共查询到20条相似文献,搜索用时 0 毫秒
1.
Long‐term or lifetime specificity in plant–pollinator relationships is likely a consequence of natural selection to not only enhance the probability of cross‐pollination but also to improve pollinator efficiency. Dependency on one or few pollinators involves risk whereas multiple species may reduce the probability of extinction via unreliable pollinator service. We analyzed specificity in terms of factors that may ameliorate risk such as long‐term pollinator population stability, abundance and the duration of flowering. Bee population stability indices from seven continuous years of census data, combined with pollinator and flowering phenology data for 37 plant species in Panama, revealed pollinator specificity was not related to pollinator population stability. No relationship existed between the length of a flowering season and population stability of associated pollinators. Further data from 30 years of euglossine monitoring also revealed no relationship between bee abundance and specificity. However, a strong relationship was revealed between length of flowering period and specificity. A longer flowering season was associated with lower specificity and shorter flowering was associated with higher specificity, which is as expected if specificity is the outcome of a sampling problem but not as expected if specificity is accompanied by risk reduction. Plant–pollinator specificity involving euglossine bees is evidently not related to bee population stability, abundance, or length of flowering period, in a manner that we predicted would be associated with reducing the risk of extinction. Variation in population stabilities of euglossines may be insufficient to be a factor in the evolution of plant–pollinator specificity. In the tropics, specificity may be more associated with plant longevity, selection for efficiency or effectiveness, or flowering duration –as a sampling phenomenon, than with reducing dependence on unreliable pollinators. 相似文献
2.
In contrast to expectations of the enemy release hypothesis, but consistent with the notion of biotic resistance, we found that native generalist crayfishes preferred exotic over native freshwater plants by a 3 : 1 ratio when plants were paired by taxonomic relatedness. Native crayfishes also preferred exotic over native plants when tested across 57 native and 15 exotic plants found growing sympatrically at 11 sites throughout the southeastern USA. Exotic grass carp that share little evolutionary history with most of these plants exhibited no preference for native vs. exotic species. Analyses of three terrestrial data sets showed similar patterns, with native herbivores generally preferring exotic plants, while exotic herbivores rarely exhibited a preference. Thus, exotic plants may escape their coevolved herbivores only to be preferentially consumed by the native generalist herbivores in their new ranges, suggesting that native herbivores may provide biotic resistance to plant invasions. 相似文献
3.
1. The lack of consistent differences between the traits of native and non‐native plant species makes it difficult to make general predictions about the ecological impact of invasive plants; however, the increasing number of non‐native plants in many habitats makes the assessment of the impact of each individual species impracticable. General knowledge about how specific plant traits are linked to their effects on communities or ecosystems may be more useful for predicting the effect of plant invasions. Specifically, we hypothesised that higher carbon‐to‐nitrogen ratio (C:N) and percent lignin in plant detritus would reduce the rate of development and total mass at metamorphosis of tadpoles, resulting in lower metamorph production (total fresh biomass) and amphibian species richness. 2. To test these hypotheses, we raised five species of tadpoles in mesocosms containing senescent leaves of three common native and three common non‐native wetland plants that varied in C:N ratio and % lignin. 3. Leaf mass loss, total metamorph production and the number of species that metamorphosed declined as a function of increasing C:N ratio of plant leaves. Plant lignin content was not related to the production of metamorphs or the number of species that metamorphosed. The percentage of wood frog (Lithobates sylvaticus) and American toad (Anaxyrus americanus) tadpoles reaching metamorphosis declined as a function of increasing plant C:N ratio. Mean time to metamorphosis increased and mean mass at metamorphosis declined as a function of increasing plant C:N ratio. Tadpole performance and metamorph diversity and production (biomass) were similar between native and non‐native plant species with similar C:N ratio in leaves. Percent lignin was not a significant predictor of tadpole performance. 4. Our results show that the impact of a plant invasion on tadpole performance could depend on differences between the quality of the detritus produced by the invading species and that of the native species it replaces. We suggest that plant community changes that lead to dominance by more recalcitrant plant species (those with higher leaf C:N ratio) may negatively affect amphibian populations. 相似文献
4.
Despite knowledge on invasive species’ predatory effects, we know little of their influence as prey. Non‐native prey should have a neutral to positive effect on native predators by supplementing the prey base. However, if non‐native prey displace native prey, then an invader's net influence should depend on both its abundance and value relative to native prey. We conducted a meta‐analysis to quantify the effect of non‐native prey on native predator populations. Relative to native prey, non‐native prey similarly or negatively affect native predators, but only when studies employed a substitutive design that examined the effects of each prey species in isolation from other prey. When native predators had access to non‐native and native prey simultaneously, predator abundance increased significantly relative to pre‐invasion abundance. Although non‐native prey may have a lower per capita value than native prey, they seem to benefit native predators by serving as a supplemental prey resource. 相似文献
5.
