首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Modern controlled environment facilities (CEFs) enable the simulation of dynamic microclimates in controlled ecological experiments through their technical ability to precisely control multiple environmental parameters. However, few CEF studies exploit the technical possibilities of their facilities, as climate change treatments are frequently applied by static manipulation of an inadequate number of climate change drivers, ignoring intra‐annual variability and covariation of multiple meteorological variables. We present a method for generating regionalized climate series in high temporal resolution that was developed to force the TUMmesa Model EcoSystem Analyzer with dynamic climate simulations. The climate series represent annual cycles for a reference period (1987–2016) and the climate change scenarios RCP2.6 and RCP8.5 (2071–2100) regionalized for a climate station situated in a forested region of the German Spessart mountains. Based on the EURO‐CORDEX and ReKliEs‐DE model ensembles, typical annual courses of daily resolved climatologies for the reference period and the RCP scenarios were calculated from multimodel means of temperature (ta), relative humidity (rh), global radiation (Rg), air pressure (P), and ground‐level ozone and complemented by CO2. To account for intra‐annual variation and the covariability of multiple climate variables, daily values were substituted by hourly resolved data resampled from the historical record. The resulting present climate Test Reference Year (TRY) well represented a possible annual cycle within the reference period, and expected shifts in future mean values (e.g., higher ta) were reproduced within the RCP TRYs. The TRYs were executed in eight climate chambers of the TUMmesa facility and—accounting for the technical boundaries of the facility—reproduced with high precision. Especially, as an alternative to CEF simulations that reproduce mere day/night cycles and static manipulations of climate change drivers, the method presented here proved well suited for simulating regionalized and highly dynamic annual cycles for ecological CEF studies.  相似文献   

2.
Microbial activity is the driving force of the carbon cycle, including the digestion of biomass in the soil, oceans, and oil deposits. This natural diversity of microbial carbon sources poses challenges for humans. Contamination monitoring can be difficult in oil tanks and similar settings. To assess microbial activity in such industrial settings, off‐gas analysis can be employed by considering growth and non‐growth‐associated metabolic activity. In this work, we describe the monitoring of CO2 as a method for measuring microbial activity. We revealed that the CO2 signal corresponds to classical growth curves, exemplified by Pseudomonas fluorescens, Yarrowia lipolytica, and Penicillium chrysogenum. Deviations of the CO2 signal from the growth curves occurred when the yield of biomass on the substrate changed (i.e., the non‐growth‐associated metabolic activities). We monitored CO2 to track the onset of microbial contamination in an oil tank. This experimental setup was applied to determine the susceptibility of heating oil and biodiesel to microbial contamination long before the formation of problematic biofilms. In summary, the measurement of CO2 production by bacteria, yeasts, and molds allowed the permanent monitoring of microbial activity under oil storage conditions without invasive sampling.  相似文献   

3.
4.
Increasing atmospheric CO2 levels are driving changes in the seawater carbonate system, resulting in higher pCO2 and reduced pH (ocean acidification). Many studies on marine organisms have focused on short-term physiological responses to increased pCO2, and few on slow-growing polar organisms with a relative low adaptation potential. In order to recognize the consequences of climate change in biological systems, acclimation and adaptation to new environments are crucial to address. In this study, physiological responses to long-term acclimation (194 days, approx. 60 asexual generations) of three pCO2 levels (280, 390 and 960 µatm) were investigated in the psychrophilic sea ice diatom Nitzschia lecointei. After 147 days, a small reduction in growth was detected at 960 µatm pCO2. Previous short-term experiments have failed to detect altered growth in N. lecointei at high pCO2, which illustrates the importance of experimental duration in studies of climate change. In addition, carbon metabolism was significantly affected by the long-term treatments, resulting in higher cellular release of dissolved organic carbon (DOC). In turn, the release of labile organic carbon stimulated bacterial productivity in this system. We conclude that long-term acclimation to ocean acidification is important for N. lecointei and that carbon overconsumption and DOC exudation may increase in a high-CO2 world.  相似文献   

