首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
UV-B辐射对马尾松凋落叶分解和养分释放的影响   总被引:1,自引:0,他引:1  
由大气臭氧层减薄导致的UV-B辐射变化将直接影响到凋落物的分解。目前,有关UV-B辐射影响木本植物凋落物分解的研究还很少,在国内还没有开展。采用分解袋法开展了马尾松凋落叶在自然环境和UV-B辐射滤减两种辐射环境下的分解试验。结果表明:在UV-B辐射滤减环境下的马尾松凋落叶年分解速率比对照环境减慢了47.74%。UV-B辐射极显著(p<0.01)地加快了马尾松凋落叶的分解速率,促进了凋落叶中碳、磷、钾的释放和木质素的降解,对氮的释放无明显影响。研究结果意味着UV-B辐射将加快马尾松林的营养循环速度,降低马尾松林凋落物层的碳储量。  相似文献   

2.
Stratospheric ozone depletion occurs over Tierra del Fuego, southern Argentina and Chile, in the austral spring and summer due to the precession of the Antarctic ‘ozone hole’ and the general erosion of the ozone layer. Plots receiving either near-ambient or reduced UV-B radiation were established using different louvered plastic film filters over Sphagnum bog and Carex fen ecosystems in October 1996. In the Sphagnum bog system, growth measurements during the late spring and summer showed no significant differences in the moss Sphagnum magellanicum, or the vascular plants (Empetrum rubrum, Nothofagus antarctica, and Tetroncium magellanicum) between near-ambient and attenuated UV-B radiation treatments. In the Carex fen system, leaf length and spike height did not differ in the two dominant species, Carex decidua and C. curta, between UV-B radiation treatments. The length of individual spikelets of C. curta under near-ambient UV-B radiation was less than under the reduced UV-B radiation treatment, but this was not evident in C. decidua. No differences in seed number, seed mass, or viability were seen in either Carex species between the UV-B treatments. Two important constituents of the microfauna that inhabit the Sphagnum bog are testate amoebae and rotifers. These both appeared to be more numerous under near-ambient UV-B radiation than under reduced UV-B radiation. The subtle responses of the Sphagnum and Carex ecosystems may become more apparent in subsequent years as the treatments are continued. Trophic-level changes, such as the differences in number of amoebae and rotifers, may be more sensitive to solar UV-B radiation than growth and productivity of the vegetation.  相似文献   

3.
Terrestrial plant species vary widely in their adaptation to (increasing) solar UV-B radiation. Among the various responses of higher plants to enhanced UV-B are increasing leaf thickness and increasing concentrations of UV-B absorbing compounds. In some (UV-B resistant) plant species increased leaf thickness and UV-B absorbance may form part of mechanisms protecting plants from UV-B damage. However, in UV-B sensitive plant species leaf thickness and UV-B absorbance may increase as well with enhanced UV-B radiation. In the latter case however, this response cannot prevent plant damage and disturbance. In the present field study the relationship between these plant parameters and a natural elevational UV-B gradient on the tropical island of Jamaica was described. Four plant species of the Blue Mountain Tropical Montane Forest, occurring on open forest sites along the roadside and paths were studied along an elevational gradient. Plant species studied are Redbush (Polygonum chinense), Wild ginger (Hedychium gardneranum), John Crow Bush (Bocconia frutescens) and White clover (Trifolium repens). The elevational sites were at 800, 1000, 1200, 1400 and 1600 m above sea level. Leaf thickness was measured of leaves of intact plants around midday in the field. Leaf disks (5 mm) were sampled and extracted with a methanol/HCl mixture. UV-B absorption of these leaf extracts was measured spectrophotometrically. For all species leaves from higher elevations were thicker than those from lower elevations. In addition, the absorption of UV-B of leaf extracts increased with increasing elevations. It is assumed that the calculated gradient of the UV-BBE from 800 m above sea level: 9.45 kJ m-2 day-1 to 9.75 kJ m-2 day-1 at 1600 m is related to the measured increase of leaf thickness and UV-B absorbing compounds. The responsiveness of these plant parameters to the elevational gradient does not necessarily imply that the plant species are UV-B resistant. One possibility is that the species studied, which are growing on open, disturbed sites on the forest floor and along mountain-roads, are relatively sensitive to UV-B. In addition to clear sky conditions, mist and clouds occur frequently in this tropical mountane forest at Jamaica. Also, the low nutrient status of the soil (low pH, nutrient deficiency) and the high content of polyphenols in leaves of many plant species of the tropical montane rain forest may relate to the marked response of the species studied with increasing elevation. Abbreviations: asl – above sealevel, UV-B – ultraviolet-B radiation (280–320 nm), TMCF – Tropical Montane Cloud Forest.  相似文献   

