首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
王沫竹  董必成  李红丽  于飞海 《生态学报》2016,36(24):8091-8101
自然界中光照和养分因子常存在时空变化,对植物造成选择压力。克隆植物可通过克隆生长和生物量分配的可塑性来适应环境变化。尽管一些研究关注了克隆植物对光照和养分因子的生长响应,但尚未深入全面了解克隆植物对光照和养分资源投资的分配策略。以根茎型草本克隆植物扁秆荆三棱(Bolboschoenus planiculmis)为研究对象,在温室实验中,将其独立分株种植于由2种光照强度(光照和遮阴)和4种养分水平(对照、低养分、中养分和高养分)交叉组成的8种处理组合中,研究了光照和养分对其生长繁殖及资源贮存策略的影响。结果表明,扁秆荆三棱的生长、无性繁殖及资源贮存性状均受到光照强度的显著影响,在遮阴条件下各生长繁殖性状指标被抑制。且构件的数目、长度等特征对养分差异的可塑性响应先于其生物量积累特征。在光照条件下,高养分处理的总生物量、叶片数、总根茎分株数、长根茎分株数、总根茎长、芽长度、芽数量等指标大于其他养分处理,而在遮阴条件下,其在不同养分处理间无显著差异,表明光照条件可影响养分对扁秆荆三棱可塑性的作用,且高营养水平不能补偿由于光照不足而导致的生长能力下降。光照强度显著影响了总根茎、总球茎及大、中、小球茎的生物量分配,遮阴条件下,总生物量减少了对地下部分根茎和球茎的分配,并将有限的生物量优先分配给小球茎。总根茎的生物量分配未对养分发生可塑性反应,而随着养分增加,总球茎分配下降,说明在养分受限的环境中球茎的贮存功能可缓冲资源缺乏对植物生长的影响。在相同条件下,根茎生物量对长根茎的分配显著大于短根茎,以保持较高的繁殖能力;而总球茎对有分株球茎的生物量分配小于无分株球茎,表明扁秆荆三棱总球茎对贮存功能的分配优先于繁殖功能。研究为进一步理解根茎型克隆植物对光强及基质养分环境变化的生态适应提供了依据。  相似文献   

2.
The purpose of this article was to study the trade-offs among vegetative growth, clonal, and sexual reproduction in an aquatic invasive weed Spartina alterniflora that experienced different inundation depths and clonal integration. Here, the rhizome connections between mother and daughter ramets were either severed or left intact. Subsequently, these clones were flooded with water levels of 0, 9, and 18 cm above the soil surface. Severing rhizomes decreased growth and clonal reproduction of daughter ramets, and increased those of mother ramets grown in shallow and deep water. The daughter ramets disconnected from mother ramets did not flower, while sexual reproduction of mother ramets was not affected by severing. Clonal integration only benefited the total rhizome length, rhizome biomass, and number of rhizomes of the whole clones in non-inundation conditions. Furthermore, growth and clonal reproduction of mother, daughter ramets, and the whole clone decreased with inundation depth, whereas sexual reproduction of mother ramets and the whole clones increased. We concluded that the trade-offs among growth, clonal, and sexual reproduction of S. alterniflora would be affected by inundation depth, but not by clonal integration.  相似文献   

3.
The purpose of this study was to explore clonal integration of Spartina alterniflora under gradually changing substrate salinity conditions. We hypothesized that there might be a trade-off between growth and sexual reproduction influenced by soil salinity and, that clonal integration would change this trade-off. The experiment consisted of three levels of substrate salinity (5‰, 20‰ and 35‰), two clonal integration treatments (rhizomes severed or not), and three growth stages of daughter ramets (21, 40 and 60 cm tall). Both growth and sexual reproduction of S. alterniflora greatly decreased with increasing salinity. Clonal integration enhanced the survival, growth and sexual reproduction of daughter ramets experiencing salt stress, especially for young ramets, whereas the performance of mother ramets was reduced by clonal integration. Therefore, clonal integration did not affect performance of the whole clones. Contrary to expectations, there was no evidence for a trade-off between growth and sexual reproduction associated with salinity. In addition, clonal integration did not change the effect of salinity on the growth and sexual reproduction of mother and daughter ramets nor of the whole clones.  相似文献   

