首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Podostemaceae, or river-weeds, comprise 46 genera and 270 species of dicots and are the largest family of strictly aquatic angiosperms. Despite the large size, specialized habitats, and enigmatic morphology of the family, relatively little is known about the palynology of Podostemaceae. In the current paper, pollen morphology and ultrastructure of Marathrum schiedeanum are described. Pollen grains are relatively small, spheroidal, and tricolpate to spiraperturate. The exine has a microechinate ornament, a tectate-granular sexine and a relatively thick nexine in non-apertural regions, and a semitectate sexine and thinner nexine in apertural regions. Although aperture variation occurs in the family, this is the first report of the spiral aperture type in Podostemaceae. The spiraperturate condition appears to be derived in river-weeds, as does the granular pollen wall, which represents a reduction of the typical columellae found in eudicots.  相似文献   

2.
The micromorphology and fine structure of in situ pentoxylalean pollen are described from the holotype of Sahnia laxiphora Drinnan and Chambers 1985 collected from the Lower Cretaceous (Valanginian-Aptian) of Victoria, southeastern Australia. Pollen grains are ovoid, monosulcate, and relatively small, averaging 26 μm in length. Exine ornamentation is psilate. The sporoderm is two-parted with the sexine staining lightly throughout and approximately six times the thickness of the more darkly staining nexine. The exine over the sulcus is typically strongly invaginated, and may or may not include an extremely thin sexine layer. The outer part of the sexine is homogeneous, while the inner part is composed of relatively large granules separated by irregular lacunae of various sizes; lacunae are most pronounced at the sexinenexine interface. Faint lamellae characterize the nexine in both apertural and nonapertural regions. Granular orbicules are often associated with the exine surfaces and also occur appressed to pollen sac walls along with lamellated tapetal membranes. Sporoderm ultrastructure is compared to that of nonsaccate pollen of other groups, and particularly to pollen of Bennettitales, Gnetales, angiosperms, and similar plants, to which the Pentoxylales have been thought to be closely related. Although Sahnia laxiphora pollen is not identical to that of any of these taxa, the strongest similarity is with pollen of Bennettitales.  相似文献   

3.
The present paper describes the pollen morphology of 31 species of the genus Quercus from China. The pollen grains were all examined with light microscope and scanning electron microscope, and those of some species under transmission electron microscope. Pollen grains of the genus are spheroidal or subspheroidal, 16.8-50.4μm in diameter, 3colporoidate or 3-colpate. The exine is 2-layered, 0.4-1.8μm thick, sexine thicker than nexine, granulated tuberculate or verrucate.  相似文献   

4.
Scanning and transmission electron microscopy of pollen grains of 29 species, representing the ten extant genera of Cycadales, has provided valuable insight into their relationships. Pollen grains of these taxa are boat-shaped, monosulcate, and bilaterally symmetrical. They range from narrowly to widely elliptical or subcircular when viewed distally, and have an exine surface of psilate, foveolate, or fossulate. Pollen wall ultrastructure of Cycadales is typically tectate with alveolate∗∗∗spongy exine. The nexine is laminated in all genera. Nexine 1 (footlayer) is present in most species as a thin and often discontinuous layer. There is consistent variation in thickness of the sporoderm layers among the genera but relative uniformity within them. Pollen characteristics are well correlated with macro- and micromorphological features, chromosome numbers, geographical distribution, and postulated pollination mode. A close affinity between Encephalartos, Lepidozamia, and Macrozamia is recognized. Pollen characteristics of the genus Bowenia show some similarity with those of the latter group. Except for two species of Macrozamia which are narrowly elliptic, all of the genera have widely elliptic pollen and share a psilate exine surface and the thinnest sexine with nearly identical arrangement of alveoli. Pollen grains of the species in the genus Dioon exhibit a unique morphology but are more similar to Stangeria than they are to those of taxa in Zamiaceae. The circular outline of the grains and the foveolate exine surface are characters shared by these two genera, but several morphological features distinguish Dioon from Stangeria. Ceratozamia and Zamia share a widely elliptic shape, foveolate exine surface and nearly identical sexine, as well as morphological features and chromosome numbers. They differ from Microcycas in sexine thickness, gross morphology and chromosome numbers. The pollen grains of Cycas circinalis and C. revoluta differ in size and structure of the sexine from all other genera and from each other, substantiating their distinct subgeneric delimitations.  相似文献   