4.
There is an increasing likelihood that the solar UV-B radiation (lambda = 280-320 nm) reaching the earth's surface will increase due to depletion of the stratospheric ozone layer. It is recognized that many organisms are insufficiently resistant to solar UV-B to withstand full summer sunlight and thus mechanisms which facilitate avoidance of solar UV-B exposure may have significance for the survival of sensitive species. There are many alternative pathways which would lead to avoidance of solar UV-B. We have investigated the dynamics of biological reactions to stimulated solar UV-B radiation in two small arthropods, the two-spotted spider mite Tetranychus urticae Koch and the aquatic copepod Cyclops serrulatus. Observations of positioning and rate of movement were made; a mathematical formalism was developed which assisted in interpretation of the observations. Our observations suggest that, although avoidance would mitigate increased solar UV-B effects, even organisms which specifically reduce their UV-B exposure would encounter additional stress if ozone depletion does occur.  相似文献   

5.
Zavala  Jorge A.  Ravetta  Damian A. 《Plant Ecology》2002,161(2):185-191
UV-B radiation is absorbed effectively by nucleic acids and other sensitive targets, potentially causing harmful photochemical effects. Protection against UV-B radiation may be afforded by flavonoids and other phenolics, which absorb strongly in the UV region, but little is known about the role played by other compounds, such as terpenes. Grindelia chiloensis, native of Patagonia (Argentina), can accumulate as much as 25% resin (terpenes) in its leaves. The present investigation was carried out to test the effect of solar UV-B radiation on the allocation of photoassimilates to biomass and terpenes. Exposure to UV-B radiation reduced whole plant biomass, plant height and leaf area, and increased leaf thickness and resin accumulation in Grindelia chiloensis. Higher absorbance was found for refined resin in the UV-B waveband from plants grown under solar UV-B radiation than plants without UV-B radiation. These chemical and structural changes could protect the plant from UV radiation, and may help elucidate the importance of epicuticular resins for a species as G. chiloensis native to an environment with maximum daily integrated values of solar UV-B irradiance.  相似文献   

6.
We examined the effect of ultraviolet-B radiation (UV-B, 290–320 nm) on the growth rate of the intertidal marine alga Ulva expansa (Setch.) S. & G. (Chlorophyta). Segments of thallus collected from a natural population were grown in outdoor seawater tanks. Combinations of UV-B-opaque screens, UV-B-transparent screens, and UV-B lamps were used to investigate the effects of solar UV-B and solar plus supplemental UV-B on the growth of these segments. Growth was measured by changes in segment surface area, damp weight, and dry weight. Growth rates of segments were inhibited under both solar UV-B and solar plus supplemental UV-B treatments. Growth rates were also inhibited by high levels of photosynthetically active radiation, independent of UV-B fluence. These results indicate that increases in UV-B resulting from further ozone depletion will have a negative impact on the growth of this alga.  相似文献   

7.
Interest in the potential consequences of stratospheric ozone depletion has led to numerous studies that have evaluated the effects of ultraviolet-B (UV-B) radiation on plant growth and productivity. However, few studies have been conducted on plants from natural ecosystems. Differences in solar UV-B radiation along latitudinal or elevational gradients may have resulted in plants from diverse habitats developing contrasting sensitivities to UV-B radiation. In this study, seeds were collected along a 3,000-m elevational gradient in Hawaii and then germinated and grown in an unshaded greenhouse with either no UV-B radiation or one of two daily UV-B irradiances, 15.5 or 23.1 kj m2. Seedlings were grown for 12 weeks and harvested to determine whether UV-B radiation altered plant biomass. The responses to UV-B radiation varied among species, but, in general, sensitivity to UV-B radiation was reduced as the elevation of seed collection increased. Of the 33 species tested, UV-B radiation significantly reduced plant height in 14 species and biomass in eight species. Biomass increased in four species grown under UV-B radiation. This study provides clear evidence that natural plant populations exhibit wide variation in UV-B radiation sensitivity and that this variation is related to the natural (ambient) UV-B radiation environment in which these plants grow.  相似文献   