5.
The diamondback moth, Plutella xylostella, is an important agricultural pest that severely damages cruciferous vegetables. Although previously considered a threat only to Brassica species, P. xylostella has been observed to feed on noncruciferous vegetables. Here, we established a population of P. xylostella on the pea Pisum sativum (PxP population). We compared this PxP population''s performance on the pea host plant to a population (PxR) reared on the original host plant radish (Raphanus sativus) for several generations using an age‐stage, two‐sex life table and analyzed the correlations between different fitness parameters. In the 1st generation of the PxP population, survival rate of immature stage was 17%, while the survival rate of PxR was 68%; the duration of the 4th larval instar (5.30 d) and mortality (25%) of this generation were significantly longer (2.8 d) and higher (1%) than that of PxR, respectively (both p < .001). Upon long‐term acclimation, the PxP fitness improved significantly, especially that the survival rate of immature stages increased to approximately 60% in the 15th, 30th, and 45th generations. However, PxP feeding on pea exhibited poorer fitness with longer larval developmental time, shorter total life span, lighter pupa, and lower fecundity in different generations compared with PxP feeding on radish. PxP feeding on pea also showed a significantly lower intrinsic rate of increase (r), net reproduction rate (R 0), finite increase rate (λ), and longer mean generation time (T) than PxP feeding on radish in all generations tested. Significant positive correlations were observed between pupal weight and female fecundity in pea‐fed populations, and between female longevity and female fecundity in pea‐fed and radish‐fed populations. Our findings suggest that P. xylostella adaptation to pea does not improve overall fitness compared with the original host radish, making pea a marginal host for P. xylostella.  相似文献   

6.
Marine phytoplankton can evolve rapidly when confronted with aspects of climate change because of their large population sizes and fast generation times. Despite this, the importance of environment fluctuations, a key feature of climate change, has received little attention—selection experiments with marine phytoplankton are usually carried out in stable environments and use single or few representatives of a species, genus or functional group. Here we investigate whether and by how much environmental fluctuations contribute to changes in ecologically important phytoplankton traits such as C:N ratios and cell size, and test the variability of changes in these traits within the globally distributed species Ostreococcus. We have evolved 16 physiologically distinct lineages of Ostreococcus at stable high CO2 (1031±87 μatm CO2, SH) and fluctuating high CO2 (1012±244 μatm CO2, FH) for 400 generations. We find that although both fluctuation and high CO2 drive evolution, FH-evolved lineages are smaller, have reduced C:N ratios and respond more strongly to further increases in CO2 than do SH-evolved lineages. This indicates that environmental fluctuations are an important factor to consider when predicting how the characteristics of future phytoplankton populations will have an impact on biogeochemical cycles and higher trophic levels in marine food webs.  相似文献   

7.
《Global Change Biology》2018,24(6):2513-2529
Cover crops provide ecosystem services such as storing atmospheric carbon in soils after incorporation of their residues. Cover crops also influence soil water balance, which can be an issue in temperate climates with dry summers as for example in southern France and Europe. As a consequence, it is necessary to understand cover crops' long‐term influence on greenhouse gases (GHG) and water balances to assess their potential to mitigate climate change in arable cropping systems. We used the previously calibrated and validated soil–crop model STICS to simulate scenarios of cover crop introduction to assess their influence on rainfed and irrigated cropping systems and crop rotations distributed among five contrasted sites in southern France from 2007 to 2052. Our results showed that cover crops can improve mean direct GHG balance by 315 kg CO2e ha−1 year−1 in the long term compared to that of bare soil. This was due mainly to an increase in carbon storage in the soil despite a slight increase in N2O emissions which can be compensated by adapting fertilization. Cover crops also influence the water balance by reducing mean annual drainage by 20 mm/year but increasing mean annual evapotranspiration by 20 mm/year compared to those of bare soil. Using cover crops to improve the GHG balance may help to mitigate climate change by decreasing CO2e emitted in cropping systems which can represent a decrease from 4.5% to 9% of annual GHG emissions of the French agriculture and forestry sector. However, if not well managed, they also could create water management issues in watersheds with shallow groundwater. Relationships between cover crop biomass and its influence on several variables such as drainage, carbon sequestration, and GHG emissions could be used to extend our results to other conditions to assess the cover crops' influence in a wider range of areas.  相似文献   

