首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The population dynamics of invasive plants are influenced by positive and negative associations formed with members of the fauna present in the introduced range. For example, mutualistic associations formed with pollinators or seed dispersers may facilitate invasion, but reduced fitness from attack by native herbivores can also suppress it. Since population expansion depends on effective seed dispersal, interactions with seed dispersers and predators in a plant species introduced range may be of particular importance. We explored the relative contributions of potential seed dispersers (ants) and vertebrate predators (rodents and birds) to seed removal of two diplochorous (i.e., wind- and ant-dispersed), invasive thistles, Cirsium arvense and Carduus nutans, in Colorado, USA. We also conducted behavior trials to explore the potential of different ant species to disperse seeds, and we quantified which potential ant dispersers were prevalent at our study locations. Both ants and vertebrate predators removed significant amounts of C. arvense and C. nutans seed, with the relative proportion of seed removed by each guild varying by location. The behavior trials revealed clear seed preferences among three ant species as well as differences in the foragers’ abilities to move seeds. In addition, two ant species that acted as potential dispersal agents were dominant at the study locations. Since local conditions in part determined whether dispersers or predators removed more seed, it is possible that some thistle populations benefit from a net dispersal effect, while others suffer proportionally more predation. Additionally, because the effectiveness of potential ant dispersers is taxon-specific, changes in ant community composition could affect the seed-dispersal dynamics of these thistles. Until now, most studies describing dispersal dynamics in C. arvense and C. nutans have focused on primary dispersal by wind or pre-dispersal seed predation by insects. Our findings suggest that animal-mediated dispersal and post-dispersal seed predation deserve further consideration.  相似文献   

2.
Ants have been traditionally considered either as predators or dispersers of seeds, but not both. That is, ant dispersal is restricted to myrmecochorous seeds, while almost all seeds removed by seed‐harvesting ants are eaten. However, harvesting ants might be simultaneously antagonistic and mutualistic towards seeds. This study analyzes the predation–dispersal relationship between seed‐harvesting ants and seeds of Lobularia maritima, a non‐myrmechorous perennial herb, in order to disentangle the dual role of ants as dispersers and predators of L. maritima seeds. The results obtained confirm the role of harvesting ants as both predators and dispersers of the non‐myrmechorous seeds of L. maritima. The removal activity of Messor bouvieri on L. maritima seeds is very important, particularly in autumn, which is the flowering and fruiting peak of this plant. It can be estimated that harvesting ants collect more than 85% of seeds, and almost 70% of them are effectively lost to predation. However, these granivorous ants also have drawbacks as seed dispersers. There is a relatively small percent of seeds collected by ants that escape predation, either because they are dropped on the way to the nest (16.4% of seeds harvested), or because they are mistakenly rejected on the refuse pile (0.9%). Abiotic dispersal of L. maritima seeds in the absence of ants occurs over very short distances from the plant stem. As seeds dispersed by ants reach a considerably greater distance than that obtained by gravity, this might represent a real advantage for the species, because it reduces intraspecific adult competition for seedlings, which directly influences seedling survivorship. These results challenge the generalization that seed removal by ants generally leads to successful seed dispersal if done by legitimate seed dispersers, or seed loss if done by seed consumers that eat them, and confirm that harvesting ants might have a dual role as both predators and dispersers of nonmyrmechorous seeds.  相似文献   