8.
Evidence regarding the interaction of ultraviolet-B (UV-B, 280-320 nm) radiation and plant competition in terrestrial ecosystems is examined. The competitive interactions of some species pairs were affected even by ambient solar UV-B radiation (as exists without ozone depletion), when compared to control pairs grown without UV-B. Also, the total shoot biomass of these species pairs was depressed under ambient UV-B. Relatively large increases in UV-B radiation (approximating a 40% ozone layer reduction when weighted with the generalized plant action spectrum) altered the competitive interactions of some species pairs grown in pots under field conditions, but did not affect the total shoot biomass production of those pairs. Recent field experiments have examined the competitive interactions of wheat ( Triticum aestivum L. cv. Bannock) and wild oat ( Avena fatua L.) under a simulated increased UV-B regime resulting from a 16% ozone layer reduction when weighted with the generalized plant action spectrum. This increase in UV-B altered the competitive interactions of these two species without affecting the total shoot biomass production of the species pair. The manner in which increased UV-B affected the relative competitive abilities of the two species was highly dependent upon the environmental conditions during the early life stages of the plants. The implications of these results for both agricultural and natural plant communities are discussed.  相似文献   

9.
The release of certain man-made chemicals has led to recurrent, seasonal destruction of ozone in the upper atmosphere, allowing more solar radiation in the UV-B waveband to reach the Earth. Consequently, many amphibians may suffer increased exposure to UV-B at various stages in their lives. Embryonic stages of species which spawn in the spring, in shallow, open water, are at high risk of increased exposure. We exposed newly fertilized eggs of one such species, Rana temporaria L., to sunlight with and without supplemental UV-B. We used outdoor arrays of lamps to simulate the increase in UV-B which might result from previously documented ozone depletion. From immediately after fertilization to when hatchlings began feeding, ambient solar UV-B, weighted for DNA-damaging potential, was supplemented by ≈ 81% in 1995 and 113% in 1996. These levels of supplementation approximated the increase in solar UV-B expected to result from losses of 21% and 25%, respectively, of the total amount of ozone in the atmospheric column, relative to pre-ozone-depletion values. We found no evidence that these additions of UV-B radiation increased the incidence of mortality or overt developmental abnormality among embryos. We stress the need for appropriate dosimetry in studies of effects of UV-B on organisms.  相似文献   

10.
A South African winter ephemeral D. pluvialis was exposed, under low and high nutrient conditions, to four different daily doses of biologically effective UV-B radiation. These simulated different depletions (range 0–30%) in the ozone layer at the southerly distribution limit (33° 56′S) of this species, and included daily UV-B doses received at the northerly distribution limit (26° 38′S) without ozone depletion. Growth inhibition by increased UV-B radiation was observed during early vegetative stages, but only under low nutrient conditions. Thereafter, net CO2 assimilation rate, growth and reproduction were stimulated by an increase in UV-B radiation, though doses above those approximating a 20% ozone depletion appeared to be inhibitory. Differential stimulation occurred in the two nutrient treatments. Under high nutrient conditions, photosynthesis (specifically carboxylation efficiency), and numbers of leaves, inflorescences and diaspores per plant, and leaf areas increased, but leaf thickness decreased with increased UV-B radiation. Under low nutrient conditions, dry masses of leaves, stems, inflorescences and diaspores, and total above-ground dry masses increased with increased UV-B radiation. Foliar organic carbon and nitrogen concentrations and foliar concentrations of UV-B absorbing compounds were unaffected by increased UV-B radiation, but foliar P concentrations declined. Diaspore viability declined with increased UV-B radiation. The net effect was a 35 to 43% reduction in viable diaspore production under high nutrient conditions at UV-B doses equivalent to those currently received at the northerly distribution limit during the reproductive phase. It is concluded that anticipated increases in UV-B radiation could reduce regeneration success, and seedling survival in areas of low soil fertility, particularly at lower latitudes, and consequently increase the risk of localized population extinctions from stochastic causes.  相似文献   

