首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined palatability of 37 species of nonencrusting macroalgae from the Antarctic Peninsula. This represents approximately 30% of the entire antarctic macroalgal flora and 75% of the 49 nonencrusting species we collected. Organic extracts from most species were also prepared and mixed into artificial foods. We examined palatability using feeding bioassays with three common, macroalga‐consuming animals (an omnivorous antarctic rockfish, Notothenia coriiceps; an omnivorous sea star, Odontaster validus; and a herbivorous amphipod, Gondogenia antarctica). Thallus pieces from 23 of 34 macroalgal species tested with the fish (68%) were rejected. Of the 23 species rejected as thallus, organic extracts of 16 were bioassayed using the fish with 9 (56%) unpalatable. Thallus pieces from 21 of 36 macroalgal species tested with the sea star (58%) were rejected. Of the 21 species rejected as thallus, organic extracts of 20 were bioassayed using the sea stars and 14 (70%) were unpalatable. Overall, 28 of the 37 species assayed as thallus (76%) were rejected by either or both the fish and sea stars. The amphipod assay was not suitable for use with thallus but was utilized with organic extracts of 23 macroalgal species that were rejected as thallus by either or both the fish and sea stars. Of these, 14 (61%) of the species' extracts were rejected by the amphipods. Unpalatability was highest among the brown algae examined with only an ephemeral, ectocarpoid species not rejected as thallus out of 10 species tested. Of the remaining nine brown algal species, six of seven tested were also unpalatable as extracts, including all the ecologically dominant, perennial species in the area. We conclude that unpalatability to herbivores is common in antarctic macroalgae and that chemical defenses may play an important role in the unpalatability of many algal species (NSF OPP9814538, OPP9901076).  相似文献   

2.
The microbiological quality of wastewater in phytotreatment ponds with foliose macroalgae can be influenced by biofilm formation on thallus surface. This hypothesis was tested with an in situ experiment which was carried out in a pond with Ulva spp. receiving wastewater from a land based fish farm at Piombino (Italy). The total bacterial load (TBL) was determined in the inflowing and outflowing waters and a multifactorial design was employed to investigate the effect of different macroalgal biomass. Microbiological analysis revealed a high TBL in the water column (18.4 ± 7.4 × 108 cells ml−1). TBL of inlet water was significantly correlated with quantity and quality of particulate organic matter (POM) of inflowing water, whereas no correlation was found between TBL and POM in the outlet water. A significant decrease in the POM concentration was detected within macroalgal ponds, due to the mechanical action of thalli which favoured POM sedimentation. Nevertheless, great TBLs were found in the outlet water. These findings suggest that TBL probably depended upon macroalgae. Indeed high bacterial density was found on macroalgal thallus surface (~108 cells cm2). Furthermore, high plate counts of faecal bacteria (faecal enterococci) were determined on thallus surface (~ 40 CFU cm2) and outlet water (11 886 ± 3984 CFU 100 ml−1) supporting the evidence that macroalgae negatively affect the microbiological quality of treated water. Bacterial activities in terms of exoenzymatic rates and secondary production were two folds higher in the water within macroalgal beds, than in the open water. These preliminary results suggest that high macroalgal biomass represents a ‚hot spot’ of bacterial density and activity that may affect microbiological quality of the treated water. Bacterial control of inlet water and management of macroalgal biomass through periodic removal are essential for a more efficient treatment of wastewater in phytotreatment ponds.  相似文献   