5.
Pollen ultrastructure has been studied in two relict and rare species of the genus Aristolochia, A. contorta Bunge and A. manshuriensis Kom. (Aristolochiaceae). Both species have inaperturate, spheroidal, sometimes distally monocolpate or distally bicolpate pollen grains. The equatorial and polar axes of pollen grain in A. manshuriensis are 48.5 and 44.0 μm, respectively. The percentage of defective pollen grains in A. manshuriensis is 3.4%. The fossulate, perforated exine is up to 2.3 μm in thickness; the sexine and the nexine are almost equal in thickness. In A. contorta, the equatorial axis of pollen grain is 36.6 μm: the defectiveness percentage, 24.5%. The exine is verrucate, up to 0.3 μm in thickness, while the sexine is two to three times thicker than the nexine. The pollen germination experiments have shown that pollen of A. manshuriensis, in contrast to A. contorta, can germinate in 10–20% sucrose at 22°С. These data and the high percentage of pollen defectiveness in A. contorta indicate that the androecium function in this species is reduced. The reduction of the androecium function is evidenced by a small amount of pollen grains in anthers or empty anthers and a high percentage of defective pollen grains.  相似文献   

6.
Monoletes pollen extracted from the seed fern synangium Dolerotheca sclerotica Baxter illustrate four stages in the development of the sporoderm. In the first stage the grains are up to 100 μm long and possess an apparent homogeneous exine in which there is little differentiation between the nexine and sexine. Numerous nexine lamellae and the initiation of sexine expansion mark stage 2 in exine ontogeny. Further expansion of the sexine continues in the third stage until the ratio between the nexine and sexine is approximately 1:5. The final stage in maturation of the sporoderm shows an expanded alveolate sexine with some of the sporopollenin units broken and disorganized. It is at this stage of development that nexine lamellae are most prominent. The formation of sporoderm layers in the fossil grains is compared with pollen grain development in living cycads (Cycadophyta) and a model proposed to account for the apparent early formation of nexine lamellae in Monoletes. The evolution of exine components in early pollen types is discussed.  相似文献   

7.
The present paper describes the pollen morphology of 11 species of thc genus Corylopsis (Hamamelidaceae). The pollen grains were all examined with light microscope and scanning electron microscope. Pollen grains of the genus are prolate, spheroidal or subprolate. Three size types are recognized: (l) 18-23 μm, found in Corylopsis omeiensis Yang, C.gotoana Makino, C. himalayana Griff and C.platypetala Rehd. et Wils. (2) 24-32μm, found in C. sinensis Hemsl., C.willmottiae Rehd. et Wils., C.veitchiana Bean, C. brevistyla H.T.Chang, C.multiflora Hance, C.pauciflora Sieb. et Zucc. and C.spicata Sieb. Zucc. (3) 34-39μm, found in C. wilsonii Hemsl. and C. cordata Merrill. Pollen grains are 3-colpate and 4-colpate (only infrequently found in Corylopsis sinensis Hemsl.); the exine is 2-layered, 1.25-2.50μm thick, distinctly reticulate, sexine almost equal to nexine in thickness. From the pollen morphology the genus is considered as a natu-ral group.  相似文献   

8.
Pollen morphology of 8 species in genus Sparganium from China has been studied. All of them were examined under the light microscope and SEM. It may draw the following conclusions: The characteristics of pollen grains in genus Sparganium are very similar. They are spheroidal, subspheroidal or sometimes slightly angular in shape, 21.8–38.3μm in diameter, monoporate. Porus is slightly sunken, its margin distinct or indistinct, and some granules on the porus membrane. The thickness of exine is 1.7–2.6μ m. The sexine is about as thick as nexine, sometimes thinner than nexine. It is difficult to distinguish one another under the light microscope, but may be seperated under SEM on the basis of the shape or size of lumina and width or height of muff. In some species small excrescenses can be observed under SEM. Some taxonomists (Rendle, 1953) considered that Sparganium is closely related to Pandanus, but others (Hutchison 1934, Takhtajan 1969) to Typha. According to the data of pollen morphology, Sparganium is more close to Typhaceae than to Pandanaceae, thus we agree to put it into family Typhaceae.  相似文献   