4.
 羊柴(Hedysarum laeve)是豆科多年生半灌木,在自然条件下可以同时进行有性繁殖和克隆繁殖。该文在野外条件下研究了不同水平的水分和养 分处理对羊柴种群的繁殖权衡的影响。结果表明,与对照相比,增加一定量的水分处理显著减少了花和荚果的生物量;显著增加了克隆分株枝 的生物量,显著减少了分株根茎的生物量, 但没有影响其它部分的生物量。增加一定量的水分会抑制有性繁殖,改变生物量对克隆繁殖分株各 部分的分配比例。与对照相比,增加一定量的养分能够促进有性繁殖,抑制克隆繁殖。  相似文献   

5.
Clonal plant species can be considered as populations of interconnected ramets which are basically identical in form and function, and potentially independent from each other. Experimental studies and field observations suggest that an intra-clonal specialization of ramets with different roles (division of labour) can increase the performance of clonal systems under heterogeneous conditions. This paper explores structural and functional variation in the emergent macrophyte Scirpus maritimus, which forms ramets that specialize in three main activities: sexual reproduction, photosynthetic assimilation and vegetative growth, and reserve storage. The main question asked in this study is whether such specialization is a developmentally programmed syndrome in this species, and whether environmental conditions can alter the pattern of ramet differentiation along rhizome systems.We analyzed clonal fragments collected from a population in the field, and grew clones individually in pots of two sizes to simulate different degrees of crowding and shoot density. Specialization of ramets was largely predictable from their position along the rhizome system, indicating that specialization is an inherent feature (developmentally programmed) of clone ontogeny in S. maritimus. In the field, sexual ramets were always situated at the base of rhizome systems, vegetative ramets were in first and intermediate positions, and shoot-less storage ramets were almost always formed distally on rhizomes (terminal ramets). In the pot experiment flowering ramets were observed in all positions along rhizome systems, suggesting that specialization for sexual reproduction shows a plastic response to environmental conditions.S. maritimus can adjust the relative numbers of ramets with and without above-ground shoots when grown in different shoot densities, i.e. the frequency of individual ramets responsible for a certain functional or developmental process can be adjusted to environmental conditions and internal needs. In S. maritimus, the density-dependant regulation of storage versus vegetative growth and sexual reproduction may represent a mechanism to limit shoot competition in crowded populations.  相似文献   

6.
Clonal plants spread vegetatively within their habitats by forming rooted ramets on stolons or rhizomes. Each of these ramets is capable of an independent existence after establishment. Nevertheless, ramets remain physically connected by stolon or rhizome internodes for variable periods of time, thereby allowing for resource movement and signal transduction within clones.Interconnected ramets of clonal plants, though potentially independent and totipotent, can specialize functionally in the performance of limited numbers of tasks such as the uptake of resources from above- vs below-ground sources, carbohydrate storage, vegetative spread and sexual reproduction. Such specialization and cooperation is comparable to a division of labour in economic systems or in colonies of social animals. The ecological significance of division of labour in clonal plants may be found in the increased efficiency of entire clones in exploiting their environments.Two different types of division of labour in clonal plants will be discussed in this review. The first type is an environmentally-induced specialization of ramets in the uptake of locally abundant resources (plastic division of labour), which can be found in several stoloniferous species. Evidence exists that this response increases resource uptake in spatially heterogeneous environments. The second type of division of labour, which occurs mainly in rhizomatous species, relates to a developmentally-programmed specialization and cooperation between interconnected ramets. This response pattern is thought to enhance plant performance by restricting the number of tasks for individual ramets and thereby significantly increasing the efficiency of task performance. In some plants, such an inherent division of labour is likely to contribute to nutrient extraction from poor and unpredictably variable sources.In this article not only benefits but also potential costs and constraints on division of labour in clonal plants are shown. The aim is to provide a review of existing knowledge and to develop concepts and hypotheses for future research.  相似文献   