3.
Single species feeding trials employing both fresh algal tissues and alginate food pellets containing dried finely ground algal tissues were conducted to examine the relative palatability of sympatric Antarctic macroalgae (three brown and five red macroalgal species) to three common herbivorous gammarid amphipods (Prostebbingia gracilis Chevreux, Gondogeneia antarctica (Chevreux) Thurston, and Metaleptamphopus pectinatus Chevreux). In fresh algal tissue bioassays, both the amphipods P. gracilis and G. antarctica consumed significantly greater amounts of the red alga Palmaria decipiens over all other seven species of macroalgae. The amphipod M. pectinatus failed to consume measurable quantities of fresh thalli of any macroalgae and therefore is likely to feed on other resources. In food pellet bioassays, the consumption rates of amphipods fed with eight different species of macroalgae were compared with consumption rates on a highly palatable control green alga. Alginate pellets containing finely ground tissues of P. decipiens were consistently the most palatable of any of the macroalgae to P. gracilis and G. antarctica, while pellets containing the brown algae Desmarestia menziesii, D. anceps and the red alga Plocamium cartilagineum were not consumed by any of the three amphipod species. Regression analysis indicated that feeding rates of the amphipods P. gracilis and G. antarctica on alginate food pellets were not significantly correlated with known species-specific parameters of macroalgal nutritional quality (%N, %C, C:N ratio, soluble protein, soluble carbohydrate, and lipid). Therefore, differences in amphipod macroalgal palatability are most likely related to other factors including physical and/or chemical deterrents.  相似文献   

4.
Marine invertebrate grazing on temperate macroalgae may exert a significant “top-down” control on macroalgal biomass. We conducted two laboratory experiments to test (1) if consumption by the omnivorous mud snail Ilyanassa obsoleta (Say) on the macroalga Ulva lactuca Linnaeus was a function of food quality (nitrogen content) and (2) if grazing on benthic macroalgae occurred at significant rates in the presence of alternative food sources in the sediment (detritus, larvae, benthic microalgae). Grazing rates were higher for N-enriched macroalgae; however, all snails lost weight when grazing on macroalgae alone, indicating that U. lactuca was a poor food source. The presence of sediment from two sites, a sandy lagoon and an adjacent organic-rich muddy tidal creek, did not affect consumption of macroalgae in microcosm experiments, and the grazing snails were capable of significantly reducing macroalgal biomass associated with both sediment types. Grazing rates by this omnivore were as high as 10.83 mg wet weight·individuals 1·d 1 and were similar to those recorded for herbivorous species. In situ loss rates calculated from average grazing rates per individual and snail abundances (up to 3.5 g dry weight·m 2·d 1) also were comparable with those calculated for herbivorous species. This level of grazing could remove up to 88% of new macroalgal growth at the lagoon site where the N supply was relatively low but had a much smaller effect (18% of new growth) at the high-nutrient creek site. Snails facilitated macroalgal growth at both sites by increasing tissue N content by 40%–80%. Consumption and digestion of macroalgae aided in the recycling of nutrients temporarily bound in the algae and resulted in enrichment of surficial sediments. Increased N sequestration in the sediments also was associated with an interruption of snail burrowing behavior due to persistent anoxia in sediments rich in decaying algal material. Our data suggest that in shallow lagoons where mud snails and benthic macroalgae coexist, grazing may influence N retention in macroalgal biomass.  相似文献   

5.
Coral populations have precipitously declined on Caribbean reefs while algal abundance has increased, leading to enhanced competitive damage to corals, which likely is mediated by the potent allelochemicals produced by both macroalgae and benthic cyanobacteria. Allelochemicals may affect the composition and abundance of coral-associated microorganisms that control host responses and adaptations to environmental change, including susceptibility to bacterial diseases. Here, we demonstrate that extracts of six Caribbean macroalgae and two benthic cyanobacteria have both inhibitory and stimulatory effects on bacterial taxa cultured from the surfaces of Caribbean corals, macroalgae, and corals exposed to macroalgal extracts. The growth of 54 bacterial isolates was monitored in the presence of lipophilic and hydrophilic crude extracts derived from Caribbean macroalgae and cyanobacteria using 96-well plate bioassays. All 54 bacterial cultures were identified by ribotyping. Lipophilic extracts from two species of Dictyota brown algae inhibited >50% of the reef coral bacteria assayed, and hydrophilic compounds from Dictyota menstrualis particularly inhibited Vibrio bacteria, a genus associated with several coral diseases. In contrast, both lipo- and hydrophilic extracts from 2 species of Lyngbya cyanobacteria strongly stimulated bacterial growth. The brown alga Lobophora variegata produced hydrophilic compounds with broad-spectrum antibacterial effects, which inhibited 93% of the bacterial cultures. Furthermore, bacteria cultured from different locations (corals vs. macroalgae vs. coral surfaces exposed to macroalgal extracts) responded differently to algal extracts. These results reveal that extracts from macroalgae and cyanobacteria have species-specific effects on the composition of coral-microbial assemblages, which in turn may increase coral host susceptibility to disease and result in coral mortality.  相似文献   