11.
This critical review of recent literature questions earlier predictions that photosynthetic productivity of higher plants is vulnerable to increased ultraviolet-B (UV-B) radiation as a result of stratospheric ozone (O3) depletion. Direct UV-B-induced inhibition of photosynthetic competence is observed only at high UV-B irradiances and primarily involves the loss of soluble Calvin cycle enzymes and adaxial stomatal closure in amphistomatous plants. However, even under these extreme UV-B exposures, acclimation (e.g. induction of UV-B absorbing flavonoids) can protect the photosynthetic processes. In plants irradiated with UV-B throughout development a reduction in productivity is usually associated with a reduced ability to intercept light (i.e. smaller leaf area) and not an inhibition of photosynthetic competence. Finally, a review of field experiments utilizing realistic UV-B enhancement is made to evaluate whether the mechanisms involved in UV-B-induced depressions of photosynthesis are likely to impact on the photosynthetic productivity of crops and natural vegetation in the future. Predictions of plant responses to O3 depletion are suspect from square-wave irradiance experiments due to the increased sensitivity of plants to UV-B at relatively low photosynthetically-active photon flux densities (PPFD) and ultraviolet-A (UV-A) irradiances. Realistic modulated UV-B irradiances in the field do not appear to have any significant effects on photosynthetic competence or light-interception. It is concluded that O3 depletion and the concurrent rise in UV-B irradiance is not a direct threat to photosynthetic productivity of crops and natural vegetation.Key words: Biomass, development, ozone depletion, photosynthesis, ultraviolet-B.   相似文献   

12.
Enhanced ultraviolet-B (UV-B) radiation may have multiple effects on both plants and animals and affect plant–herbivore interactions directly and indirectly by inducing changes in host plant quality. In this study, we examined combined effects of UV-B and herbivory on the defence of the mountain birch (Betula pubescens ssp. czerepanovii) and also the effects of enhanced UV-B radiation on a geometrid with an outbreak cycle: the autumnal moth (Epirrita autumnata). We established an experiment mimicking ozone depletion of 30% (a relevant level when simulating ozone depletion above Northern Lapland). Both arctic species responded only slightly to the enhanced level of UV-B radiation, which may indicate that these species are already adapted to a broader range of UV-B radiation. UV-B exposure slightly induced the accumulation of myricetin glycosides but had no significant effect on the contents of quercetin or kaempferol derivatives. Mountain birch seedlings responded more efficiently to herbivory wounding than to enhanced UV-B exposure. Herbivory induced the activities of foliar oxidases that had earlier been shown to impair both feeding and growth of moth larvae. In contrast, the contents of foliar phenolics did not show the same response in different clones, except for a decrease in the contents of tannin precursors. The induction of foliar phenoloxidase activities is a specific defence response of mountain birches against insect herbivory. To conclude, our results do not support the hypothesis that the outbreak cycle of the autumnal moth can be explained by the cycles of solar activity and UV-B.  相似文献   

13.
Gaberščik  Alenka  Novak  Mateja  Trošt  Tadeja  Mazej  Zdenka  Germ  Mateja  Björn  Lars-Olof 《Plant Ecology》2001,154(1-2):49-56
Pulmonaria officinalis is an understorey spring geophyte, which starts its vegetative period before full foliation of the tree storey. During its early growth phase it is exposed to full solar radiation, therefore the enhanced UV-B radiation could present a threat to this species. An outdoor experiment in which potted plants were exposed to below ambient, ambient, and above ambient (corresponding to 17% ozone reduction) UV-B radiation, was conducted in order to evaluate the radiation effects. The amount of photosynthetic pigments and photochemical efficiency of PSII were not affected, but the amount of UV-B absorbing compounds was lower in plants grown under reduced UV-B. This change was measurable after only fourteen days in reproductive shoots, while in the vegetative shoots, it was not detectable until after three months. The leaves of P. officinalis are variegated and the light green spots became less transparent to PAR under enhanced UV-B. The results reveal that under simulated 17% ozone depletion the harmful effects of UV-B on the measured parameters were negligible.  相似文献   