Are plants precursors for methane? 总被引:1,自引:0,他引:1
6.
Parasitism plays an essential part in ecology and evolution of host species and understanding the reasons for differential parasitism within and among hosts species is therefore important. Among the very important factors potentially affecting parasitism is the gender of the host. Here, we studied whether either females or males are more likely to harbour parasites among Odonatan insects, by relying on an extensive literature review and new field data. We collected data on numerous dragonfly and damselfly species and their ectoparasites (water mites) and endoparasites (gregarines) to examine the generality of similarities and differences in prevalence, intensity and maximum number of parasites of male and female hosts. We found three main results. Firstly, most of the odonate host species showed no differences between sexes in either gregarine or water mite prevalence and intensity. The only exception was female damselflies’ higher gregarine prevalence and intensity compared to conspecific males. These inequalities in gregarine parasitism may be due to behavioral and physiological differences between conspecific males and females. In comparison, there were no differences in dragonflies between sexes in water mite or gregarine prevalence and intensity. Secondly, damselflies had higher prevalence and intensity levels of both gregarine and water mite parasites compared to dragonflies. Finally, we found a strong species level pattern between female and male parasitism: a certain level of gregarine or water mite parasitism in one sex was matched with a similar parasitism level for the other. This indicates similar exposure and susceptibility to parasites on both sexes. Even though significant differences of parasite levels between the sexes were observed within certain host species, our results strongly suggest that on a general level a more parasitized sex does not exist in the order, Odonata. 相似文献
7.
8.
Different conceptions of disturbance differ in the degree to which they appeal to mechanisms that are general and equivalent, or species‐, functional group‐, or interaction‐specific. Some concepts of disturbance, for example, predict that soil disturbances and herbivory have identical impacts on species richness via identical mechanisms (reduction in biomass and in competition). An alternative hypothesis is that the specific traits of disturbance agents (small mammals) and plants differentially affect the richness or abundance of different plant groups. We tested these hypotheses on a degu (Octodon degus) colony in central Chile. We ask whether native and non‐native forbs respond differently to degu bioturbation on runways versus herbivory on grazing lawns. We ask whether this can explain the increase in non‐native plants on degu colonies. We found that biopedturbation did not explain the locations of non‐native plants. We did not find direct evidence of grazing increasing non‐native herbs either, but a grazing effect appears to be mediated by grass, which is the dominant cover. Further, we provide supplementary evidence to support our interpretation that a key mechanism of non‐native spread is the formation of dry soil conditions on grazing lawns. Thus, ecosystem engineering (alteration of soil qualities) may be an outcome of disturbances, in which each interacts with specific plant traits, to create the observed pattern of non‐native spread in the colony. Based on these results, we propose to extend Jentsch and White (Ecology, 100, 2019, e02734) concept of combined pulse/ disturbance events to the long‐term process duality of ecosystem engineering/ disturbance. 相似文献
9.
Optimality modeling and fitness trade‐offs: when should plants become pollinator specialists? 总被引:6,自引:0,他引:6
Paul A. Aigner 《Oikos》2001,95(1):177-184
The assumption that flowers readily evolve specializations for pollination by particular animals has been central to a standard view of pollinator-mediated adaptive divergence in angiosperms. Stebbins' Most Effective Pollinator Principle (MEPP) formalized this assumption in proposing that a plant should always evolve specializations to its most effective pollinator. I argue that the MEPP and its corollaries are unsupported by basic models of phenotypic selection which predict that a plant should evolve greater specialization to a particular pollinator when the marginal fitness gain exceeds the marginal fitness loss from becoming less adapted to all other pollinators. Differences in pollinator effectiveness are neither necessary nor sufficient to predict specialization. Differences in effectiveness certainly can foster floral specialization to the most effective pollinator in some cases, but when adaptation to a relatively ineffective pollinator requires little loss in the fitness contribution of a more effective pollinator, plants may exhibit striking specializations for the less effective pollinator. Recognizing that the effectiveness of pollinators is not tightly coupled to their importance in selecting for phenotypic novelty may resolve the mismatch between floral features that appear to represent clear evolutionary responses to specific pollinators and patterns of flower visitation that often seem generalized. To shed light on agents of selection and the adaptive value of floral traits I argue that we must go beyond measures of pollinator effectiveness to investigate pollinator-mediated fitness trade-offs over a range of floral phenotypes. 相似文献
10.
