首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Marcus T. Brock 《Oecologia》2009,161(2):241-251
Prezygotic reproductive barriers limit interspecific gene flow between congeners. Here, I examine the strength of floral isolation and interspecific pollen-pistil barriers between an invasive apomictic, Taraxacum officinale, and the indigenous sexual alpine dandelion, Taraxacum ceratophorum. Experimental arrays of either native inflorescences or a mixture of native and exotic inflorescences were used to examine insect preference and to track movement of a pollen analog. Using hand-pollinations, conspecific and heterospecific pollen germination success on native stigmas was compared. To additionally test for interspecific pollen competition, T. ceratophorum plants received one of three possible hand-pollinations: control conspecific pollination, concomitant conspecific and heterospecific pollination (mixed), or conspecific pollen followed by heterospecific pollen 15 min later (staggered). Floral isolation was negligible as no insect preference was detected. On a presence/absence basis, florets on native inflorescences received slightly less pollen analog from heterospecific donors than from conspecific donors; however, the amount of dye particles transferred from either Taraxacum species to stigmas on recipient T. ceratophorum inflorescences was equivalent. In contrast to weak floral isolation, strong pollen germination and pollen competition barriers should reduce the potential for hybridization. Heterospecific T. officinale pollen exhibited reduced germination success on T. ceratophorum stigmas in comparison to conspecific pollen. Furthermore, a significant pollen-competition effect on the percentage of hybrid offspring was detected only when T. officinale preceded T. ceratophorum pollen by 15 min. This result indicates that conspecific pollen out-competes heterospecific pollen but further suggests that biotic and abiotic factors reducing pollen accrual rates may partially remove barriers to natural hybridization.  相似文献   

2.
We hypothesize interactions among plants for pollination may depend on pollinator abundance, which always varies among years and habitats and has different effects on plant reproductive success. Honeybee-pollinated plants, Lotus corniculatus, and its commonly coflowering neighbor, Potentilla reptans var. sericophylla, were used in a two-year project. We designed six types of plant combinations with different conspecific and interspecific flower densities in 2011 and repeated this in the same site in 2012. Meanwhile, we artificially increased pollinator abundance by hiring beehives only in 2011. Pollinator abundance as well as flower density significantly affected pollination of L. corniculatus plants from both the conspecific and interspecific plots. Total number of bees visiting a plot was enhanced by an increase in both the conspecific and interspecific flower densities regardless of high or low pollinator abundance. However, changes in visitation rates and fruit sets in the focal plants when flower densities were increased depended on pollinator abundance. Under high pollinator abundance, an increase in both the conspecific and interspecific flower densities significantly enhanced pollinator visits to L. corniculatus. However, under low pollinator abundance, the pollinator visitation rate remained unchanged as conspecific flower density increased, but decreased when there was an increase in interspecific flower density. Coflowering plants enhanced fruit sets of L. corniculatus only when the pollinator abundance was high. The findings suggest that the interactions among plants for pollination are influenced not only by a plant density threshold, but also by a pollinator abundance threshold.  相似文献   

3.
Summary Previous experiments showed that the sympatric herbs Delphinium nelsonii and Ipomopsis aggregata compete for hummingbird pollination and that deleterious effects of the former species on seed set of the latter involve interspecific pollen transfer. However, seed set was not reduced when pollen of both species was applied simultaneously to I. aggregata stigmas. Hence a competitive effect may require arrival of foreign pollen before conspecific pollen. To explore this possibility we subjected I. aggregata flowers to a competition treatment in which they received D. nelsonii pollen 6 h before I. aggregata pollen, or to a control in which they received only the conspecific pollen. Foreign pollen precedence decreased mean seed set by almost 50%, which is consistent with effects observed in previous experiments. Reduced seed set can be explained by the fact that foreign pollen often caused stigma lobes to close together within 1.5–6 h, reducing subsequent receptivity. Stigma closure was also elicited by conspecific pollen, but not by mechanical stimulation, and was influenced by size of the pollen load and identity of the plant being pollinated.  相似文献   