14.
The influence of solar UV-A and UV-B radiation at Beltsville, Maryland, on growth and flavonoid content in four cultivars of Cucumis sativus L. (Ashley, Poinsett, Marketmore, and Salad Bush cucumber) was examined during the summers of 1994 and 1995. Plants were grown from seed in UV exclusion chambers consisting of UV-transmitting Plexiglas, lined with Llumar to exclude UV-A and UV-B, polyester to exclude UV-B, or cellulose acetate to transmit UV-A and UV-B. Despite previously determined differences in sensitivity to supplemental UV-B radiation, all four cultivars responded similarly to UV-B exclusion treatment. After 19–21 days, the four cultivars grown in the absence of solar UV-B (polyester) had an average of 34, 55, and 40% greater biomass of leaves, stems, and roots, respectively, 27% greater stem height, and 35% greater leaf area than those grown under ambient UV-B (cellulose acetate). Plants protected from UV-A radiation as well (Llumar) showed an additional 14 and 22% average increase, respectively, in biomass of leaves and stems, and a 22 and 19% average increase, respectively, in stem elongation and leaf area over those grown under polyester. These findings demonstrate the extreme sensitivity of cucumber not only to present levels of UV-B but also to UV-A and suggest that even small changes in ozone depletion may have important biological consequences for certain plant species.  相似文献   

15.
Increasing surface levels of UV-B resulting from stratospheric ozone reduction directly affect tropospheric photochemistry. There may also be indirect tropospheric effects due to changes in emission of organic compounds from vegetation. We treated woody and herbaceous isoprene-emitting species in the field with supplemental UV-B simulating 30% ozone depletion. For Quercus gambelii, photosynthesis and isoprene emission were significantly greater in elevated UV-B treatments when expressed on a leaf area basis, but not on a leaf mass basis. Leaves of Mucuna pruriens, however, showed no significant differences in photosynthesis or isoprene emission between treatments, nor when exposed for 45 min to acute high levels of UV-B. Elevated UV-B during growth did not elicit significant isoprene emission from Acer platanoides, a non-emitting species. Other potential UV-B effects, such as changes in leaf area or species composition, which may influence regional isoprene emissions, should be examined.  相似文献   

16.
An open-air experiment was performed in Pistoia (Italy) to investigate the possible protective role played by different contents of UV-B absorbing compounds to realistic UV-B supplementation and to study its effect on plant fruit production. A mutant line and its normal counterpart of Lycopersicon esculentum Mill, which differ in the content of UV-B absorbing compounds, were used. Additional UV-B radiation in the field was supplied to simulate a 20% stratospheric ozone depletion. Two groups of plants were grown: ‘control’, where plants received only natural solar UV-B radiation, and ‘UV-B’ treatment, where plants were grown under supplemental UV-B. The results of the experiment showed that the content of UV-B absorbing compounds of treated plants did not differ from that of the control in both lines. This indicates that natural sunlight, in Mediterranean areas, is saturating for synthesis of these compounds also in plants with normal content of UV-B absorbing compounds. Consequently, plants are not able to produce significant additional amounts of them, in response to a realistic UV-B supplementation, in order to protect the plant from additional UV-B radiation. No different responses to the UV-B supplementation were found between the two lines. The most significant UV-B effect was an earlier reddening of fruits in comparison with the ‘control’ accompanied by a reduction in the size of mature fruits. No significant effects of UV-B treatment were observed in biomass accumulation, leaf ontogeny, flowering or productivity.  相似文献   

17.
Pheidole megacephala is an exotic ant species that has severely affected native invertebrate biodiversity throughout the tropics. Its impacts have been documented extensively in relatively depauperate invertebrate communities, but not in species-rich habitats such as tropical rain forests. Here we describe the local distribution of P. megacephala and its impacts on native invertebrate assemblages in and around a rain forest patch at Howard Springs, in Australia's monsoonal tropics. P. megacephala was found to be confined to a single area of approximately 25 ha, with its distribution centered on drainage lines and the rain forest. Significant but weak correlations were found between its abundance and vegetative canopy cover (positive) and distance from the rain forest (negative). In the most heavily infested area within the rain forest, the abundance of P. megacephala was 37–110 times that of total native ant abundance found within uninfested plots, as measured by pitfall traps. The abundance and richness of native ants and other invertebrates were significantly reduced in litter samples, pitfall catches and foliage beats where P. megacephala was present, inversely relative to the abundance of P. megacephala. Only two individuals of a single native ant species were found within the most infested plot, with native ant richness being reduced to about half in the least infested plot. The most persistent functional groups of native ants in infested plots were Cryptic species, which forage primarily within soil and leaf litter, and Opportunists, which exhibit highly generalised foraging behaviour. The highest abundance of P. megacephala corresponded with a 42–85% decrease in the abundance of other native invertebrates. Insect larvae were totally absent from foliage beats collected at the most heavily infested plot. P. megacephala was found overall to be expanding its range, averaging 12 m range expansion in the dry season and contracting 7 m in the wet season. It is able to spread into surrounding savanna habitats by occupying relatively sheltered microsites, such as beneath logs and at the bases of trees. However, it is unlikely to attain high population densities in open savanna habitats because of its relative intolerance of desiccation, and the prevalence of behaviourally dominant native ant species. Howard Springs is currently the only rain forest patch in monsoonal Australia known to be infested by P. megacephala, but clearly this ant is a serious potential threat to the region's rain forest invertebrate fauna. Received: 19 August 1998 / Accepted: 12 May 1999  相似文献   