7.
The relationship of differences in life history traits among genotypes to competitive ability is not well known for most clonal plants. It has been hypothesized that genetically identical clones will compete more intensively than genetically distinct clones. The perennial grass Amphibromus scabrivalvis, which produces basal corms and cleistogamous seeds enclosed by leaf sheaths, exhibits pronounced clonal growth via rhizome and ramet production. In a controlled greenhouse experiment, clones of four genotypes of this species were grown under three regimes: alone in the absence of competition, paired with a clone of the same genotype (intraclonal competition), and paired with a clone of a different genotype (interclonal competition). There were differences in some biomass measures and in ramet and corm production among the four genotypes grown in the absence of competition. All genotypes showed a significant reduction in total biomass under both intra- and interclonal conditions, indicating that competition had occurred. For three of four genotypes, biomass allocation to corm increased under competition, while allocation to cleistogamous seeds was constant or increased slightly. Although some genotypes in specific interclonal combinations were less affected by competition than in intraclonal combinations, there was no support for the contention that the effects of competition were more intense for genetically identical clones.  相似文献   

8.
René Verburg  Danny Grava 《Oecologia》1998,115(4):472-477
We compared the patterns of allocation to reproduction among seed-derived and clonal offspring of a woodland pseudo-annual. Pseudo-annuals are clonal plants which survive the winter only as seeds and hibernacles produced by the rhizome system. Previous studies indicate that flowering is related to the size of these hibernacles. Since seedlings do not have a hibernacle, we did not expect that these plants would reproduce sexually. Assuming a trade-off between sexual and asexual reproduction, and assuming a linear relationship between vegetative plant weight and weight of all reproductive structures (i.e., rhizomes, hibernacles, inflorescences, and seeds), we expected that seed-derived plants would have a stronger biomass allocation to rhizomes and hibernacles. Since resource supply affects plant size, and thus hibernacle and seed production, we also subjected the plants to different levels of shade. At the start of the experiment seed-derived and clonal offspring hardly differed in total fresh weight. At the final harvest in September seed-derived and clonal offspring did not differ in vegetative plant weight (i.e., leaves, stems, and roots). Only light availability significantly affected these plant structures. As predicted, seed-derived plants did not flower in either of the light treatments. Seed-derived plants allocated more biomass to rhizomes and hibernacles, but this was only significant in the highest-light treatment. This result was due only to an increase in the number of hibernacles. Dry weight of single hibernacles was not affected by plant type. The ecological implications of this allocation pattern are discussed. Received: 2 October 1997 / Accepted: 8 March 1998  相似文献   

9.
Cirsium rivulare is a perennial plant that forms patches consisting of ramets resulting from sexual reproduction by seeds and asexual propagation by rhizome fragmentation. We examined the relationship between the size of patches and genetic differentiation of ramets within and between patches. Ramet genotypes were identified using microsatellites. From among 216 ramets examined in the studied population, 123 had a unique genotype, while 93 were clonal, i.e., their genotype was present in at least two ramets. The frequency of ramets with clonal genotypes was 43% and the frequency of unique genotypes was 57%. Ramets with identical genotypes were dominant in small patches. Large patches consisted of ramets with both unique and clonal genotypes, usually with the predominance of the latter. A molecular variance analysis showed the highest level of variance between ramets and the lowest between patches. Additionally, 21.02% of the total variance was recorded between ramets and within patches. The size of patches was correlated with the number of clonal ramets and the number of unique ramets, but it was not correlated with the clonality index. This population of C. rivulare is currently in a phase of decline from 30 years of vegetation transformation, and there appears to have been an increase in sexual propagation based growth over clonal propagation based growth. Hence, a predominance of ramets with unique genotypes was observed. This can happen as a result of disintegration of large patches and formation of gaps between them. These gaps become convenient places for seed germination and the subsequent development of seedlings.  相似文献   

10.
Summary The allocations of biomass, N, P, and K were determined by standard methods in goldenrod ramets (1) parasitized by dipteran and lepidopterous gallmakers, (2) from fertilized and unfertilized plots, and (3) whose rhizome connections to their parental clone were severed. The presence of ball galls and their larvae increased allocation to stem but decreased allocation to leaves and seed production, and reduced the number of new rhizomes. There was a marked magnification of N and P concentrations going up the food chains; from goldenrods to gallmakers to the gallmaker's parasitoid/inquiline guild. Nutrient budgets expressed as flow diagrams indicated that N and P costs of gall presence were similar to energy costs under conditions where nutrients did not limit plant growth. Our data do not indicate that the growth of the galls of these gallmakers is limited by either N or P. Ramets from fertilized plots contained more N and P than controls but decreased the percentage of biomass allocated to leaves and inflorescences; ramets isolated by rhizome-cutting compensated their loss by increased allocation to roots, current rhizomes, and new rhizomes but at a cost of lower allocation to seed production and leaves. Gallmakers have a negative impact on host plant fitness characteristics. This may be especially important to establishing perennial hosts, given that herbivore effects would reduce clonal expansion and hence the ultimate clone size, thereby decreasing lifetime plant fitness.  相似文献   