9.
The present paper describes the pollen morphology of 45 species of the subfamily Castaneoifeae (including genera Castanea, Castanopsis and Lithocarpus) from China. The pollen grains were all examined with light microscope, scanning electron microscope and transmission electron microscope. Pollen grains of the subfamily are prolate, subprolate or perprolate, (14.7-23.1)× (8.4 -18.9) μm in size, 3-colporate, the exine in 2-layered, 0.9-1.9μm thick, indistinctly ornate, striate-rugulose or crass-striate, sexine and nexine almost equal in thickness, the sexine consists of tectum, bacules and endonexine under TEM. On the basis of very similar pollen shape, pollen size, type of aperture and exine structure and also other characteristics of plant morphology of the genera Castanea, Castanopsis and Lithocarpus, the present authors tend to support the opinion that they all fall into the samesubfamily, Castaneoideae.  相似文献   

10.
Morphology and exine ultrastructure of pollen grains of Triassic peltasperms have been studied for the first time. Pollen grains of Antevsia zeilleri from the Rhaetian of Germany are of the Cycadopites-type and monosulcate; the sculpturing is the same in the apertural and non-apertural areas. The proximal exine includes a row of lacunae covered by a solid, thick tectum and underlined by a foot layer. Pillars are hanging from the tectum between the lacunae. The exine is thinning to a homogeneous layer in the apertural region. The latter is bordered by thicker alveolate areas of the exine, in places resembling a saccus-like ultrastructure. The endexine includes white-line-centred lamellae. The exine ultrastructure is compared with that of pollen of Permian peltasperms. Although pollen types ascribed to Permian peltasperms are completely different in their general morphology, a transformation can be hypothesized by ultrastructural data from Permian Vesicaspora into Triassic Cycadopites extracted from pollen sacs of Antevsia. Comparison with Cycadopites of non-peltaspermalean (Ginkgoalean, Cycadophyte) and unknown affinities has been accomplished. The exine ultrastructure is distinctive enough to differentiate among peltaspermalean, cycadalean and bennettitalean Cycadopites; some ultrastructural features are shared with pollen of modern Ginkgo biloba. More ultrastructural data are needed as well as numerous sections of pollen grains are necessary to reveal original unchanged ultrastructure.  相似文献   

11.
Pollen grains of Classopollis Pflug from the Cretaceous deposits of Lebanon were studied by means of light and electron microscopy. Ultrastructurally, they are similar to pollen grains, extracted from Classostrobus comptonensis Alvin, Spicer et Watson from the Barremian of England. The differences concern the shape and size of spinules, ultrastructure of apertural regions, and preservation of the endexine. An analysis of our data and published results revealed three types of infratectum existed in members of Circumpolles: (1) with branchy elements, (2) with columella-like non-branching elements, and (3) with large granules arranged in one row. The palynological assemblage is described in detail; problems of dating are discussed.  相似文献   

12.
Of all species comprising the two genera of the Cabombaceae, only Brasenia schreberi J. F. Gmel. and Cabomba caroliniana Gray have been critically investigated with regard to their pollination biology. Brasenia schreberi has been shown to be anemophilous, while C. caroliniana has an entomophilous (myophilous) pollination syndrome. In the present paper, a number of pollen and pollen-related characters, including pollen size, shape, quantity, terminal settling velocity, pollen-ovule ratios, and overall exine architecture of B. schreberi and C. caroliniana are evaluated. Pollen from both species is elliptic, monosulcate, and has a tectate-columellate sporoderm with supratectal surface ornamentation. Grains of B. schreberi are small, produced in copious amounts, and settle relatively slowly. Flowers of this species have large pollen-ovule ratios. The exine of B. schreberi pollen is scabrate, relatively thin, has a uniformly thick sexine composed of a two-zoned (homogeneous/granular) tectum and distinct columellae, and a homogeneous nexine. Pollen of C. caroliniana is relatively large, produced in small quantities, and has a rapid terminal settling velocity. Flowers exhibit small pollen-ovule ratios. Exine organization of C. caroliniana pollen is typically two times thicker than that of B. schreberi; ornamentation is striate. Nonapertural sexine regions have a thick tectum and well-defined columellae, with both sexine components traversed by a dense system of channels. The nexine is relatively thin. All of the palynological characters examined correlate well with the anemophilous and entomophilous syndromes of B. schreberi and C. caroliniana, respectively. Moreover, several other parameters of exine ultrastructure from each species exhibit positive correlations with the respective pollination mechanisms, including: tectum thickness, columellae diameter, tectum-nexine ratios, and the consistency, distribution, and total amount of pollenkitt present. Overall exine ultrastructure is also discussed from a historical perspective as well as with respect to its phylogenetic significance.  相似文献   