3.
The predator‐avoidance hypothesis states that once released from the parent plant, myrmecochorous seeds are rapidly taken by ants to their nests, where they are protected from predators. Previous studies conducted to test this hypothesis have frequently neglected two major aspects necessary for its verification: 1) the influence of processes acting after the seed release and 2) the spatial evenness of such processes. Thus, large‐scale variations in the mechanisms acting beyond seed release, and possibly influencing seed escape from predators, remain poorly documented. Here, we present the results of a post‐dispersal seed‐removal experiment on the myrmecochorous herb Helleborus foetidus, aimed at verifing the predator‐avoidance hypothesis by considering two key post‐release aspects of seed fate: seed destination (dispersed or nondispersed) and seed burial (buried or not buried). Experiments were performed in four different regions in the Iberian Peninsula. After three days of exposure of seeds to the main predator (fieldmice Apodemus sylvaticus), ca 30% of the seeds were removed. Seed destination affected the proportion of seeds escaping predation, but the sign, magnitude and statistical significance of the effect varied among the geographical regions. In the southern region (Cazorla), seeds dispersed in ant nests or intermediate destinations suffered scarcely any predation, but seeds under reproductive‐age plants experienced losses ca 50%. Conversely, in the northern region (Caurel), seeds in nests suffered significantly greater losses than seeds under plants or intermediate destinations, suggesting that nests were especially unsafe destinations. Seed burial had a strong impact on seed escape from predators, and its effect was highly consistent among geographical regions. In view of the consistency of its effect at different spatial scales, seed burial was a more general mechanism for predation avoidance than seed relocation to ant nests, which was habitat‐ and/or ant‐species‐dependent. Our results thus only partially support the predator‐avoidance hypothesis for the evolution of myrmecochory.  相似文献   

4.
Erythronium japonicum (Liliaceae) inhabits deciduous mesic forests of Hokkaido, northern Japan. Myrmecochory of this species was investigated, especially the dispersal frequency, the effect of seed predators and the seed fall pattern. In the quadrat census using marked seeds of E. japonicum, the ant Myrmica kotokui frequently transported the seeds. However, the frequency of seed removal was low and most seeds were dispersed as little as 1 m or less. The spatial distribution of E. japonicum individuals was nearly random and most seedlings were established 5–20 cm away from the fertile plants, indicating that even this small scale of seed dispersal contributes to avoiding crowding of seedlings. Some arthropods, e.g. springtails, spiders and ticks, hindered seed dispersal by devouring elaiosomes and seeds. Although ground beetle species also damaged seeds and elaiosomes, a few of them exhibited seed removal behaviour. E. japonicum dropped their seeds not all at once but bit by bit, taking 3–6 days to drop all seeds. This seed-fall pattern was effective in raising the frequency of seed removal by ants and reducing seed predation by some arthropods.  相似文献   

5.
Philip E. Hulme 《Oecologia》1997,111(1):91-98
The post-dispersal fate of seeds and fruit (diaspores) of three vertebrate-dispersed trees, Crataegus monogyna, Prunus mahaleb and Taxus baccata, was studied in the Andalusian highlands, south-eastern Spain. Exclosures were used to quantify separately the impact of vertebrates and invertebrates on seed removal in relation to diaspore density and microhabitat. The three plant species showed marked differences in the percentage of diaspores removed, ranging from only 5% for C. monogyna to 87% for T. baccata. Although chaffinches (Fringilla coelebs) fed on diaspores, rodents (Apodemus sylvaticus) were the main vertebrate removers of seed and fruit. Two species of ant (Cataglyphis velox and Aphaenogaster iberica) were the only invertebrates observed to remove diaspores. However, the impact of ants was strongly seasonal and they only removed P. mahaleb fruit to any significant extent. While removal of seed by rodents was equivalent to predation, ants were responsible for secondary dispersal. However, their role was limited to infrequent, small-scale redistribution of fruit in the vicinity of parent trees. Rodents and ants differed in their use of different microhabitats. Rodents foraged mostly beneath trees and low shrubs and avoided open areas while the reverse was true of ants. Thus, patterns of post-dispersal seed removal will be contigent on the relative abundance and distribution of ants and rodents. Studies which neglect to quantify separately the impacts of these two guilds of seed removers may fail to elucidate the mechanisms underlying patterns of post-dispersal seed removal. The coincidence of both increased seed deposition by the main avian dispersers (Turdus spp.) and increased seed predation with increasing vegetation height suggested that selection pressures other than post-dispersal seed predation shape the spatial pattern of seed dispersal. Rather than providing a means of escaping post-dispersal seed predators, dispersal appears to direct seeds to microhabitats most suitable for seedling survival. Nevertheless, the reliance of most vertebrate-dispersed trees on regeneration by seed and the absence of persistent soil seed banks imply that post-dispersal seed predators may exert a strong influence on the demography of the plants whose seeds they consume. Even where microsites are limited, the coincidence of the most suitable microhabitats for seedling establishment with those where seed predation is highest provide a means by which selective seed predators can influence community composition. Received: 19 August 1996 / Accepted: 25 January 1997  相似文献   