6.
《Journal of phycology》2001,37(Z3):50-50
Van Alstyne, K. L. Shannon Point Marine Center, Western Washington University, 1900 Shannon Point Road, Anacortes, WA 98221 USA Ulvoid green macroalgae, such as Enteromorpha and Ulva, can form large blooms that have deleterious impacts on the local biota. These algae are often assumed to be very palatable for most invertebrate and vertebrate herbivores because they lack obvious physical defenses, and because there have been few reports of their producing chemical defenses. However, in laboratory feeding preference assays, the ulvoid macroalgae Enteromorpha linza and Ulva fenestrata were low preference foods for green sea urchins, Strongylocentrotus droebachiensis. Both these algae and several other species of green algae produce large quantities of dimethylsulphoniopropionate (DMSP), which is enzymatically converted to dimethyl sulfide (DMS) and acrylic acid when the algae are physically damaged. In laboratory bioassays, both DMS and acrylic acid were potent feeding deterrents towards urchins at concentrations that the urchins would be likely to encounter in the field. The precursor in this system, DMSP, was a feeding attractant. Our data provide evidence that DMSP functions as a precursor in an activated defense system in marine macroalgae and suggests a similar function in phytoplankton. The presence of this activated defense system may contribute to the persistence of macroalgal blooms by making these algae unpalatable to some species of herbivores.  相似文献   

7.
Marine hydroids are commonly thought to be defended by stinging organelles called nematocysts that penetrate predator tissues and inject proteinaceous venoms, but not all hydroids possess these nematocysts. Although an increasing number of bioactive secondary metabolites have been isolated from marine hydroids, ecological roles of these compounds are poorly known. To test the hypothesis that nematocysts and noxious secondary metabolites represent alternative defenses against predation, we examined hydroids from North Carolina, United States for: (1) the palatability of whole polyps before and after nematocysts had been deactivated; (2) the palatability of their chemical extracts; and (3) their nutritional value in terms of organic content, protein content, and levels of refractory structural material (chitin). All hydroids were avoided by a generalist predator, the pinfish Lagodon rhomboides, compared with palatable control foods. Two of these (Halocordyle disticha and Tubularia crocea) became palatable after being treated with potassium chloride to discharge their nematocysts, suggesting that these species rely on nematocysts for defenses against predators. Chemical extracts from nematocyst-defended species had no effect on fish feeding. The four species that remained unpalatable after nematocysts had been discharged (Corydendrium parasiticum, Eudendrium carneum, Hydractinia symbiolongicarpus, Tridentata marginata) possessed chemical extracts that deterred feeding by pinfish. We have isolated and characterized the structures of the deterrent metabolites in two of these species. We found no differences in nutritional content or levels of chitin between nematocyst-defended and chemically defended species, and no evidence that either of these played a role in the rejection of hydroids as prey. Our results suggest that, among hydroids, chemical defenses may be at least as common as nematocyst-based defenses and that the two may represent largely alternative defensive strategies. The four hydroid species with deterrent extracts represent four families and both sub-orders of hydroids, suggesting that chemical defenses in this group may be widespread and have multiple origins. Received: 25 May 1999 / Accepted: 1 February 2000  相似文献   

8.
Benthic macroalgae can be abundant on present-day coral reefs, especially where rates of herbivory are low and/or dissolved nutrients are high. This study investigated the impact of macroalgal extracts on both coral-associated bacterial assemblages and sublethal stress response of corals. Crude extracts and live algal thalli from common Caribbean macroalgae were applied onto the surface of Montastraea faveolata and Porites astreoides corals on reefs in both Florida and Belize. Denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene amplicons was used to examine changes in the surface mucus layer (SML) bacteria in both coral species. Some of the extracts and live algae induced detectable shifts in coral-associated bacterial assemblages. However, one aqueous extract caused the bacterial assemblages to shift to an entirely new state (Lobophora variegata), whereas other organic extracts had little to no impact (e.g. Dictyota sp.). Macroalgal extracts more frequently induced sublethal stress responses in M. faveolata than in P. astreoides corals, suggesting that cellular integrity can be negatively impacted in selected corals when comparing co-occurring species. As modern reefs experience phase-shifts to a higher abundance of macroalgae with potent chemical defenses, these macroalgae are likely impacting the composition of microbial assemblages associated with corals and affecting overall reef health in unpredicted and unprecedented ways.  相似文献   