Cascade J. B. Sorte Ines Ibáñez Dana M. Blumenthal Nicole A. Molinari Luke P. Miller Edwin D. Grosholz Jeffrey M. Diez Carla M. D'Antonio Julian D. Olden Sierra J. Jones Jeffrey S. Dukes 《Ecology letters》2013,16(2):261-270
Climate change and biological invasions are primary threats to global biodiversity that may interact in the future. To date, the hypothesis that climate change will favour non‐native species has been examined exclusively through local comparisons of single or few species. Here, we take a meta‐analytical approach to broadly evaluate whether non‐native species are poised to respond more positively than native species to future climatic conditions. We compiled a database of studies in aquatic and terrestrial ecosystems that reported performance measures of non‐native (157 species) and co‐occurring native species (204 species) under different temperature, CO2 and precipitation conditions. Our analyses revealed that in terrestrial (primarily plant) systems, native and non‐native species responded similarly to environmental changes. By contrast, in aquatic (primarily animal) systems, increases in temperature and CO2 largely inhibited native species. There was a general trend towards stronger responses among non‐native species, including enhanced positive responses to more favourable conditions and stronger negative responses to less favourable conditions. As climate change proceeds, aquatic systems may be particularly vulnerable to invasion. Across systems, there could be a higher risk of invasion at sites becoming more climatically hospitable, whereas sites shifting towards harsher conditions may become more resistant to invasions. 相似文献
11.
1. Urban ecosystems create suitable habitats for many plant and animal species, including pollinators. However, heterogenic habitats in city centres and suburban areas have various effects on pollinators due to variations in the composition of vegetation and in landscape management by humans. 2. This study compared the abundance and species richness of three main groups of pollinators – wild bees, butterflies, and hoverflies – in Poznań, western Poland, and in three different types of urban green areas – urban grasslands, urban parks, and green infrastructure in housing estates. 3. The total abundance of pollinators was higher in urban grasslands than in housing estates and urban parks. Species composition of pollinator communities differed between the three habitat types. 4. The study results showed that species richness and abundance of butterflies varied between habitat types, whereas no such differences were found in the case of wild bees and hoverflies. Cover of green area, vegetation structure, and plant height were important for the pollinator community; however, these variables had different effects depending on habitat type. 5. These findings revealed that not all urban green areas are equally valuable in terms of local biodiversity. High‐quality urban habitats such as urban grasslands are capable of supporting rich and abundant populations of pollinators. Therefore, it is important to protect high‐value urban green areas and simultaneously strive to improve intensively managed urban habitats through effective planning and new management practices. 相似文献
12.
Weil JH 《IUBMB life》2005,57(4-5):311-314
So far, plants have been genetically modified essentially to achieve resistance to herbicides, or to pathogens (mainly insects, or viruses), but resistance to abiotic stresses (such as cold, heat, drought, or salt) is also being studied. Genetically modified (GM) plants with improved nutritional qualities have more recently been developed, such as plants containing higher proportions of unsaturated fatty acids (omega-3 and omega-6) in their oil (to prevent cardio-vascular diseases), or containing beta-carotene as in the golden rice (to prevent vitamin A deficiency). Possible risks for human health (such as the production of allergenic proteins), or for the environment (such as the appearance of superweeds as a result from gene flow), should be carefully studied, and a science-based assessment of benefits vs. risks should be made on a case by case basis, both for GM plants and for plants obtained by conventional breeding methods. 相似文献
13.
Stephen J. Lycett Mark Collard William C. McGrew 《American journal of physical anthropology》2010,142(3):461-467
Over the last 30 years it has become increasingly apparent that there are many behavioral differences among wild communities of Pan troglodytes. Some researchers argue these differences are a consequence of the behaviors being socially learned, and thus may be considered cultural. Others contend that the available evidence is too weak to discount the alternative possibility that the behaviors are genetically determined. Previous phylogenetic analyses of chimpanzee behavior have not supported the predictions of the genetic hypothesis. However, the results of these studies are potentially problematic because the behavioral sample employed did not include communities from central Africa. Here, we present the results of a study designed to address this shortcoming. We carried out cladistic analyses of presence/absence data pertaining to 19 tool‐use behaviors in 10 different P. troglodytes communities plus an outgroup (P. paniscus). Genetic data indicate that chimpanzee communities in West Africa are well differentiated from those in eastern and central Africa, while the latter are not reciprocally monophyletic. Thus, we predicted that if the genetic hypothesis is correct, the tool‐use data should mirror the genetic data in terms of structure. The three measures of phylogenetic structure we employed (the Retention Index, the bootstrap, and the Permutation Tail Probability Test) did not support the genetic hypothesis. They were all lower when all 10 communities were included than when the three western African communities are excluded. Hence, our study refutes the genetic hypothesis and provides further evidence that patterns of behavior in chimpanzees are the product of social learning and therefore meet the main condition for culture. Am J Phys Anthropol, 2010. © 2010 Wiley‐Liss, Inc. 相似文献
14.