13.
刘林 《植物学通报》2002,19(5):588-594
研究了西瓜花粉壁超微结构以及单核花粉液泡化时期ATP酶活性超微细胞化学定位。花粉壁的外壁分为外层和内层 ,外层包括覆盖层、基粒棒和基足层等三层 ,内层只包含一层。外层电子密度相对较小 ,内层电子密度相对较大 ;外层与内层之间有缝隙。ATP酶活性反应产物主要分布在细胞质基质、质体、内质网和花粉内壁中  相似文献   

14.
Pollen grains ofVigna angularis and its var.nipponensis are described with special reference to fine structure of the infratectum of the exine. They are 3-porate-operculate with granular infratectum and thin foot-layer. These features agree with those characterizing the genusVigna. In this species var.angularios and var.nipponensis are quite similar in pollen morphology. This supports the view that the two are closely related.  相似文献   

15.
刘林 《植物学报》2002,19(5):588-594
研究了西瓜花粉壁超微结构以及单核花粉液泡化时期ATP酶活性超微细胞化学定位。花粉壁的外壁分为外层和内层,外层包括覆盖层、基粒棒和基足层等三层,内层只包含一层。外层电子密度相对较小,内层电子密度相对较大;外层与内层之间有缝隙。ATP酶活性反应产物主要分布在细胞质基质、质体、内质网和花粉内壁中。  相似文献   

16.
Pollen of seven species in Tetraplasandra and three species in related genera were studied with light and scanning electron microscopes. A new thin-section technique was employed for the study of exine stratification and apertural structure. This study reveals several previously undescribed pollen structures for the group. Trends toward increase in pollen size and in specialization of other pollen characters are evident in Tetraplasandra. Pollen of Reynoldsia and Peekeliopanax differs from Tetraplasandra in the pertectate sexine and the absence of inner nexinous breaks, respectively. A pollen correlation study shows that Munroidendron falls readily within the genus Tetraplasandra but is distinguishable from the latter by its bifurcate colpi.  相似文献   

17.
The pollen morphology of 19 species and 2 varieties in the genus Ribes Linn. was examined under light microscope (LM) and scanning electron microscope (SEM). Pollen grains of the genus are subspheroidal, 15.0-41.67 μm in diameter, more or less circular to obtusely quadrangular in outline with all sides slightly concave, or with alternating concave sides, or elliptic under SEM, 5-, 6-zonocolporate or 5-, 6-pantoporate. Exine usually thin, 1.0-1.5μm, without visible differentiation between nexine and sexine. Exine is psilate or sometimes coarsely or finely granular or verrucate. The most important characteristic of pollen in this genus is the presence of a “rugoid Area” (ectoaperture) around the endoaperture under SEM. It is different from the other taxa of Saxifragaceae (s. 1.). Based on the pollen morphology and the external morphological characteristics, the treatment of the genus Ribes as an independent family (i.e. Grossulariaceae) by many taxonomists is reasonable. The pollen grains of the genus can be divided into 4 types from the materials examined: (1) Grossularia-type. ectoaperture colpate, with two endoapertures, exine psilate. (2) Ribes-type: ectoaperture porous or colpate, with one or two endoapertures, exine mostly psilate. (3) Grossularioides-type: ectoaperture porous, circular, small, with one endoaperture, exine verrucate. (4) Berisia-type: ectoaperture porous, subcircular to circular, large, with one endoaperture exine mostly psilate. The observation made by the present authors supports the subdivision of Ribes into the subgenera Grossularia, Ribes, Grossularioides and Berisia by many taxonomists based on the other morphological characteristics, and the observation by the present authors is in accordance with this view. Pollen information also shows the close relationships among thefour subgenera and therefore they belong to the same genus — Ribes.  相似文献   