9.
Macroalgal-feeding fishes are considered to be a key functional group on coral reefs due to their role in preventing phase shifts from coral to macroalgal dominance, and potentially reversing the shift should it occur. However, assessments of macroalgal herbivory using bioassay experiments are primarily from systems with relatively high coral cover. This raises the question of whether continued functionality can be ensured in degraded systems. It is clearly important to determine whether the species that remove macroalgae on coral-dominated reefs will still be present and performing significant algal removal on macroalgal-dominated reefs. We compared the identity and effectiveness of macroalgal-feeding fishes on reefs in two conditions post-disturbance—those regenerating with high live coral cover (20–46 %) and those degrading with high macroalgal cover (57–82 %). Using filmed Sargassum bioassays, we found significantly different Sargassum biomass loss between the two conditions; mean assay weight loss due to herbivory was 27.9 ± 4.9 % on coral-dominated reefs and 2.2 ± 1.1 % on reefs with high macroalgal cover. However, once standardised for the availability of macroalgae on the reefs, the rates of removal were similar between the two reef conditions (4.8 ± 4.1 g m?2 h?1 on coral-dominated and 5.3 ± 2.1 g m?2 h?1 on macroalgal-dominated reefs). Interestingly, the Sargassum-assay consumer assemblages differed between reef conditions; nominally grazing herbivores, Siganus puelloides and Chlorurus sordidus, and the browser, Siganus sutor, dominated feeding on high coral cover reefs, whereas browsing herbivores, Naso elegans, Naso unicornis, and Leptoscarus vaigiensis, prevailed on macroalgal-dominated reefs. It appeared that macroalgal density in the surrounding habitat had a strong influence on the species driving the process of macroalgal removal. This suggests that although the function of macroalgal removal may continue, the species responsible may change with context, differing between systems that are regenerating versus degrading.  相似文献   

10.
Most macroalgal species along the Western Antarctic Peninsula (WAP) are defended against predation, many using chemical defenses. These subtidal communities are also mostly devoid of free living filamentous algae. However, one endo/epiphyte, Elachista antarctica, is found growing exclusively out of the palatable rhodophyte Palmaria decipiens. To understand this unusual and exclusive epiphytization, we tested whether macroalgal secondary metabolites such as those responsible for deterring sympatric grazers, affect the behaviors of the epiphyte's spores. Settlement, germination, and swimming behaviors of the epiphyte's motile spores were quantified in the presence of fractionated lipophilic and hydrophilic extracts of host P. decipiens and other rhodophytes from the shallow subtidal. Host P. decipiens was the only alga tested that did not inhibit spore settlement or germination. We also examined whether extracts from these chemically rich algae affect spore swimming behaviors and found spores to be chemotactically attracted to seawater soluble extract fractions of host P. decipiens. These results indicate that chemosensory behaviors of the epiphyte's spores to metabolites associated with these chemically defended macrophytes can explain this exclusive epiphyte–host interaction.  相似文献   