4.
Sympatric plant species can compete for pollination services in several ways. For example, pollinators may move between species and deposit heterospecific pollen on stigmas, which in turn may reduce the efficacy of conspecific pollen. We explored this possibility by determining the effect of Delphinium nelsonii pollen on seed set in Ipomopsis aggregata. These montane herbs are pollinated by hummingbirds, experience heterospecific pollen deposition in nature, and suffer reduced seed set in each other's presence. We hand-pollinated flowers of I. aggregata with either pure conspecific pollen or a mixture of pollen of the two species. Resulting pollen loads on stigmas ranged from 0–865 D. nelsonii grains and from 10–336 I. aggregata grains; mean seed set per flower was 11.3. There was no detectable effect of D. nelsonii pollen load on I. aggregata seed set. It is possible that seed set reductions seen in previous studies of competition for pollination between these species were caused by pollen wastage, pollen layering on the pollinator, or the temporal sequence of pollen arrival at the stigma.  相似文献   

5.
Summary We examined net seed production for the self-incompatible, monocarp, Ipomopsis aggregata, by monitoring pre-pollination seed parasite (Hylemya sp.) oviposition and hummingbird mediated fruit set on 21 plants of variable height. Both pollination and seed predation increased with inflorescence height. Net seed production (incorporating seed predator mortality) also was positively related to height, and this would have been the case if pollination or seed predation were doubled. Although results suggest pomopsis aggregata should be under selective pressure to maximize inflorescence height, generation time and resource limits could result in advantages for inflorescences of intermediate height.  相似文献   

6.
Sharaf KE  Price MV 《Oecologia》2004,138(3):396-404
Ungulate browsing of flowering stalks of the semelparous herb Ipomopsis aggregata leads to regrowth of lateral inflorescences, a response that has been reported to yield overcompensation in some cases (browsed plants with higher reproductive success than unbrowsed), but undercompensation in others. Little is known about the mechanisms that cause such variable tolerance to herbivory. We explored one possible mechanism—variation in effects of browsing on pollination—by clipping I. aggregata inflorescences to mimic browsing, observing subsequent visits by pollinators and nectar-robbers, and adding pollen by hand to flowers of some clipped and unclipped plants. Clipping reduced floral display size and increased inflorescence branching, but neither hummingbirds, the primary pollinators, nor nectar-robbing bumblebees showed any preference for unclipped versus clipped plants. Clipping delayed flowering; this shift in phenology caused clipped plants to miss the peak of hummingbird activity and to have lower per-flower visitation rates than unclipped controls in one year, but to have greater overlap with birds and higher visitation rates in the subsequent year. In three sites and 2 years, clipped plants exposed to natural pollination suffered extreme undercompensation, producing on average only 16% as many seeds as unclipped controls. This was not directly attributable to clipping effects on pollination, however, because clipped plants were unable to increase fecundity when provided with supplemental pollen by hand. Taken altogether, our results suggest that compensation was constrained less by indirect effects of browsing on pollination than by its direct impacts on resource availability and hence on the ability of plants to regrow lost inflorescence tissue and to fill seeds. Exploring the physiological and developmental processes involved in regrowth of inflorescences and provisioning of seeds is a promising future direction for research designed to understand variation in browsing tolerance.  相似文献   

7.
In natural environments, plants frequently interact with both heterospecific and conspecific neighbors. The intensity of belowground plant interaction with neighboring species commonly varies with the availability of soil nutrients in the habitats. According to classical ecological theory, competition between conspecific neighbors may be more severe than competition between unrelated species due to the similar nutrient requirements of close relatives, especially when nutrients are scarce in the habitat. However, many recent studies have shown the opposite pattern, and suggested an alternative mechanism based on species recognition. Taking Zoysia sinica as the focal species, we conducted a controlled experiment to test the results of intraspecific and interspecific interactions among three clonal species Zoysia sinica, Zoysia japonica and Alternanthera philoxeroides, which represent a conspecific, a close relative and a distant relative of the focal species, respectively, and at different root treatments (no separation NS, clone separation CS and ramet separation RS) and two nutrient levels. The results showed that Z. sinica recognized conspecific plants in the NS and CS treatments, and did not show above or belowground competition with these. The performance of the focal plant (Z. sinica) was better when it was grown with a conspecific neighbor as compared to all other types of neighbors. In all root separation treatments, the competition was more intense when Z. sinica grew with a close relative (Z. japonica) than when growing with a distant relative (A. philoxeroides). Generally, competition between plants was more intense at the high nutrient level than at the low nutrient level, suggesting that both soil nutrients and a species recognition mechanism play a significant role for the intra‐ and interspecific interaction and fitness of these three neighboring clonal species.  相似文献   