6.
Myrmecochory (seed dispersal by ants) is a common seed dispersal strategy of plants in fire‐prone sclerophyll vegetation of Australia, yet there is little understanding of how fire history may influence this seed dispersal mutualism. We investigated the initial fate of seeds of two myrmecochorous plant species, the small‐seeded Pultenaea daphnoides J.C. Wendl. and the large‐seeded Acacia pycnantha Benth., in replicated burnt (3.25 years since fire) and unburnt (53 years since fire) forest plots in the Mount Lofty Ranges, South Australia. Specifically we measured (i) seed removal rates; (ii) the frequency of three ant–seed interactions (seed removal, elaiosome robbery and seed ignoring); (iii) the relative contribution of different ant species to ant–seed interactions; and (iv) the abundance of common interacting ant species. Rates of seed removal from depots and the proportion of seeds removed were higher in recently burnt vegetation and the magnitude of these effects was greater for the smaller‐seeded P. daphnoides. The overall proportion of elaiosomes robbed was higher in unburnt vegetation; however, the decrease in elaiosome robbery in burnt vegetation was greater for P. daphnoides than for A. pycnantha. Ants ignored seeds more frequently in burnt vegetation and at similar rates for both seed species. In total, 20 ant species were observed interacting with seeds; however, three common ant species accounted for 66.3% of ant–seed interactions. Monomorium sydneyense almost exclusively robbed elaiosomes, Rhytidoponera metallica typically removed seeds and Anonychomyrma nr. nitidiceps showed a mix of the three behaviours towards seeds. Differences in the proportions of seeds removed, elaiosomes robbed and seeds ignored appeared to be largely driven by an increase in abundance of A. nr. nitidiceps and a decrease in abundance of M. sydneyense in burnt vegetation. Understanding how these fire‐driven changes in the initial fate of myrmecochorous seeds affect plant fitness requires further investigation.  相似文献   

7.
I examined the spatial patterns of seed dispersal and postdispersal seed predation of the semidesert perennial Cryptantha flava (A. Nels.) Payson (Boraginaceae) at two sites in north-eastern Utah. Most flowers mature only one seed (nutlet) which is permanently retained within a pubescent calyx. The calyx and enclosed seed abscise from the plant as a unit. These dispersal units are effectively dispersed by wind as evidenced by the highly directional seed shadows and the long distances some of them travel (up to 31.3 m). Potential seed predators at the sites include five species of rodents, of which Peromyscus maniculatus is the most common, and two species of ants, Pogonomyrmex occidentalis and an undescribed species of Conomyrma. There were no strong spatial patterns of postdispersal seed predation. More seeds were removed from dishes placed at the bases of fruiting adults than from dishes ≥ 1.0 m away in one of three experiments. More seeds were removed from under shrubs or clumps of grass than in the open in one of four experiments. After 3–4 days, there was a consistent tendency for more seed removal from high density (75 seeds per .25 m2) quadrats than from low density (75 seeds per 6.25 m2) quadrats, but the difference was not always significant. There was a similar nonsignificant difference between high- and low-density quadrats exposed for 21 days. The pubescent calyx greatly discourages seed predation by ants, and probably also reduces predation by rodents. In addition, by increasing the surface area of the dispersal unit, the calyx may facilitate dispersal by wind.  相似文献   