18.
We examined the effects of solar ultraviolet-B (UV-B) radiation on plant-insect interactions in Tierra del Fuego (55°S), Argentina, an area strongly affected by ozone depletion because of its proximity to Antarctica. Solar UV-B under Nothofagus antarctica branches was manipulated using a polyester plastic film to attenuate UV-B (uvb–) and an Aclar film to provide near-ambient UV-B (uvb+). The plastic films were placed on both north-facing (i.e., high solar radiation in the Southern Hemisphere) and south-facing branches. Insects consumed 40% less leaf area from north- than from south-facing branches, and at least 30% less area from uvb+ branches than from uvb– branches. The reduced herbivory on leaves from uvb+ branches occurred for both branch orientations. Leaf mass per area increased and relative water content decreased on north- versus south-facing branches, while no differences were apparent between the UV-B treatments. Solar UV-B did lead to lower gallic acid concentration and higher flavonoid aglycone concentration in uvb+ leaves relative to uvb– leaves. Both the flavonoid aglycone and quercetin-3-arabinopyranoside were higher on north-facing branches. In laboratory preference experiments, larvae of the dominant insect in the natural community, Geometridae Brown (Lepidoptera), consumed less area from field-grown uvb+ leaves than from uvb– leaves in 1996–97, but not in 1997–98. Correlation analyses suggested that the reduction in insect herbivory in the field under solar UV-B may be mediated in part by the UV-B effects on gallic acid and flavonoid aglycone.  相似文献   

19.
The ozone layer depletion evokes the increase of solar UV-B radiation intensity and corresponding reductions of growth (height, leaf area, fresh and dry weight), photosynthetic activity and flowering in higher plants. Competitive interactions also may be altered indirectly by differential growth responses. The UV-B-sensitivity of plants varies both among species and among cultivars of a given species. Photosynthetic activity may be reduced by direct effects on the photosynthetic process or metabolic pathways, or indirectly through effects on photosynthetic pigments or stomatal function. Plants may also respond by accumulating UV-absorbing compounds in their outer tissue layers, which presumably protect sensitive target from UV-damage. The key enzymes in the biosynthetic pathways of these compounds are specifically induced by UV-B irradiation via gene activation. The effects of UV-B radiation on plants can be modified by prevailing microclimatic conditions. Plants tend to be less sensitive to UV-B under drought or mineral deficiency, while sensitivity increases under low levels of visible light. Prognoses of agricultural yield reduction and economic loss for different scenarious of stratospheric ozone depletion are presented.  相似文献   

20.
Levizou  Efi  Manetas  Yiannis 《Plant Ecology》2001,154(1-2):211-218
The combined effects of additional UV-B radiation and artificial wounding on leaf phenolics were studied in a short term field experiment with the drought semi-deciduous Mediterranean shrub Phlomis fruticosa L. The seedlings were grown under ambient or ambient plus supplemental UV-B radiation (biologically equivalent to a 15% ozone depletion over Patras, 38.3° N, 29.1° E) for 7 months before wounding. Unexpectedly, supplemental UV-B radiation decreased leaf phenolics. Subsequently, wounding was effected by removing leaf discs from some of the plants, while the rest remained intact and served as controls. Wounding significantly increased phenolics of the wounded leaves and the increase was more pronounced under supplemental UV-B radiation. In addition, wounding had a significant positive effect on the phenolics of the opposite, intact leaf, but only under additional UV-B radiation. We conclude that UV-B radiation, wounding and their combination may affect the chemical defensive potential of Phlomis fruticosa. In addition, increased levels of phenolics after herbivore attack under field conditions may afford extra protection against enhanced UV-B radiation levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号