11.
Ming Dong  Bao Alaten 《Plant Ecology》1999,141(1-2):53-58
In a field experiment, Psammochloa villosa plants were subjected to rhizome severing. Severing rhizomes reduced growth in the young, detached rhizome segments compared to the controls in terms of all measured clonal growth-related characters, i.e. number of rhizomes and shoots, total rhizome length and total number of rhizome nodes. In a container experiment, the control ramets received uniform water and nutrient supply but in heterogeneous treatments high and low levels of water and nutrient supply, respectively were established. The number of ramets, total rhizome length, dry weight per ramet and biomass allocation to the rhizome had higher values at high water and nutrient supply, while spacer length (length of rhizome between shoots) and rhizome internode length were not affected. The local response of ramets given low water supply was enhanced due to connection to a well watered parent ramet in terms of number of ramets, total rhizome length and dry weight per ramet. A remote effect was not observed in the other treatments or in the other measured characters.  相似文献   

12.
We examined the effects of the rhizome galling fly, Eurosta comma (Wiedemann), on rhizome mass and nitrogen allocation in a clone of its goldenrod host plant, Solidago missouriensis Nutt. In comparison to ungalled ramets, galled ramets initiated significantly fewer new rhizomes, and allocated less mass to leaves and stems and more to roots. Galled ramets had lower concentrations of nitrogen in roots and rhizomes but leaf and stem nitrogen concentrations were not affected. In the second year of our study, outbreaks of the leaf-eating beetle, Trirhabda canadensis (Kirby), occurred in three of our four study clones, removing ∼20%, ∼50%, and 100% of leaf area from clones 2–4, respectively. In the most heavily grazed clones, the influence of rhizome galls on plant resource allocation was least pronounced. Despite the overwhelming immediate impact of grazing, the presence of a gall population may be important because they decrease the ability of S. missouriensis clones to initiate new rhizomes and hence to recover from defoliation. Received: 28 December 1997 / Accepted: 28 December 1998  相似文献   

13.
The rhizomatous sedge Carex brevicuspis can produce clumping ramets from shortened rhizomes (phalanx) and spreading ramets from elongated rhizomes (guerrilla) to form a combined clonal growth form. In this paper, changes in clonal growth and biomass allocation pattern of C. brevicuspis in response to sedimentation were studied. Four sedimentation depths (0, 3, 6, and 9 cm) were applied to 48 ramets in a randomized block design. Plants were harvested after 20 weeks. With increasing sedimentation depth, the proportion of spreading ramets to total ramets increased from 19.6% in 0 cm to 92.9% in 9 cm sedimentation treatments, whereas that of clumping ramets decreased from 80.4% to 7.1%, indicating a change of clonal growth form from phalanx to guerrilla as a response to sedimentation. With increasing sedimentation depth, biomass allocation to shoots and roots did not change, but rhizome mass ratio increased from 2.7% in 0 cm to 7.2% in 9 cm sedimentation treatments, suggesting that production of long rhizomes changes biomass allocation pattern. The results show that plasticity of clonal growth forms, by which more spreading ramets are produced, is an effective strategy to avoid sedimentation stress under our experimental conditions.  相似文献   