18.
The pollen grains of Heliotropium europaeum are heterocolpate, with alternation of 3 colpori and 3 pseudocolpi. The exine is characterized by a scabrate and thick tectum, massive columellae with a granular appearance and a thick nexine. The thickening of the intine at the apertural level makes the interpretation of this zone difficult. The ontogenetic study helped to understand the ultrastructure of the exine and the apertures. The different steps are as follows. The primexine matrix is formed during the beginning of the tetrad stage; it consists of an outer thick and electron dense zone and an inner one, less dense to electrons. The tectum and the infratectum begin to form in the outer zone of the matrix, towards the middle of the tetrad stage. The infratectum consists of a network of columellae variable in thickness and oriented in different directions. The foot layer is lacking. The endexine is formed on a lamella system during the callose loss and microspore separation. The endexine becomes compact very early on its inner part. The apertures are initiated during the tetrad stage; a granulo-fibrillar oncus develops. At the free microspore stage, the oncus gets fibrillar and is bordered by endexine lamellae on its outer side and by endexine granulations on its inner one and laterally. The intine is set at the end of this stage. At the vacuolated microspore stage, the intine shows three layers: two thin, clear and homogeneous layers, one outside and the other inside, and a thick middle layer that forms the zwischenkörper, crossed by trabecula, in the apertural areas.  相似文献   

19.
Pollen morphology of 27 species, eight subspecies and one variety of Wendlandia was studied using scanning electron microscopy (SEM). Wendlandia pollen are monads, radiosymmetric, small in size, tricolporate (rarely tetracolporate or bicolporate) and spheroidal (rarely subprolate or suboblate) in equatorial view. The compound aperture consists of ectocolpus, mesoporus and endocolpus. In addition, reticulate sexine and granular nexine were observed. The pollen wall ultrastructure of two Wendlandia spp. was examined by transmission electron microscopy (TEM). The exine consists of the tectum, columellae, foot layer and endexine. The endexine is thickened into a costa around the aperture. The intine forms a protruding oncus at the aperture. The palynological characters show a remarkable uniformity among the Wendlandia spp. Differences with Rondeletia, the main genus of tribe Rondeletieae, exist in the exine pattern, the endoaperture and the pollen wall structure. Our observations indicated that the endoaperture type and the structure of the pollen wall of Wendlandia were similar to those of the Gardenieae–Pavetteae–Coffeeae–Octotropideae clade, which provided palynological evidence for a closer relationship of Wendlandia to subfamily Ixoroideae and the transfer of Wendlandia out of Rondeletieae. © 2010 The Linnean Society of London, Botanical Journal of the Linnean Society, 2010, 164 , 128–141.  相似文献   

20.
Pollen morphology of 18 species (32 specimens) representing all three currently recognized sections of the genus Elsholtzia (Elsholtzieae–Lamiaceae) was investigated in detail using light, scanning electron and transmission electron microscopy. Elsholtzia pollen grains are small to medium in size (P=20–50 μm, E=16–45 μm), mostly prolate‐spheroidal to prolate, and rarely oblate‐spheroidal to subprolate in shape (P/E=0.95–1.46), hexacolpate (the amb more or less circular or ellipsoid) with granular aperture membranes. Three distinct types of sexine ornamentation are observed in Elsholtzia: perforate, rugulose‐bireticulate, and bireticulate. The bireticulate pattern is the most common, showing a wide range of morphological variation among species. The exine thickness varies from 1.2 to 2.5 μm. Among the present palynological data, the variability observed in sexine ornamentation of Elsholtzia could be of systematic significance. Current infrageneric classification of the genus Elsholtzia is partially congruent with pollen morphological data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号