8.
When co‐occurring plant species overlap in flowering phenology they may compete for the service of shared pollinators. Competition for pollination may lower plant reproductive success by reducing the number of pollinator probes or by decreasing the quality of pollen transport to or from a focal species. Pair‐wise interactions between plants sharing pollinators have been well documented. However, relatively few studies have examined interactions for pollination among three or more plant species, and little is known about how the outcomes and mechanisms of competition for pollination may vary with competitor species composition. To better understand how the dynamics of competition for pollination may be influenced by changes in the number of competitors, we manipulated the presence of two competitors, Lythrum salicaria and Lobelia siphilitica, and quantified reproductive success for a third species, Mimulus ringens. Patterns of pollinator preference and interspecific transitions in mixed‐species arrays were significantly influenced by the species composition of competitor plants present. Both pair‐wise and three‐species competition treatments led to a similar ~ 40% reduction in Mimulus ringens seed set. However, the patterns of pollinator foraging we observed suggest that the relative importance of different mechanisms of competition for pollination may vary with the identity and number of competitors present. This variation in mechanisms of competition for pollination may be especially important in diverse plant communities where many species interact through shared pollinators.  相似文献   

9.
Pollination is thought to be under positive density‐dependence, destabilising plant coexistence by conferring fitness disadvantages to rare species. Such disadvantage is exacerbated by interspecific competition but can be mitigated by facilitation and intraspecific competition. However, pollinator scarcity should enhance intraspecific plant competition and impose disadvantage on common over rare species (negative density‐dependence, NDD). We assessed pollination proxies (visitation rate, pollen receipt, pollen tubes) in a generalised plant community and related them to conspecific and heterospecific density, expecting NDD and interspecific facilitation due to the natural pollinator scarcity. Contrary to usual expectations, all proxies indicated strong intraspecific competition for common plants. Moreover interspecific facilitation prevailed and was stronger for rare than for common plants. Both NDD and interspecific facilitation were modulated by specialisation, floral display and pollinator group. The combination of intraspecific competition and interspecific facilitation fosters plant coexistence, suggesting that pollination can be a niche axis maintaining plant diversity.  相似文献   

10.
Sexual conflict is a pervasive evolutionary force that can reduce female fitness. Experimental evolution studies in the laboratory might overestimate the importance of sexual conflict because the ecological conditions in such settings typically include only a single species. Here, we experimentally manipulated conspecific male density (high or low) and species composition (sympatric or allopatric) to investigate how ecological conditions affect female survival in a sexually dimorphic insect, the banded demoiselle (Calopteryx splendens). Female survival was strongly influenced by an interaction between male density and species composition. Specifically, at low conspecific male density, female survival increased in the presence of heterospecific males (C. virgo). Behavioral mating experiments showed that interspecific interference competition reduced conspecific male mating success with large females. These findings suggest that reproductive interference competition between con‐ and heterospecific males might indirectly facilitate female survival by reducing mating harassment from conspecific males. Hence, interspecific competitors can show contrasting effects on the two sexes thereby influencing sexual conflict dynamics. Our results call for incorporation of more ecological realism in sexual conflict research, particularly how local community context and reproductive interference competition between heterospecific males can affect female fitness.  相似文献   

11.

Reproductive interference (RI), an interspecific mating interaction that reduces the fitness of at least one of the species involved, can lead to exclusive distributions in closely related species. A hypothesis previously proposed is that RI in plants may occur by ovule usurpation, in which pistils lack interspecific incompatibility and mistakenly accept heterospecific pollen, thereby losing an opportunity for conspecific pollen fertilization. However, few comparative studies have evaluated the consistency of the inferred mechanism within and among individuals and populations. We conducted hand-pollination experiments in six populations of three native Taraxacum species that suffered from different levels of RI from an alien congener, T. officinale, and compared pollen–pistil interactions among populations. We also investigated the interactions for eight individual T. japonicum plants whose response to heterospecific pollen deposition had been previously measured. Our results revealed that pollen tubes often penetrated native ovaries following heterospecific pollination in populations suffering from strong RI, whereas they seldom did in populations suffering from marginal RI. However, the relative frequency of the pollen tube penetration was not significantly related to the strength of alien RI. Not all pistils on an individual plant showed the same pollen receptivity following heterospecific pollination; rather, some accepted and some refused the pollen tubes. The relationship between pollen tube penetration following heterospecific pollination and the strength of the alien RI was also not significant among individuals. Our present results generally support the ovule usurpation hypothesis, but suggest that other factors, such as competition for pollinator services, variation in the effects of heterospecific pollen donors, and condition of the native inflorescences, might also affect the observed RI strength.