14.
Clonal kelp taxa may reproduce both sexually and vegetatively resulting in a potential trade‐off in the allocation of acquired carbon and nitrogen resources. Such trade‐offs may dictate a different response of clonal kelps to varying environmental conditions relative to aclonal kelp taxa. Laboratory temperature and nutrient manipulation experiments demonstrated that investment in sexual and vegetative reproduction in Laminaria sinclairii (Harv. ex Hook. f. et Harv.) Farl., C. L. Anderson et D. C. Eaton was regulated by different abiotic factors. Sorus production (investment in sexual reproduction) and blade growth were significantly higher at 12°C compared to 17°C, regardless of nutrient concentration. Net carbon storage and depletion in rhizomes were observed in the low‐ and high‐temperature treatments, respectively, suggesting that carbon stores were not responsible for increased growth. Rhizome elongation (investment in vegetative reproduction), on the other hand, was significantly higher in 12 μM NO3? than in 2 μM NO3?, irrespective of temperature. This increase in rhizome growth was concurrent with elevated rhizome percent tissue nitrogen levels also observed in treatments with higher nutrients, again indicating a growth response to treatment independent of previous nutrient stores. These results suggest that regulation of growth and investment in sexual reproduction in L. sinclairii is similar to that in aclonal kelps (i.e., warmer temperatures result in decreased reproductive output). Additionally, depletion of carbon and nitrogen from rhizomes in suboptimal conditions confirms the role of clonal kelp rhizomes in carbon and nutrient storage.  相似文献   

15.
克隆植物大米草 (Spartina anglica) 目前在我国出现了严重的自然衰退 (Dieback),为了阐明大米草衰退的机理,分析影响大米草形态可塑性的因素与自然衰退之间的相关性,以期为近缘植物互花米草 (S. alterniflora) 这一爆发种群的生物控制提供借鉴,对3种不同初始克隆分株数 (单克隆、三克隆和五克隆) 大米草的克隆生长、生物量累积与分配和异速生长特征进行了野外栽培试验。研究结果表明,初始克隆分株数对间隔子长度影响较弱;初始多克隆的分支强度高于初始单克隆;初始三克隆和五克隆在总生物量 (7.921 5~10.431 7 g 和 8.903 9~10.431 7 g)、地上生物量 (3.396 1~4.255 8 g 和3.618 4~4.338 9 g)、地下生物量 (4.286 9~5.206 6 g 和 5.298 8~6.079 3 g)和根状茎生物量 (1.318 6~1.767 7 g 和 1.499 1~2.038 7 g) 积累上均显著高于初始单克隆,不同初始克隆分株数条件下根生物量差异不显著;初始多克隆倾向于将资源更多地分配给根状茎,而初始单克隆倾向于将更多的资源分配给根系。由此推断,在不同初始克隆分株数条件下,大米草的形态可塑性和生物量分配格局的差异显示出在同样资源格局下,初始多克隆的克隆生殖能力较初始单克隆强。初始多克隆生长的大米草较初始单克隆生长的大米草更能占据优势生境,选择生境“觅养”的能力与克隆繁殖能力更强。  相似文献   

16.
To test whether sharing of resources occurs among connected ramets of the tall goldenrod, Solidago altissima, we examined the extent of clonal integration for nutrients. In a greenhouse experiment, two-ramet clones were grown in a triad of connected pots so that nutrients could be supplied to either sister ramet or to their old rhizome (mother rhizome). Mother rhizomes and their associated roots shared nutrients with daughter ramets; however, any nutrient sharing that occurred between sister ramets was too little to significantly affect their growth. In addition, sister ramets not only competed for nutrients through parental connections, but larger ramets inhibited the growth of smaller ramets. We suggest that, for tall goldenrod, a clonal growth strategy in which nutrients are not shared among sister ramets may increase genet fitness by reducing the rhizome production of ramets in poor-nutrient microsites. Consequently, the genet would produce relatively fewer ramets in unfertile areas and make better use of heterogeneous nutrient resources.  相似文献   

17.
Calamus javensis is a widespread understorey rattan in Southeast Asia and is one of the dominant rattan species in Mt. Halimun National Park, West Java. This species can establish clumps either sexually with seeds or clonality with stolons. To analyze the role of sexual reproduction and clonality for clump establishment in C. javensis, we studied the vegetative and genetic structures of the population. Totals of 2,777 ramets comprising 1,321 clumps were found in three 0.16 ha plots. The number of ramets per clump showed reverse J-shaped distribution with a maximum of 15. Clustering and stoloniferous ramets accounted for 62 and 20% of all ramets, respectively. This indicates that C. javensis is actively engaged in clustering clonal growth. The longest stem was 14 m although 75% of all stems were shorter than 1 m long. The stolon ranged from 6 to 538 cm in length, which decreased the local density of ramets. Using randomly amplified polymorphic DNA (RAPD) analysis, we obtained 56 polymorphic bands for 118 clumps sampled from one of the plots. All samples showed different RAPD banding patterns, except one pair at a distance of 225 cm from each other. The genetic similarity among samples closer than 10 m was significantly higher than the expected value from a purely random distribution. These results suggest that most separate clumps are established by recruitment from seeds, and most seeds dispersed near mother plants. Hence, in C. javensis, clonality is more a growth strategy to increase the size of the genet than a dispersion-propagation strategy to expand the habitat.  相似文献   