8.
Many species of Dipterocarpaceae and other plant families reproduce synchronously at irregular, multi‐year intervals in Southeast Asian forests. These community‐wide general flowering events are thought to facilitate seed survival through satiation of generalist seed predators. During a general flowering event, closely related Shorea species (Dipterocarpaceae) stagger their flowering times by several weeks, which may minimize cross pollination and interspecific competition for pollinators. Generalist, pre‐dispersal seed predators might also track flowering hosts and influence predator satiation. We addressed the question of whether pre‐dispersal seed predation differed between early and late flowering Shorea species by monitoring flowering, fruiting and seed predation intensity over two general flowering events at the Pasoh Research Forest, Malaysia. Pre‐dispersal insect seed predators killed up to 63 percent of developing seeds, with Nanophyes shoreae, a weevil that feeds on immature seeds being the most important predator for all Shorea species. This weevil caused significantly greater pre‐dispersal seed predation in earlier flowering species. Long larval development time precluded oviposition by adults that emerged from the earliest flowering Shorea on the final flowering Shorea. In contrast, larvae of weevils that feed on mature seeds before seed dispersal (Alcidodes spp.), appeared in seeds of all Shorea species almost simultaneously. We conclude that general flowering events have the potential to satiate post‐dispersal seed predators and pre‐dispersal seed predators of mature fruit, but are less effective at satiating pre‐dispersal predators of immature fruit attacking early flowering species.  相似文献   

9.
Myrmecochory commonly complements the advantages of ballistic dispersal in diplochorous species. We studied the role of the elaiosome in two populations of the two diplochorous Mediterranean spurges Euphorbia boetica and E. nicaeensis, which share an efficient ballistic dispersal mechanism followed by secondary removal by ants. They differ in elaiosome persistence, as most E. boetica seeds lose the elaiosome during explosive dispersal. Self-assessed dietary preferences with seeds with and without elaiosomes of each species showed differences in behaviour among and within ant species. In general, the absence of elaiosome entailed a decrease in the number of disperser ant species interacting with the seeds, whereas the number of predatory ants remains invariable. However, in one population of E. nicaeensis, experimental elimination of the elaiosome did not affect seed removal by mutualistic ants. On the other hand, analysis of refuse piles of the granivorous Messor marocanus and M. bouvieri suggests that they act as seed predators in E. boetica, whereas unintentional dispersal can be important in E. nicaeensis. We suggest, therefore, that the presence of the elaiosome in the seeds of the studied spurges increases the interaction with disperser ant species, but the possible dispersal advantage is not apparent and is spatially variable.  相似文献   

10.
Pre‐ and post‐dispersal Helleborus foetidus (Ranunculaceae) seed predation by mice Apodemus sylvaticus as well as post‐dispersal seed removal by ants was studied, during two years, in six plant populations within three geographical regions (Caurel, Cazorla and Mágina) of the Iberian Peninsula. An observational approach revealed strong interregional differences in seed predation by mice during the pre‐dispersal phase, with high and similar rates of predation in Cazorla and Mágina and much lower rates in Caurel. There were also significant inter‐annual variations on pre‐dispersal seed predation by mice, while the existing habitat‐related differences (of lower magnitude) were not consistent across regions. Field experiments based on seed‐offering exclosures, showed that, despite some interregional variation, post‐dispersal seed removal by ants was consistently high through all spatial and temporal scales considered, with most seeds being removed within 48 h. Conversely, post‐dispersal seed predation by mice was highly variable among regions, being very high in Cazorla and minimal or absent in Caurel and Mágina. Interestingly, in Cazorla, in presence of mice, the number of seeds removed was rather independent of the presence/absence of ants, while under mice exclusion, it was determined by the presence/absence of ants. Conversely, in Caurel, the number of seeds removed by each remover agent (ants or mice) was independent of the presence/absence of the other agent. Thus, though uniquely in Cazorla, mice limited the number of seeds available to ants and, therefore, in this region could potentially have interfered on the development of seed traits that enable ants to efficiently harvest them. Our results support the notion that geographical variation over the Iberian Peninsula of mice seed predation may have promoted a mosaic of well‐matching and mismatching situations between H. foetidus diaspore traits and the characteristics of ant communities, which is consistent with some recent theories on the geographical structure of interactions.  相似文献   