Should I pick that? A scoring tool to prioritize and valuate native wild seed for restoration 总被引:1,自引:0,他引:1
Commercial sources of native seed are often unavailable for ecological restoration projects or do not have a suitable provenance. Local collection of wild seed is an option, but it can be challenging to collect seed for a variety of species and set fair seed prices. Our aim was to quantify the relative effort to collect, clean, store, and propagate seed to better prioritize species and assess the value of their seed. For 57 species native to the Canadian subarctic and typical of upland habitats, we evaluated 13 poorly correlated attributes in the field and lab or using the literature. For collection attributes, regional occurrence, local abundance, seed collection rate, and collection window were normally or log‐normally distributed. Most species were easy to identify and posed few collection obstacles. Cleaning effort was evenly distributed across species and the majority could be cleaned to more than 95% purity. We only encountered orthodox seed and most species had seed longevity exceeding a year. Seed viability mostly exceeded 80%, pre‐treatment requirements were evenly distributed and the majority of species could be germinated under standard conditions. We propose a standard worksheet, in which we assign relative effort scores to the distribution of each attribute. We illustrate this approach for the revegetation planning of a remote mine site. We also propose a seed lot certificate to ensure high seed quality. This tool can be applied to various restoration applications to assess relative effort, to plan and prioritize species for restoration projects and to help set fair seed pricing. 相似文献
15.
Zhong-Ming Ye Wen-Kui Dai Xiao-Fang Jin Rober W. Gituru Qing-Feng Wang Chun-Feng Yang 《Plant Ecology》2014,215(1):3-13
We hypothesize interactions among plants for pollination may depend on pollinator abundance, which always varies among years and habitats and has different effects on plant reproductive success. Honeybee-pollinated plants, Lotus corniculatus, and its commonly coflowering neighbor, Potentilla reptans var. sericophylla, were used in a two-year project. We designed six types of plant combinations with different conspecific and interspecific flower densities in 2011 and repeated this in the same site in 2012. Meanwhile, we artificially increased pollinator abundance by hiring beehives only in 2011. Pollinator abundance as well as flower density significantly affected pollination of L. corniculatus plants from both the conspecific and interspecific plots. Total number of bees visiting a plot was enhanced by an increase in both the conspecific and interspecific flower densities regardless of high or low pollinator abundance. However, changes in visitation rates and fruit sets in the focal plants when flower densities were increased depended on pollinator abundance. Under high pollinator abundance, an increase in both the conspecific and interspecific flower densities significantly enhanced pollinator visits to L. corniculatus. However, under low pollinator abundance, the pollinator visitation rate remained unchanged as conspecific flower density increased, but decreased when there was an increase in interspecific flower density. Coflowering plants enhanced fruit sets of L. corniculatus only when the pollinator abundance was high. The findings suggest that the interactions among plants for pollination are influenced not only by a plant density threshold, but also by a pollinator abundance threshold. 相似文献
16.
Question: The quantification of functional traits in natural communities can be difficult (e.g. root traits, RGR). Can functional traits measured on pot grown plants be reliably applied to natural communities? Alternatively, can below‐ground plant traits be predicted from above‐ground traits? Location: Southeastern Australia. Methods: We compared 17 shoot, root and whole‐plant morphological traits measured on 14 plant species in a native grassland community to those measured under two different pot conditions: unfertilised and fertilised. Results: The majority of trait values for pot grown plants differed to plants in the field, however, species ranking remained consistent for most leaf traits between the field and the two pot growing conditions. In contrast, species ranking was not consistent for most whole plant traits when comparing field plants to fertilised pot grown plants, providing a caution against the tendency to grow plants in controlled conditions at ‘optimal’ (high) resource levels. Moderate to strong correlations were found between below‐ground and above‐ground plant traits, including between root dry matter content and leaf dry matter content, and between specific root area and specific leaf area. Conclusions: The utility of pot grown plants to quantify traits for field plants is highly dependent on the selection of the growing conditions in the controlled environment. The consistency we observed between above‐ground and below‐ground trait strategies suggests that below‐ground traits may be predictable based on above‐ground traits, reducing the need to quantify root traits on cultured plants. 相似文献
17.