8.
We employed life cycle assessment to evaluate the use of hydrochars, prospective soil conditioners produced from biowaste using hydrothermal carbonization, as an approach to improving agriculture while using carbon present in the biowaste. We considered six different crops (barley, wheat, sugar beet, fava bean, onion, and lucerne) and two different countries (Spain and Germany), and used three different indicators of climate change: global warming potential (GWP), global temperature change potential (GTP), and climate tipping potential (CTP). We found that although climate change benefits (GWP) from just sequestration and temporary storage of carbon are sufficient to outweigh impacts stemming from hydrochar production and transportation to the field, even greater benefits stem from replacing climate‐inefficient biowaste management treatment options, like composting in Spain. By contrast, hydrochar addition to soil is not a good approach to improving agriculture in countries where incineration with energy recovery is the dominant treatment option for biowaste, like in Germany. Relatively small, but statistically significant differences in impact scores (ISs) were found between crops. Although these conclusions remained the same in our study, potential benefits from replacing composting were smaller in the GTP approach, which due to its long‐term perspective gives less weight to short‐lived greenhouse gases (GHGs) like methane. Using CTP as indicator, we also found that there is a risk of contributing to crossing of a short‐term climatic target, the tipping point corresponding to an atmospheric GHG concentration of 450 ppm CO2 equivalents, unless hydrochar stability in the soil is optimized. Our results highlight the need for considering complementary perspectives that different climate change indicators offer, and overall provide a foundation for assessing climate change mitigation potential of hydrochars used in agriculture.  相似文献   

9.
Acute exposure to warming temperatures increases minimum energetic requirements in ectotherms. However, over and within multiple generations, increased temperatures may cause plastic and evolved changes that modify the temperature sensitivity of energy demand and alter individual behaviors. Here, we aimed to test whether populations recently exposed to geothermally elevated temperatures express an altered temperature sensitivity of metabolism and behavior. We expected that long‐term exposure to warming would moderate metabolic rate, reducing the temperature sensitivity of metabolism, with concomitant reductions in boldness and activity. We compared the temperature sensitivity of metabolic rate (acclimation at 20 vs. 30°C) and allometric slopes of routine, standard, and maximum metabolic rates, in addition to boldness and activity behaviors, across eight recently divergent populations of a widespread fish species (Gambusia affinis). Our data reveal that warm‐source populations express a reduced temperature sensitivity of metabolism, with relatively high metabolic rates at cool acclimation temperatures and relatively low metabolic rates at warm acclimation temperatures compared to ambient‐source populations. Allometric scaling of metabolism did not differ with thermal history. Across individuals from all populations combined, higher metabolic rates were associated with higher activity rates at 20°C and bolder behavior at 30°C. However, warm‐source populations displayed relatively bolder behavior at both acclimation temperatures compared to ambient‐source populations, despite their relatively low metabolic rates at warm acclimation temperatures. Overall, our data suggest that in response to warming, multigenerational exposure (e.g., plasticity, adaptation) may not result in trait change directed along a simple “pace‐of‐life syndrome” axis, instead causing relative decreases in metabolism and increases in boldness. Ultimately, our data suggest that multigenerational warming may produce a novel combination of physiological and behavioral traits, with consequences for animal performance in a warming world.  相似文献   

