responsible for phenotypic variation among populations. Plasticity can increase or decrease variation, but most previous studies have been limited to single populations, single traits and a small number of environments assessed using univariate reaction norms. Here, examining two genetically distinct populations of Daphnia pulex with different predation histories, we quantified predator-induced plasticity among 11 traits along a fine-scale gradient of predation risk by a predator (Chaoborus) common to both populations. We test the hypothesis that plasticity can be responsible for convergence in phenotypes among different populations by experimentally characterizing multivariate reaction norms with phenotypic trajectory analysis (PTA). Univariate analyses showed that all genotypes increased age and size at maturity, and invested in defensive spikes (neckteeth), but failed to quantitatively describe whole-organism response. In contrast, PTA quantified and qualified the phenotypic strategy the organism mobilized against the selection pressure. We demonstrate, at the whole-organism level, that the two populations occupy different areas of phenotypic space in the absence of predation but converge in phenotypic space as predation threat increases.  相似文献   

14.
It has been demonstrated that phenotypic plasticity and genotype by environment interaction are important for coping with new and heterogeneous environments during invasions. Zaprionus indianus Gupta (Diptera: Drosophilidae) is an Afrotropical invasive fly species introduced to the South American continent in 1999. This species is generalist and polyphagous, since it develops and feeds in several different fruit species. These characteristics of Z. indianus suggest that phenotypic plasticity and genotype by environment interaction may be important in this species invasion process. In this sense, our aim was to investigate the role of genetic variation for phenotypic plasticity (genotype by environment interaction) in Z. indianus invasion of the South American continent. Specifically, we quantified quantitative genetic variation and genotype by environment interactions of morphological and life history traits in different developmental environments, that is, host fruits. This was done in different populations in the invasive range of Z. indianus in Argentina. Results showed that Z. indianus populations have considerable amounts of quantitative genetic variation. Also, genotype by environment interactions was detected for the different traits analyzed in response to the different developmental environments. Interestingly, the amounts and patterns of these parameters differed between populations. We interpreted these results as the existence of differences in evolutionary potential between populations that have an important role in the short‐ and long‐term success of the Z. indianus invasion process.  相似文献   

15.
Summary Body size in Drosophila is known to be closely related to a number of traits with important life history consequences, such as fecundity, dispersal ability and mating success. We examine the quantitative genetic basis of body size in three populations of the cactophilic species Drosophila buzzatii, which inhabit climatically different areas of Australia. Flies were reared individually to eliminate any common environmental component in a full-sib design with families split between two temperatures (18° and 25 °C). The means of several size measures differ significantly among populations while the genetic correlations among these traits generally do not differ, either among populations from different natural environments or between the different laboratory temperatures. This stability of correlation structure is necessary if laboratory estimates of genetic correlations are to have any connection with the expression of genetic variation in the field. The amount of variance due to genotype-by-environment interactions (family x temperature of development) varied among populations, apparently in parallel with the magnitudes of seasonal and diurnal variation in temperature experienced by the different populations. A coastal population, inhabiting a relatively thermally benign environment, showed no interaction, while two inland populations, inhabiting thermally more extreme areas, showed interaction. This interaction term is a measure of the amount of genetic variation in the degree of phenotypic plasticity of body size in response to temperature of development. Thus the inland flies vary in their ability to attain a given body size at a particular temperature while the coastal flies do not. This phenotypic plasticity is shown to be due primarily to differences among genotypes in the amount of response to the change in temperature. A possible selective basis for the maintenance of genetic variation for the levels of phenotypic plasticity is proposed.  相似文献   