  相似文献   

12.
Although rarely tested, it is often assumed that interspecific competition results in the divergence of traits related to resource use. Using a plant-pollinator system as a model, I tested the prediction the presence of a competitor for pollination influences the strength and/or direction of pollinator-mediated selection on floral traits. I measured phenotypic selection via female fitness on five floral traits of Ipomopsis aggregata in seven populations. Four contained only conspecifics (I only) and three also contained the competitor Castilleja linariaefolia (C + I). Directional selection via fruits/plant and conspecific pollen deposited/flower on corolla length was positive and significantly stronger in C + I populations. This difference in selection was apparently driven by interpopulation variation in the degree to which reproduction of I. aggregata was pollen limited. Consistent with expectations of interspecific competition, I. aggregata plants in C + I populations received less conspecific pollen per flower and set fewer seeds per fruit and fruits per plant than those in I only populations. Ipomopsis aggregata's corollas were also significantly longer in C + I populations, suggesting that there had been a response to a similar selective regime in past generations. Phenotypic correlations between corolla length and width, which determine the variation in I. aggregata's flower shape, were significantly weaker in C + I populations. These data suggest that competition for pollination can influence the strength of selection on and patterns of correlations among floral traits of I. aggregata. If I. aggregata populations with and without competitors for pollination are linked by gene flow, then measuring selection in competitive and noncompetitive environments maybe necessary to accurately predict how floral traits will evolve.  相似文献   

13.
Plant invasions disrupt native plant reproduction directly via competition for light and other resources and indirectly via competition for pollination. Furthermore, shading by an invasive plant may reduce pollinator visitation and therefore reproduction in native plants. Our study quantifies and identifies mechanisms of these direct and indirect effects of an invasive shrub on pollination and reproductive success of a native herb. We measured pollinator visitation rate, pollen deposition, and female reproductive success in potted arrays of native Geranium maculatum in deciduous forest plots invaded by the non-native shrub Lonicera maackii and in two removal treatments: removal of aboveground L. maackii biomass and removal of flowers. We compared fruit and seed production between open-pollinated and pollen-supplemented plants to test for pollen and light limitation of reproduction. Plots with L. maackii had significantly lower light, pollinator visitation rate, and conspecific pollen deposition to G. maculatum than biomass removal plots. Lonicera maackii flower removal did not increase pollinator visitation or pollen deposition compared to unmanipulated invaded plots, refuting the hypothesis of competition for pollinators. Thus, pollinator-mediated impacts of invasive plants are not limited to periods of co-flowering or pollinator sharing between potential competitors. Geranium maculatum plants produced significantly fewer seeds in plots containing L. maackii than in plant removal plots. Seed set was similar between pollen-supplemented and open-pollinated plants, but pollen-supplemented plants exhibited higher seed set in plant removal plots compared to invaded plots. Therefore, we conclude that the mechanism of impact of L. maackii on G. maculatum reproduction was increased understory shade.  相似文献   

14.
Flower color is often viewed as a trait that signals rewards to pollinators, such that the relationship between flower color and plant fitness might result from its association with another trait. We used experimental manipulations of flower color and nectar reward to dissociate the natural character correlations present in a hybrid zone between Ipomopsis aggregata and Ipomopsis tenuituba. Isozyme markers were used to follow the male and female reproductive success of these engineered phenotypes. One field experiment compared fitnesses of I. aggregata plants that varied only in flower color. Plants with flowers painted red received more hummingbird visits and sired more seeds than did plants with flowers painted pink or white to match those of hybrids and I. tenuituba. Our second field experiment compared fitnesses of I. aggregata, I. tenuituba, and hybrid plants in an unmanipulated array and in a second array where all flowers were painted red. In the unmanipulated array, I. aggregata received more hummingbird visits, set more seeds per flower, and sired more seeds per flower. These fitness differences largely disappeared when the color differences were eliminated. The higher male fitness of I. aggregata was due to its very high success at siring seeds on conspecific recipients. On both I. tenuituba and hybrid recipients, hybrid plants sired the most seeds, despite showing lower pollen fertility than I. aggregata in mixed donor pollinations in the greenhouse. Ipomopsis tenuituba had a fitness of only 13% relative to I. aggregata when traits varied naturally, compared to a fitness of 36% for white relative to red flowers when other traits were held constant.  相似文献   