10.
This study evaluates the impacts of projected climate change on irrigation requirements and yields of six crops (winter wheat, winter barley, rapeseed, grain maize, potato, and sugar beet) in Europe. Furthermore, the uncertainty deriving from consideration of irrigation, CO2 effects on crop growth and transpiration, and different climate change scenarios in climate change impact assessments is quantified. Net irrigation requirement (NIR) and yields of the six crops were simulated for a baseline (1982–2006) and three SRES scenarios (B1, B2 and A1B, 2040–2064) under rainfed and irrigated conditions, using a process‐based crop model, SIMPLACE . We found that projected climate change decreased NIR of the three winter crops in northern Europe (up to 81 mm), but increased NIR of all the six crops in the Mediterranean regions (up to 182 mm yr?1). Climate change increased yields of the three winter crops and sugar beet in middle and northern regions (up to 36%), but decreased their yields in Mediterranean countries (up to 81%). Consideration of CO2 effects can alter the direction of change in NIR for irrigated crops in the south and of yields for C3 crops in central and northern Europe. Constraining the model to rainfed conditions for spring crops led to a negative bias in simulating climate change impacts on yields (up to 44%), which was proportional to the irrigation ratio of the simulation unit. Impacts on NIR and yields were generally consistent across the three SRES scenarios for the majority of regions in Europe. We conclude that due to the magnitude of irrigation and CO2 effects, they should both be considered in the simulation of climate change impacts on crop production and water availability, particularly for crops and regions with a high proportion of irrigated crop area.  相似文献   

11.
Premise of the studyAs global climate change alters drought regimes, rapid evolution of traits that facilitate adaptation to drought can rescue populations in decline. The evolution of phenological advancement can allow plant populations to escape drought, but evolutionary responses in phenology can vary across a species'' range due to differences in drought intensity and standing genetic variation.Methods Mimulus cardinalis, a perennial herb spanning a broad climatic gradient, recently experienced a period of record drought. Here, we used a resurrection study comparing flowering time and stem height at first flower of pre‐drought ancestors and post‐drought descendants from northern‐edge, central, and southern‐edge populations in a common environment to examine the evolution of drought escape across the latitudinal range.Key resultsContrary to the hypothesis of the evolution of advanced phenology in response to recent drought, flowering time did not advance between ancestors and descendants in any population, though storage condition and maternal effects could have impacted these results. Stem height was positively correlated with flowering time, such that plants that flowered earlier were shorter at first flower. This correlation could constrain the evolution of earlier flowering time if selection favors flowering early at a large size.ConclusionsThese findings suggest that rapid evolution of phenology will not rescue these populations from recent climate change. Future work is needed to examine the potential for the evolution of alternative drought strategies and phenotypic plasticity to buffer M. cardinalis populations from changing climate.  相似文献   

12.
For community ecologists, “neutral or not?” is a fundamental question, and thus, rejecting neutrality is an important first step before investigating the deterministic processes underlying community dynamics. Hubbell''s neutral model is an important contribution to the exploration of community dynamics, both technically and philosophically. However, the neutrality tests for this model are limited by a lack of statistical power, partly because the zero‐sum assumption of the model is unrealistic. In this study, we developed a neutrality test for local communities that implements non‐zero‐sum community dynamics and determines the number of new species (N sp) between observations. For the non‐zero‐sum neutrality test, the model distributed the expected N sp, as calculated by extensive simulations, which allowed us to investigate the neutrality of the observed community by comparing the observed N sp with distributions of the expected N sp derived from the simulations. For this comparison, we developed a new “non‐zero‐sum N sp test,” which we validated by running multiple neutral simulations using different parameter settings. We found that the non‐zero‐sum N sp test rejected neutrality at a near‐significance level, which justified the validity of our approach. For an empirical test, the non‐zero‐sum N sp test was applied to real tropical tree communities in Panama and Malaysia. The non‐zero‐sum N sp test rejected neutrality in both communities when the observation interval was long and N sp was large. Hence, the non‐zero‐sum N sp test is an effective way to examine neutrality and has reasonable statistical power to reject the neutral model, especially when the observed N sp is large. This unique and simple approach is statistically powerful, even though it only employs two temporal sequences of community data. Thus, this test can be easily applied to existing datasets. In addition, application of the test will provide significant benefits for detecting changing biodiversity under climate change and anthropogenic disturbance.  相似文献   