16.
17.
Despite numerous releases for biological control purposes during more than 20 years in Europe, Harmonia axyridis failed to become established until the beginning of the 21st century. Its status as invasive alien species is now widely recognised. Theory suggests that invasive populations should evolve toward greater phenotypic plasticity because they encounter differing environments during the invasion process. On the contrary, populations used for biological control have been maintained under artificial rearing conditions for many generations; they are hence expected to become specialised on a narrow range of environments and show lower phenotypic plasticity. Here we compared phenotypic traits and the extent of adaptive phenotypic plasticity in two invasive populations and two populations commercialized for biological control by (i) measuring six phenotypic traits related to fitness (eggs hatching rate, larval survival rate, development time, sex ratio, fecundity over 6 weeks and survival time of starving adults) at three temperatures (18, 24 and 30°C), (ii) recording the survival rate and quiescence aggregation behaviour when exposed to low temperatures (5, 10 and 15°C), and (iii) studying the cannibalistic behaviour of populations in the absence of food. Invasive and biocontrol populations displayed significantly different responses to temperature variation for a composite fitness index computed from the traits measured at 18, 24 and 30°C, but not for any of those traits considered independently. The plasticity measured on the same fitness index was higher in the two invasive populations, but this difference was not statistically significant. On the other hand, invasive populations displayed significantly higher survival and higher phenotypic plasticity when entering into quiescence at low temperatures. In addition, one invasive population displayed a singular cannibalistic behaviour. Our results hence only partly support the expectation of increased adaptive phenotypic plasticity of European invasive populations of H. axyridis, and stress the importance of the choice of the environmental parameters to be manipulated for assessing phenotypic plasticity variation among populations.  相似文献   

18.
Phenotypic integration can be defined as the network of multivariate relationships among behavioural, physiological and morphological traits that describe the organism. Phenotypic integration plasticity refers to the change in patterns of phenotypic integration across environments or ontogeny. Because studies of phenotypic plasticity have predominantly focussed on single traits, a G × E interaction is typically perceived as differences in the magnitude of trait expression across two or more environments. However, many plastic responses involve coordinated responses in multiple traits, raising the possibility that relative differences in trait expression in different environments are an important, but often overlooked, source of G × E interaction. Here, we use phenotypic change vectors to statistically compare the multivariate life‐history plasticity of six Daphnia magna clones collected from four disparate European populations. Differences in the magnitude of plastic responses were statistically distinguishable for two of the six clones studied. However, differences in phenotypic integration plasticity were statistically distinguishable for all six of the clones studied, suggesting that phenotypic integration plasticity is an important component of G × E interactions that may be missed unless appropriate multivariate analyses are used.  相似文献   

19.
Within-individual strategies of variation (e.g., phenotypic plasticity) are particularly relevant to modular organisms, in which ramets of the same genetic individual may encounter diverse environments imposing diverse patterns of selection. Hence, measuring selection in heterogeneous environments is essential to understanding whether environment-dependent phenotypic change enhances the fitness of modular individuals. In sublittoral marine habitats, competition for light and space among modular taxa generates extreme patchiness in resource availability. Little is known, however, of the potential for plasticity within individuals to arise from spatially-variable selection in such systems. We tested whether plasticity enhances genet-level fitness in Asparagopsis armata, a clonal seaweed in which correlated traits mediate morphological responses to variation in light. Using the capacity for rapid, clonal growth to measure fitness, we identified aspects of ramet morphology targeted by selection in two contrasting light environments and compared patterns of selection across environments. We found that directional selection on single traits, coupled with linear and nonlinear selection on multi-trait interactions, shape ramet morphology within environments and favor different phenotypes in each. Evidence of environment-dependent, multivariate selection on correlated traits is novel for any marine modular organism and demonstrates that seaweeds, such as A. armata, may potentially adapt to environmental heterogeneity via plasticity in clonal morphology.  相似文献   

20.
Phenotypic plasticity (the pattern of response of organisms to changes in environmental conditions) and phenotypic integration (the pattern of character correlations) are important components of our understanding of the evolution of complex phenotypes. Most studies published so far in this area have been conducted within populations with the express aim of predicting future response to evolutionary forces. However, among-population differentiation for plasticity and trait correlations are important indicators of recent past events that have shaped the currently observable phenotypes. We investigated variation in the reaction norms of several traits in a large number of accessions of Arabidopsis thaliana exposed to different levels of light quantity as well as the environmental lability of the corresponding across-population character variance–covariance matrix. Our results show that there is an astounding degree of inter-population variation for character means and very little variation for plasticity, in agreement with the idea that A. thaliana is a light-specialist often occurring in open, disturbed habitats. However, this plant also shows patterns of plasticity that are predicted to be adaptive based on functional ecological considerations, such as an increase in either specific leaf area or leaf number (but not both) under low light. We also demonstrate that the set of character correlations in A. thaliana is extremely stable to changes in light availability, contrary to previous findings in the same species when different environmental factors were considered. Several processes that might have been responsible for the observed patterns are discussed as a prelude to follow-up research on these problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号