11.
Duarte  C.  Navarro  J. M.  Acuña  K.  Gómez  I. 《Hydrobiologia》2010,651(1):291-303
Factors such as nutritional quality and the secondary metabolite content of food resources have been shown to influence the feeding behavior of herbivores in many marine habitats. For intertidal macroalgae consumers on sandy beaches, the influence of these factors on feeding behavior and the consequences on their performance is poorly understood. In this study, we evaluated the relationships of nutritional quality, chemical defenses (phlorotannins), and the structure of three macroalgal species that form the bulk of imported wrack subsidies to beaches in southern Chile, with the feeding behavior, absorption efficiency, and growth rate of the talitrid amphipod Orchestoidea tuberculata, one of the most abundant organisms in this environment. The amphipods preferred Durvillaea antarctica over Lessonia nigrescens and Macrocystis pyrifera when simultaneously offered fresh pieces of each alga. Similar results were observed when artificial food made of dry powdered algae of each species was provided, suggesting that the structure of these three algae did not influence preference. The performance of amphipods when reared on a diet of a single algal species matched feeding preferences; higher growth rates were observed in treatments with the preferred alga, D. antarctica. These results imply that D. antarctica is a superior food item for O. tuberculata when compared to L. nigrescens or M. pyrifera, and also that the alga’s intrinsic quality (i.e., not structure) may influence dietary preference in these consumers. The higher content of proteins and carbohydrates found in D. antarctica may explain why this macroalga represents better quality food for O. tuberculata. Phlorotannin content did not have obvious negative effects on diet choice or growth, as D. antarctica, the alga with greater content of these secondary metabolites, was preferred and associated with higher growth rates of O. tuberculata. However, it is necessary to emphasize that the low phlorotannins concentrations registered in the three macroalgae species examined in this study, may not have been sufficient to deter O. tuberculata. When the amphipods were fed with each alga individually, they consumed significantly higher quantities of D. antarctica, which suggests that O. tuberculata did not eat more to compensate for the lower nutritional quality of the other algal species in order to maintain growth. Nor was compensation for lower food quality achieved by increasing absorption efficiency. Our results imply that the composition of the macroalgae arriving on the beach can significantly affect the performance and subsequent life history traits of O. tuberculata and by extension other amphipod species.  相似文献   

12.
The search for environment-friendly and non-toxic antifouling (AF) paint components has led to the investigation of natural products from seaweeds. The defence metabolites used by algae to deter unwanted epibiosis have potential for harnessing and use in AF applications. Crude algal extracts may provide a suitable mixture of compounds with AF potency. Crude ethanol extracts of the macroalgae Chondrus crispus (Rhodophyceae), from both dried and fresh sources were tested and compared using bioassays based on five marine bacterial strains, five phytoplankton strains and two macroalgae to assess the AF efficacy. Dried extract from the algae had a lower minimum inhibitory concentration at 25 μg mL−1 against the growth of bacteria and phytoplankton species than that from the fresh source. Macroalgae tests indicated that the extracts had an anti-germination activity 25–50 μg mL−1 against both Undaria pinnatifida and Ulva intestinalis spores. A field trial of AF paint incorporating crude extract indicated an initial AF potency lasting six weeks.  相似文献   

13.
Thallus mechanical strength, as well as production of secondary metabolites as defensive compounds, of tropical macroalgae is often essential for protection from herbivory. In tropical macroalgae, thallus mechanical strength is negatively correlated with productivity — a trade‐off between productivity and thallus toughness. The tropical fucoids, Turbinaria ornata which has defensive morphological traits against herbivory and Sargassum ilicifolium which is expanding its distribution in Japanese waters, were examined to determine thallus traits related to mechanical strength and productivity and their pair‐wise relationships were also examined. These traits that are directly or indirectly related to the trade‐off between productivity and thallus toughness were compared to data for various other temperate macroalgae by regression analyses. We found two strong positive correlations between thallus mechanical strength and thallus mass or thallus thickness, confirming that higher levels of mechanical strength for tropical fucoids is associated with higher biomass or thallus thickness. Also, negative correlations between thallus toughness and productivity were found indicating structural and physiological trade‐offs. However, the tropical fucoids exhibited relatively high productivity regardless of their higher level of thallus toughness. These traits of the tropical fucoids slightly deviate from the typical conservative strategy with higher thallus toughness and lower productivity as a trade‐off between productivity and thallus toughness.  相似文献   