13.
Climate change has a significant impact on the growth and distribution of vegetation worldwide. Hydrangea macrophylla is widely distributed and considered a model species for studying the distribution and responses of shrub plants under climate change. These results can inform decision‐making regarding shrub plant protection, management, and introduction of germplasm resources, and are of great importance for formulating ecological countermeasures to climate change in the future. We used the maximum entropy model to predict the change, scope expansion/reduction, centroid movement, and dominant climate factors that restrict the growth and distribution of H. macrophylla in China under current and future climate change scenarios. It was found that both precipitation and temperature affect the distribution of suitable habitat for H. macrophylla. Akaike information criterion (AICc) was used to select the feature combination (FC) and the regularization multiplier (RM). After the establishment of the optimal model (FC = QP, RM = 0.5), the complexity and over‐fitting degree of the model were low (delta AICc = 0, omission rate = 0.026, difference between training and testing area under the curve values = 0.0009), indicating that it had high accuracy in predicting the potential geographical distribution of H. macrophylla (area under the curve = 0.979). Overall, from the current period to future, the potential suitable habitat of this species in China expanded to the north. The greenhouse effect caused by an increase in CO2 emissions would not only increase the area of high‐suitability habitat in Central China, but also expand the area of total suitable habitat in the north. Under the maximum greenhouse gas emission scenario (RCP8.5), the migration distance of the centroid was the longest (e.g., By 2070s, the centroids of total and highly suitable areas have shifted 186.15 km and 89.84 km, respectively).  相似文献   

14.
Climate change will profoundly alter the physiology and ecology of plants, insect herbivores, and their natural enemies, resulting in strong effects on multitrophic interactions. Yet, manipulative studies that investigate the direct combined impacts of changes in CO2, temperature, and precipitation on the third trophic level remain rare. Here, we assessed how exposure to elevated CO2, increased temperature, and decreased precipitation directly affect the performance and predation success of species from four major groups of herbivore natural enemies: an entomopathogenic nematode, a wolf spider, a ladybug, and a parasitoid wasp. A four‐day exposure to future climatic conditions (RCP 8.5), entailing a 28% decrease in precipitation, a 3.4°C raise in temperature, and a 400 ppm increase in CO2 levels, slightly reduced the survival of entomopathogenic nematodes, but had no effect on the survival of other species. Predation success was not negatively affected in any of the tested species, but it was even increased for wolf spiders and entomopathogenic nematodes. Factorial manipulation of climate variables revealed a positive effect of reduced soil moisture on nematode infectivity, but not of increased temperature or elevated CO2. These results suggest that natural enemies of herbivores may be well adapted to short‐term changes in climatic conditions. These findings provide mechanistic insights that will inform future efforts to disentangle the complex interplay of biotic and abiotic factors that drive climate‐dependent changes in multitrophic interaction networks.  相似文献   

15.
Looming water scarcity and climate change pose big challenges for China's food security. Previous studies have focus on the impacts of climate change either on agriculture or on water resources. Few studies have linked water and agriculture together in the context of climate change, and demonstrated how climate change will affect the amount of water used to produce per unit of crop, or virtual water content (VWC). We used a GIS-based Environmental Policy Integrated Climate (GEPIC) model to analyze the current spatial distribution of VWC of various crops in China and the impacts of climate change on VWC in different future scenarios. The results show that C4 crops (e.g. irrigated maize with a VWC of 0.73 m3 kg 1 in baseline) generally have a lower VWC than C3 crops (e.g. irrigated wheat with a VWC of 1.1 m3 kg 1 in baseline), and the VWC of C4 crops responds less sensitively to the CO2 concentration change in future climate scenarios. Three general change trends exist for future VWC of crops: continuous decline (for soybean and rice without considering CO2 concentration changes) and continuous increase (for rice with considering CO2 concentration changes) and first-decline-then-increase (other crop-scenario combinations). The trends reflect the responses of different crops to changes in precipitation, temperature as well as CO2 concentration. From south to north along the latitude, there is a high-low-high distribution trend of the aggregated VWC of the crops. Precipitation and temperature changes combined can lead to negative effects on crop yield and higher VWC particularly in the far future e.g. the 2090s, but when CO2 concentration change is taken into consideration, it is likely that crop yield will increase and crop VWC will decrease for the whole China. Integrated effects of precipitation, temperature and CO2 concentration changes will benefit agricultural productivity and crop water productivity through all the future periods till the end of the century. Hence, climate change is likely to benefit food security and help alleviate water scarcity in China.  相似文献   