15.
Invasive plants may threaten the reproductive success of native sympatric plants by modifying the pollination process. One potential mechanism takes place through the deposition of invasive pollen onto native stigmas when pollinators are shared among species. We explore how pollen from the invasive plant Brassica nigra influences pre- and post-fertilization stages in the native plant Phacelia parryi, through a series of hand pollination experiments. These two species share pollinators to a high degree. P. parryi flowers were hand-pollinated with either pure conspecific pollen (the control) or with B. nigra pollen applied prior to, simultaneously with, or following conspecific pollen. Application of B. nigra pollen lowered seed set, with the simultaneous application resulting in the highest reduction. Pollen tube growth was also influenced by the presence of invasive pollen, with fewer conspecific pollen tubes reaching the base of P. parryi styles in treatments where B. nigra pollen was applied prior to or simultaneously with conspecific pollen. The deleterious effects of invasive pollen on native seed set in this study are likely not due to loss of stigmatic receptivity since seed set was less affected when heterospecific pollen was applied prior to conspecific pollen, but may instead involve interactions between interspecific pollen grains on the stigma or within the style. Our study highlights the importance of timing of foreign pollen deposition on native stigmas and suggests that interspecific pollen transfer between native and exotic plants may be an important mechanism of competition for pollination in invaded plant communities.  相似文献   

16.
The availability of soil and pollination resources are main determinants of fitness in many flowering plants, but the degree to which each is limiting and how they interact to affect plant fitness is unknown for many species. We performed resource (water and nutrients) and pollination (open and supplemental) treatments on two species of flowering plants, Ipomopsis aggregata and Linum lewisii, that differed in life-history, and we measured how resource addition affected floral characters, pollination, and reproduction (both male and female function). We separated the direct effects of resources versus indirect effects on female function via changes in pollination using a factorial experiment and path analysis. Resource addition affected I. aggregata and L. lewisii differently. Ipomopsis aggregata, a monocarp, responded to fertilization in the year of treatment application, increasing flower production, bloom duration, corolla width, nectar production, aboveground biomass, and pollen receipt relative to control plants. Fertilization also increased total seed production per plant, and hand-pollination increased seeds per fruit in I. aggregata, indicating some degree of pollen limitation of seed production. In contrast, fertilization had no effect on growth or reproductive output in the year of treatment on L. lewisii, a perennial, except that fertilization lengthened bloom duration. However, delayed effects of fertilization were seen in the year following treatment, with fertilized plants having greater aboveground biomass, seeds per fruit, and seeds per plant than control plants. In both species, there were no effects of resource addition on male function, and the direct effects of fertilization on female function were relatively stronger than the indirect effects via changes in pollination. Although we studied only two plant species, our results suggest that life-history traits may play an important role in determining the reproductive responses of plants to soil nutrient and pollen additions.  相似文献   

17.
The balance of pollination competition and facilitation among co-flowering plants and abiotic resource availability can modify plant species and individual reproduction. Floral resource succession and spatial heterogeneity modulate plant–pollinator interactions across ecological scales (individual plant, local assemblage, and interaction network of agroecological infrastructure across the farm). Intraspecific variation in flowering phenology can modulate the precise level of spatio-temporal heterogeneity in floral resources, pollen donor density, and pollinator interactions that a plant individual is exposed to, thereby affecting reproduction. We tested how abiotic resources and multi-scale plant–pollinator interactions affected individual plant seed set modulated by intraspecific variation in flowering phenology and spatio-temporal floral heterogeneity arising from agroecological infrastructure. We transplanted two focal insect-pollinated plant species (Cyanus segetum and Centaurea jacea, n = 288) into agroecological infrastructure (10 sown wildflower and six legume–grass strips) across a farm-scale experiment (125 ha). We applied an individual-based phenologically explicit approach to match precisely the flowering period of plant individuals to the concomitant level of spatio-temporal heterogeneity in plant–pollinator interactions, potential pollen donors, floral resources, and abiotic conditions (temperature, water, and nitrogen). Individual plant attractiveness, assemblage floral density, and conspecific pollen donor density (C. jacea) improved seed set. Network linkage density increased focal species seed set and modified the effect of local assemblage richness and abundance on C. segetum. Mutual dependence on pollinators in networks increased C. segetum seed set, while C. jacea seed set was greatest where both specialization on pollinators and mutual dependence was high. Abiotic conditions were of little or no importance to seed set. Intra- and interspecific plant–pollinator interactions respond to spatio-temporal heterogeneity arising from agroecological management affecting wild plant species reproduction. The interplay of pollinator interactions within and between ecological scales affecting seed set implies a co-occurrence of pollinator-mediated facilitative and competitive interactions among plant species and individuals.  相似文献   