Gravendeel B Smithson A Slik FJ Schuiteman A 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2004,359(1450):1523-1535
Epiphytes are a characteristic component of tropical rainforests. Out of the 25,000 orchid species currently known to science, more than 70% live in tree canopies. Understanding when and how these orchids diversified is vital to understanding the history of epiphytic biomes. We investigated whether orchids managed to radiate so explosively owing to their predominantly epiphytic habit and/or their specialized pollinator systems by testing these hypotheses from a statistical and phylogenetic standpoint. For the first approach, species numbers of 100 randomly chosen epiphytic and terrestrial genera were compared. Furthermore, the mean number of pollinators per orchid species within the five subfamilies was calculated and correlated with their time of diversification and species richness. In the second approach, molecular epiphytic orchid phylogenies were screened for clades with specific suites of epiphytic adaptations. Epiphytic genera were found to be significantly richer in species than terrestrial genera both for orchids and non-orchids. No evidence was found for a positive association between pollinator specialization and orchid species richness. Repeated associations between a small body size, short life cycle and specialized clinging roots of twig epiphytes in Bulbophyllinae and Oncidiinae were discovered. The development of twig epiphytism in the first group seems repeatedly correlated with speciation bursts. 相似文献
18.
Does multi‐level environmental filtering determine the functional and phylogenetic composition of wild bee species assemblages? 下载免费PDF全文
A central goal in ecology is to develop theories that explain the diversity and distribution of species. The evolutionary history of species and their functional traits may provide mechanistic links between community assembly and the environment. Such links may be hierarchically structured such that the strength of environmental filtering decreases in a step‐wise manner from regional conditions through landscape heterogeneity to local habitat conditions. We sampled the wild bee species assemblages in power‐line strips transecting forests in south‐eastern Norway. We used altitude, landscape diversity surrounding sites and plant species composition, together with total plant cover as proxies for regional, landscape and local environmental filters, respectively. The species richness and abundance of wild bees decreased with altitude. The reduction in species richness and abundance was accompanied by a phylogenetic clustering of wild bee individuals. Furthermore, regional filters followed by local filters best explained the structure of the functional species composition. Sites at high altitudes and sites with Ericaceae‐dominated plant communities tended to have larger bees and a higher proportion of social and spring‐emerging bees. When Bombus species were excluded from the analysis, the proportion of pollen specialists increased with the dominance of Ericaceae. Furthermore, we also found that the taxonomic, phylogenetic and functional compositional turnover between sites was higher in the northern region than in the southern part of the study region. Altogether, these results suggest that regional filters drive the species richness and abundance in trait‐groups whereas local filters have more descrete sorting effects. We conclude that the model of multi‐level environmental filters provides a good conceptual model for community ecology. We suggest that future studies should focus on the relationship between the biogeographical history of species and their current distribution, and on the assumption that closely related species do indeed compete more intensely than distantly related species. 相似文献
19.
Philipp Schwedhelm Johanna Kusnick Cline Heinl Gilbert Schnfelder Bettina Bert 《EMBO reports》2021,22(10)
Non‐technical summaries of research projects allow tracking the numbers and purpose of animal experiments related to SARS‐CoV2 research so as to provide greater transparency on animal use. Subject Categories: Economics, Law & Politics, Pharmacology & Drug Discovery, Science Policy & PublishingThe COVID‐19 pandemic has accelerated biomedical research and drug development to an unprecedented pace. Governments worldwide released emergency funding for biomedical research that allowed scientists to focus on COVID‐19 and related drug and vaccine development. As a result, a flood of scientific articles on SARS‐CoV‐2 and COVID‐19 was published since early 2020. More importantly though, within less than 2 years, scientists in academia and industry developed vaccines against the virus from scratch: Several vaccines have now received regulatory approval and are being mass produced to immunize the human population worldwide.This colossal success of science rests in large part on the shoulders of animals that were used in basic and pre‐clinical research and regulatory testing. Notwithstanding, animal experimentation has remained a highly controversial and heated topic between advocates for research and animal rights activists. During the past decades, European policymakers responded to the debate by enacting stricter regulations, which inevitably has increased the bureaucratic hurdles for experimentation on animals. Scientists have for long spoken out against this additional burden, arguing that both basic and translational researches to improve human health crucially relies on animal experimentation—as the COVID‐19 pandemic aptly demonstrated (Genzel et al, 2020). 相似文献