14.
Cyphoma gibbosum is an ovulid predatory gastropod that specializes on gorgonians, many of which contain secondary metabolites and calcified sclerites that serve as antipredator defenses. In field and shipboard feeding assays, we examined the role of gorgonian crude extracts and sclerites as feeding deterrents to generalist predators and to C. gibbosum. Crude extracts and sclerites were isolated from Gorgonia ventalina, a Caribbean sea fan on which C. gibbosum feeds, and incorporated into a carrageenan-based artificial diet. In shipboard feeding experiments, artificial diet containing G. ventalina crude extracts was consumed 49% less by C. gibbosum, than artificial diet lacking extracts. The addition of G. ventalina sclerites to the diet also reduced feeding by Cyphoma by about one half. The addition of extracts to the artificial diet reduced feeding by natural assemblages of tropical fishes at Cross Harbor, Great Abaco Island, Bahamas by 87%; sclerites reduced feeding by fishes by 95%. Gorgonia ventalina extracts were composed of at least a dozen nonpolar terpenoids. Fractions containing these compounds were feeding deterrents towards fishes in the field. Unlike many terrestrial oligophagous specialists, C. gibbosum is not immune to the defenses produced by its prey.  相似文献   

15.
Direct evaluation of macroalgal removal by herbivorous coral reef fishes   总被引:5,自引:5,他引:0  
Few studies have examined the relative functional impacts of individual herbivorous fish species on coral reef ecosystem processes in the Indo-Pacific. This study assessed the potential grazing impact of individual species within an inshore herbivorous reef fish assemblage on the central Great Barrier Reef (GBR), by determining which fish species were able to remove particular macroalgal species. Transplanted multiple-choice algal assays and remote stationary underwater digital video cameras were used to quantify the impact of local herbivorous reef fish species on 12 species of macroalgae. Macroalgal removal by the fishes was rapid. Within 3 h of exposure to herbivorous reef fishes there was significant evidence of intense grazing. After 12 h of exposure, 10 of the 12 macroalgal species had decreased to less than 15% of their original mass. Chlorodesmis fastigiata (Chlorophyta) and Galaxaura sp. (Rhodophyta) showed significantly less susceptibility to herbivorous reef fish grazing than all other macroalgae, even after 24 h exposure. Six herbivorous and/or nominally herbivorous reef fish species were identified as the dominant grazers of macroalgae: Siganus doliatus, Siganus canaliculatus, Chlorurus microrhinos, Hipposcarus longiceps, Scarus rivulatus and Pomacanthus sexstriatus. The siganid S. doliatus fed heavily on Hypnea sp., while S. canaliculatus fed intensively on Sargassum sp. Variation in macroalgal susceptibility was not clearly correlated with morphological and/or chemical defenses that have been previously suggested as deterrents against herbivory. Nevertheless, the results stress the potential importance of individual herbivorous reef fish species in removing macroalgae from coral reefs.  相似文献   

16.
The aim of this research was to screen plant growth biostimulant properties of supercritical CO2 macroalgal extracts. To this end secondary metabolites were isolated from the biomass of marine macroalgae from the Baltic Sea (species of Polysiphonia, Ulva and Cladophora). Chemical characteristics of the algal extracts were determined by inductively coupled plasma atomic emission spectroscopy for inorganic constituents and high-performance liquid chromatography and spectrophotometry for organic constituents. Inorganic (macro- and microelements) and organic (plant hormones: auxins and cytokinins; polyphenols) compounds were detected in the extract. Algal extracts were tested primarily on garden cress (Lepidium sativum L.; Brassicaceae) and wheat (Triticum aestivum L.; Poaceae). The extracts enhanced chlorophyll and carotenoid content in plant shoots, as well as root thickness and above-ground biomass. The most effective method of application of the extract was by foliar feed on cress and seed maceration for wheat. Algal extracts obtained by supercritical fluid extraction (SFE) were found to be a novel natural source of compounds, stimulating growth of cultivated plants. However, field trials will be required to show that the extracts can act as plant biopesticides and growth biostimulants.  相似文献   