16.
Global climate change is causing increased climate extremes threatening biodiversity and altering ecosystems. Climate is comprised of many variables including air temperature, barometric pressure, solar radiation, wind, relative humidity, and precipitation that interact with each other. As movement connects various aspects of an animal''s life, understanding how climate influences movement at a fine‐temporal scale will be critical to the long‐term conservation of species impacted by climate change. The sedentary nature of non‐migratory species could increase some species risk of extirpation caused by climate change. We used Northern Bobwhite (Colinus virginianus; hereafter bobwhite) as a model to better understand the relationship between climate and the movement ecology of a non‐migratory species at a fine‐temporal scale. We collected movement data on bobwhite from across western Oklahoma during 2019–2020 and paired these data with meteorological data. We analyzed movement in three different ways (probability of movement, hourly distance moved, and sinuosity) using two calculated movement metrics: hourly movement (displacement between two consecutive fixes an hour apart) and sinuosity (a form of tortuosity that determines the amount of curvature of a random search path). We used generalized linear‐mixed models to analyze probability of movement and hourly distance moved, and used linear‐mixed models to analyze sinuosity. The interaction between air temperature and solar radiation affected probability of movement and hourly distance moved. Bobwhite movement increased as air temperature increased beyond 10°C during low solar radiation. During medium and high solar radiation, bobwhite moved farther as air temperature increased until 25–30°C when hourly distance moved plateaued. Bobwhite sinuosity increased as solar radiation increased. Our results show that specific climate variables alter the fine‐scale movement of a non‐migratory species. Understanding the link between climate and movement is important to determining how climate change may impact a species’ space use and fitness now and in the future.  相似文献   

17.
High‐mountain areas such as the Tibeto‐Himalayan region (THR) host cold‐adapted biota expected to be sensitive to anthropogenic climate change. Meconopsis is a representative endangered genus confined to alpine meadow or subnival habitats in the THR. We used climate‐niche factor analysis to study the vulnerability of ten Meconopsis species to climate change, comparing current climate (representative of 1960–1990) to future climate scenarios (2070: average 2061–2080). For these ten Meconopsis species, we then identified potential future climate refugia and determined optimal routes for each species to disperse to the proposed refugia. Our results indicate that for the ten Meconopsis species, the regions with low vulnerability to climate change in the THR are the central Qinghai‐Tibet Plateau, the Hengduan Mountains (HDM), the eastern Himalayas, and the West Qinling Mountain (WQL), and can be considered potential future climate refugia. Under future climate change, we found for the ten Meconopsis species potential dispersal routes to three of the four identified refugia: the HDM, the eastern Himalayas, and the WQL. Our results suggest that past refugia on the THR will also be the future climate refugia for the ten Meconopsis species, and these species may potentially persist in multiple future climate refugia, likely reducing risks from climate change. Furthermore, climate change may affect the threat ranking of Red Listed Species for Meconopsis species, as Least Concern species were estimated to become more vulnerable to climate change than the only Near Threatened species.  相似文献   

18.
气候变化对作物矿质元素利用率影响研究进展   总被引:1,自引:0,他引:1  
作物矿质元素利用率对气候变化的响应是目前全球变化研究中既重要、又复杂,且认知最少的科学领域。这个科学问题的研究关系到解密或预测陆地植物及农作物矿质胁迫对全球气候变化响应的机理,为将来农业投入提供理论依据,是应对气候变化的当务之急。目前只有少数研究,通过模拟试验,探索性地开展了CO_2浓度或温度升高的环境条件下,矿质元素在土壤-植物系统迁移、分布和储存特征的研究。从相关的文献报道来看,CO_2浓度升高环境条件下,小麦和水稻作物籽粒中大量和痕量元素的富集水平一般呈下降趋势。但温度升高情况下,作物各器官对对矿质元素的吸收情况则更为复杂。正由于气候因素与植物矿质元素利用率之间关系的复杂性,在气候变化背景下,解密作物矿质胁迫对全球气候变化响应的科学问题,尚需改进试验方法、手段,从土壤性质、作物生态生理,以及农业生态系统中矿质元素在土壤-作物系统中迁移转化的过程,全面考察作物矿质元素利用率对气候变化的响应机理。  相似文献   

19.
Global climate change and the increasing human population require crop varieties with higher yield and draught resistance. But meeting both goals is not an easy task for breeders and plant science.