18.
Clonality is defined as vegetative reproduction via the production of ramets, which are, at least initially, connected by spacers. In general, there are three types of spacers of two origins. Whereas stolons are aboveground spacers, rhizomes are belowground spacers; however, both of stem origin. The third type of spacers are roots in root-sprouting plants. The possibility of foraging in clonal plants has attracted broad interest among ecologists but has been experimentally documented only for stoloniferous clonal plants foraging for light. Foraging for belowground resources has yet to be demonstrated, perhaps because tests of foraging have focused on clonal plants that spread laterally via stolons or rhizomes, i.e. stem organs. Lateral spread based on sprouting roots has not been considered even though, in addition to functioning as conduits between ramets, root spacers are able to sense and take up nutrients. We therefore hypothesized that root-sprouting clonal plants may be able to directly react to environmental heterogeneity and exhibit nutrient foraging. To test this hypothesis, we conducted two experiments with root-sprouters in nutrient-heterogeneous and -homogeneous environments. We found that plants produced more biomass when growing in a heterogeneous environment than in a homogeneous environment and that root biomass was greater in the nutrient-rich patches than in nutrient-poor patches. However, the number of ramets did not differ between patches in the heterogeneous environment. We conclude that plants whose clonality is based on roots, similarly as plants whose clonality is based on stolons or rhizomes, do not exhibit accumulation of ramets in nutrient-rich patches. Foraging at the organ level, i.e. by roots, seems to be more probable in this clonal group. To analyse how clonal plants with different clonal strategies perceive and react to environmental heterogeneity, researchers must account for the high variability in clonal growth forms and in scales of environmental heterogeneity.  相似文献   

19.
The evolution of clonal growth is a widespread phenomenon among plant species, characterized by the production of genetically identical clonal fragments (ramets) via rhizomes or stolons that form an interconnected clonal organism (genet). Clonal plant species are known to differ in their investment into ramet production, and exhibit considerable variation in ramet morphology both within and among species. While patterns of resource allocation are thought to be linked to a number of plant characteristics, many analyses are limited by uncertainty in how clonal plants determine the morphology and resources allocated to new ramets. In this study, we attempted to discern what aspects of parent ramets best predicted resource allocation to new daughter ramets, and the relationship between resource allocation and daughter ramet rhizome morphology. We grew two sedge species, Schoenoplectus tabernaemontani and Eleocharis elliptica, in a greenhouse under two levels of fertilizer addition. By harvesting daughter ramets that had initiated stem production, yet remained aphotosynthetic, we were able to isolate parental investment into non-independent daughter ramets at a point where daughter ramet spacer length became fixed. Our results indicate that parent ramets allocated a non-linear proportion of parent rhizome biomass to the production of daughter ramets. Moreover, this relationship was unaffected by environmental nutrient availability. Daughter ramet biomass, in turn, was strongly correlated with daughter ramet spacer length. These observations shed light on key processes governing clonal growth in plants, and their potential application in unifying allocational and morphological perspectives to explore the fitness implications of variability in clonal growth.  相似文献   

20.
Zhang J  C Zhou  YF Yang 《Phyton》2015,84(2):417-422
Spatial expansion of clonal plants and growth of their modules are of concern in the field of plant ecology. After measuring a large number of samples, we analyzed the module components and the growth patterns of vegetatively propagated Agropyron michnoi clones in the Songnen Plain on Northeast China. The results showed that the plasticity of clonal growth was large; the coefficients of variation of both extensive areas and the quantitative characters of modules were more than 20%. The numbers of ramets, seedlings, and buds and the cumulative length of the rhizomes showed exponentially and linearly increasing patterns with increases of the area and the total number of modules. The biomass of each module, total number of modules and total biomass showed an allometric growth pattern, which was best described by power functions. For A. michnoi, there was a relatively stable investment to sexual reproduction; it showed a priority for allocating biomass to reproductive ramets, and also to rhizomes and buds formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号