17.
Ascidians utilize both physical (spicules, tunic toughness) and chemical defenses (secondary metabolites, acidity) and suffer relatively little predation by generalist predators. The genus Cystodytes (Polycitoridae) is distributed widely in both tropical and temperate waters. Secondary metabolite composition, calcareous spicules and tunic acidity (pH < 1) may act as redundant defense mechanisms against predation in this genus. To assess the relative importance of chemical and physical defenses against predation in ascidians, we studied purple and blue morphs of Cystodytes from the western Mediterranean (formerly assigned to Cystodytes dellechiajei, but recently shown to belong to two different species), and a purple morph from Guam (USA), identified as Cystodytes violatinctus. Crude extracts, spicules, ascididemin (the major alkaloid of the blue morph) and acidity were used in feeding trials to evaluate chemical and physical defense mechanisms in Cystodytes spp. We performed feeding experiments in the field with a guild of generalist fish (mostly damselfish), and in the laboratory with a sea urchin and a puffer fish. Our results showed that all crude extracts and ascididemin significantly deterred fish predation, but not sea urchin predation. However, neither acidity alone nor spicules at natural concentrations deterred feeding. These results and other studies on sponges and gorgonians suggest that secondary metabolites are the primary means of defense against fish predators. Spicules and tunic acidity may perform other ecological roles and/or target certain specialist predators.  相似文献   

18.
Threats to coral reefs may be manifested through an increase in macroalgae. Across the globe, phase-shifts from coral to macroalgal dominance have been reported from the Caribbean, Indian and Pacific Oceans. While the Great Barrier Reef (GBR) is in relatively good condition, inshore reefs may exhibit over 50% macroalgal cover. However, our understanding of the processes preventing the macroalgal expansion remains uncertain. Using a remote video bioassay approach, this study quantified herbivory in three bays along the leeward margin of Orpheus Island. Despite significant with-in bay variation in herbivory there was no detectable statistical difference in the rates of herbivory among bays. Furthermore, of the 45 herbivore species recorded from the island, only three played a significant role in bioassay removal, Siganus canaliculatus, Siganus javus and Kyphosus vaigiensis, with only one species predominating in each bay. Reefs of the GBR may therefore be more vulnerable than previously thought, with the removal of macroalgae depending on just a few species, which exhibit considerable spatial variability in their feeding behaviour.  相似文献   

19.
Phlorotannins are metabolites found only in the Phaeophyceae (brown algae) and have a variety of metabolic roles, including both primary (e.g. cell wall construction) and secondary (e.g. herbivore defence and UV protection). This study aimed to establish the level of variation of phlorotannins in two species of dominant Antarctic macroalgae (Desmarestia anceps and D. menziesii). Thirteen samples were taken from specific locations throughout the thallus of multiple individuals at two depths at three locations near Anvers Island, Antarctica. Overall average concentrations were 0.117±0.003 g g–1dwt in D. anceps and 0.052±0.002 g g–1dwt in D. menziesii. Concentrations varied greatly at the 13 sampling locations in each individual, but not in any consistent manner. Significant variation occurred between locations in both species and between depths in D. anceps.  相似文献   

20.
The sea stars Granaster nutrix and Neosmilaster georgianus are conspicuous members of benthic communities along the Antarctic Peninsula. An analysis of the proximate composition of somatic body components of nonreproductive adults indicates the nutrient storage organs (pyloric caeca) are rich in both protein (60.7 and 60.6% mean dry wt, respectively) and lipid (25.4 and 29.8% mean dry wt, respectively). Body-wall tissues, while containing small inconspicuous skeletal ossicles, are also comprised of significant levels of organic matter (33.5 and 55.7% mean dry wt, respectively), attributable primarily to protein. Both the pyloric caeca and body-wall tissues are relatively rich in energy (mean energy levels=24.8 and 26.5 kJ g−1 dry wt; 8.4 and 14.1 kJ g−1 dry wt, respectively). Despite the availability of these nutrients and energy neither sea star is preyed upon by the sympatric omnivorous sea star Odontaster validus, a common predator of other Antarctic sea stars. Laboratory feeding bioassays indicate that O. validus rejects live intact individuals and body-wall tissues of both sea star species while readily consuming dried krill. Alginate food pellets containing a krill powder and tissue level concentrations of organic methanol extracts of body-wall tissues were also rejected by O. validus. Moreover, the copious mucus released from the body wall of N. georgianus was deterrent in O. validus food pellet bioassays. Thus, both sea stars evidently possess defensive secondary metabolites that defend against predation and are likely to play a role in mediating materials and energy transfer in the Antarctic benthos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号