The human population is increasing and so does the demand on food production. The Food and Agriculture Organization of the United Nations (FAO) predicts that in order to meet the global food demands by 2050, the production of staple cereal crops must be doubled at least (FAO, 2017), which means that the current rate of yield improvement needs to increase by at least 40%. Crop breeders are expected to cope with this challenge and come up with novel high‐yield varieties, but the prospects of even maintaining the current rate of yield improvement in light of climate change are unclear. To meet the growing demand for food and increase the yield of staple crops, we need a better understanding of how plants adapt to environmental factors that limit their productivity in terms of turning sunlight and CO2 into tissues and seeds.
To meet the growing demand for food and increase the yield of staple crops, we need a better understanding of how plants adapt to environmental factors that limit their productivity…
Although nature provides many examples of how plants adapt to harsh environments, these are rarely suitable for use in an agronomic environment, mainly owing to the economics: Any stress‐tolerance variety must also be profitable for the farmer. If a stress response mechanism enables the plant to survive but reduces yield, it will not be economical and, therefore, not be used by farmers. Thus, understanding the key parameters limiting crop yield—plant‒environment interactions, in particular—will help us to cope with the food security challenges presented by changing environmental conditions. In particular, this knowledge helps to inform breeding programmes to more efficiently create and screen for crop varieties to meet the challenges of population growth and climate change. This is not an easy task.Plants are autotrophic; sessile organisms and their productivity completely depends on the temperature, light levels, and the availability of inorganic substances in the soil. Terrestrial plants are further, and primarily, limited by the availability of water, as the absorption of CO2 from the air requires water: A few hundred water molecules are lost for each CO2 molecule absorbed. Therefore, understanding the mechanisms that maintain water balance is critical for optimizing crop growth and fruit production in any given environment.  相似文献   

20.
The parental environment can alter offspring phenotypes via the transfer of non‐genetic information. Parental effects may be viewed as an extension of (within‐generation) phenotypic plasticity. Smaller size, poorer physical condition, and skewed sex ratios are common responses of organisms to global warming, yet whether parental effects alleviate, exacerbate, or have no impact on these responses has not been widely tested. Further, the relative non‐genetic influence of mothers and fathers and ontogenetic timing of parental exposure to warming on offspring phenotypes is poorly understood. Here, we tested how maternal, paternal, and biparental exposure of a coral reef fish (Acanthochromis polyacanthus) to elevated temperature (+1.5°C) at different ontogenetic stages (development vs reproduction) influences offspring length, weight, condition, and sex. Fish were reared across two generations in present‐day and projected ocean warming in a full factorial design. As expected, offspring of parents exposed to present‐day control temperature that were reared in warmer water were shorter than their siblings reared in control temperature; however, within‐generation plasticity allowed maintenance of weight, resulting in a higher body condition. Parental exposure to warming, irrespective of ontogenetic timing and sex, resulted in decreased weight and condition in all offspring rearing temperatures. By contrast, offspring sex ratios were not strongly influenced by their rearing temperature or that of their parents. Together, our results reveal that phenotypic plasticity may help coral reef fishes maintain performance in a warm ocean within a generation, but could exacerbate the negative effects of warming between generations, regardless of when mothers and fathers are exposed to warming. Alternatively, the multigenerational impact on offspring weight and condition may be a necessary cost to adapt metabolism to increasing temperatures. This research highlights the importance of examining phenotypic plasticity within and between generations across a range of traits to accurately predict how organisms will respond to climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号