18.
I measured phenotypic selection of floral traits through both male and female functions of the hermaphroditic flowers of Ipomopsis aggregata (Pursh) V. Grant subsp. aggregata (Polemoniaceae). Fluorescent powdered dyes were used to track movement of pollen by hummingbirds and to measure pollen delivery to individual plants as well as pollen receipt. A phenotypic selection analysis revealed that selection due to male-male competition during pollination was capable of delaying flowering date and widening corolla tubes by 0.22 and 0.24 standard-deviation units, respectively, in a single generation. Several floral traits were highly correlated with each other. Multivariate selection analysis suggested that selection through male function directly favored late flowering as well as a sexual expression characterized by a short pistillate phase and long corollas. Selection intensities through male and female functions were of similar overall magnitude during the pollination stage of the life cycle, but different traits were favored, and selection sometimes acted in opposing directions. In 1985, selection through female function favored increased time spent in the pistillate phase and exserted stigmas (unlike selection through male function). As a result, individual plants varied greatly in functional gender. Plants that had exserted stigmas and narrow corollas and that spent a disproportionately long time in the pistillate phase achieved greater pollination success as females, while plants with the opposite traits achieved greater success as males. Moreover, female pollination success tended to increase, and male pollination success to decrease, with time spent in the pistillate phase, supporting a critical assumption of sex-allocation theory. Selection in the populations studied fluctuated from year to year and was highly sex-specific.  相似文献   

19.
Variation in within-population floral density can affect interactions between plants and pollinators, resulting in variable pollen export for plants. We investigated the effects of conspecific and heterospecific floral densities on pollination success both of two related, self-compatible, nectar-rewarding orchid species in Ireland, Spiranthes romanzoffiana (rare and listed as endangered) and its congener, S. spiralis (more abundant and not of conservation concern). Floral densities, insect visitation rates, and orchid pollen transport were recorded in multiple quadrats in four populations of both orchid species over their flowering season. We found that conspecific and heterospecific co-flowering plant density affected pollination in both orchid species. For S. romanzoffiana, higher heterospecific density increased pollen removal. For S. spiralis, higher conspecific visitation increased pollen removal and increased heterospecific density decreased pollen deposition. In addition, increased conspecific density increased pollen deposition in both species. This study shows that plants may interact to facilitate or compete for different components of the pollination process, namely; pollinator attraction, pollen removal and deposition. Such interactions have immediate consequences for endangered plant species, as increases in both conspecific and heterospecific coflowering density may ameliorate the negative effects of rarity on pollination, hence overall reproductive success.  相似文献   

20.
Feldman TS 《Oecologia》2008,156(4):807-817
Plants may experience reduced reproductive success at low densities, due to lower numbers of pollinator visits or reduced visit quality. Co-occurring plant species that share pollinators have the potential to facilitate pollination by either increasing numbers of pollinator visits or increasing the quality of visits, but also have the potential to reduce plant reproductive success through competition for pollination. I used a field experiment with a common distylous perennial (Piriqueta caroliniana) in the presence and absence of a co-flowering species (Coreopsis leavenworthii) in plots with one of four different distances between conspecific plants. I found strong negative effects of increasing interplant distance (related to conspecific density) on several components of P. caroliniana reproductive success: pollinator visits to plants per plot visit, visits received by individual plants, conspecific pollen grains on stigmas, outcross pollen grains on stigmas, and probability of fruit production. Although P. caroliniana and C. leavenworthii share pollinators, the co-flowering species did not affect visitation, pollen receipt or reproductive effort in P. caroliniana. Pollinators moved very infrequently between species in this experiment, so floral constancy might explain the lack of effect of the co-flowering species on P. caroliniana reproductive success at low densities. In co-occurring self-incompatible plants with floral rewards, reproductive success at low density may depend more on conspecific densities than on the presence of other species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号