11.
Abstract Ants generally disperse seeds while feeding on fruits or structures attached to the seed. Seed dispersal as a by‐product of seed predation (dyszoochory) was recognized in specialized harvester ants, but not in ants predating seeds opportunistically. Leafcutting ants are the main herbivores in much of the Neotropics, and they have been reported to remove fruits and seeds, but their role as seed predators and dispersers has not been acknowledged. Prosopis flexuosa D.C. (Fabaceae, Mimosoideae) is the most abundant tree species in the central Monte Desert, Argentina, and it is likely to depend on secondary animal dispersal. Mammalian frugivores are usually considered its main dispersers, but the opportunity for dispersal may be small since the removal of fruits and seeds by seed predators is very intense. The objective of this study was to identify which ant species interact with P. flexuosa fruits and to evaluate their relative importance as seed predators and dispersers. In a field experiment, whole and segmented pods were offered and several ant species exploiting the fruits were identified. Additionally, all pod segments remaining around nests of the three ant species able to remove them (the leafcutters Acromyrmex lobicornis Emery and Acromyrmex striatus Roger, and Pheidole bergi Mayr) were examined during and after the P. flexuosa primary dispersal season. Up to 753 pod segments and 90 sound seeds were found accumulated in a circle of 1 m radius over nests of A. lobicornis, and even more in an examined trail. Acromyrmex striatus left a smaller proportion of sound seeds and P. bergi left a smaller number of pod segments. All tendencies were similar during shorter known periods of accumulation. Leafcutting ants are acting as important seed predators, and ‘by mistake’ may be dispersing a key non‐myrmecochorous tree. This is an unexplored path in the seed dispersal cycle of P. flexuosa that challenges the tendency to predict interactions based on classifications made with other goals.  相似文献   

12.
Fremontodendron decumbens grows in a single county in central California, USA. Prior research showed that its elaiosome-bearing seeds are dispersed by the harvester ant Messor andrei. I tested several hypotheses regarding the positive role of ant-mediated dispersal to F. decumbens: (1) Does ant-mediated seed dispersal facilitate seed escape from rodent predation?; (2) Does ant processing of seeds stimulate germination?; (3) Are ant middens more suitable microsites for seed or seedling survival in unburned chaparral areas?; and (4) Do survival benefits of dispersal occur post-fire in the form of differences in seedling survival probabilities and, if so, why? Results of tests of each hypothesis were: (1) similar percentages of seeds placed on ant middens and under F. decumbens shrub canopies were destroyed by rodents, but seeds from which elaiosomes had been removed were more likely to escape rodent predation; (2) seeds processed by ants did not germinate more readily than seeds removed directly from shrub branches; (3) seedling predation was a major cause of mortality in unburned chaparral on both ant middens and under shrubs, and overall seedling survival did not differ between the two microsites; (4) post-burn seedling survival was significantly greater for seedlings dispersed away from F. decumbens shrub canopies, because dispersed seedlings were both less likely to be killed by predators and more likely to be growing in a gap created by the fire-caused death of an established shrub. I concluded that the major ecological benefit to F. decumbens of ant-mediated seed dispersal was elevated post-fire seedling survival resulting from enhanced escape by dispersed seedlings from both predation and competition.  相似文献   

13.
Carney SE  Byerley MB  Holway DA 《Oecologia》2003,135(4):576-582
We investigated the indirect effects of Argentine ant (Linepithema humile) invasions on patterns of seed dispersal and predation in the myrmecochorous tree poppy Dendromecon rigida in coastal San Diego County, California. Significantly more seeds were removed from ant-accessible seed stations at sites numerically dominated by a common harvester ant (Pogonomyrmex subnitidus), a native disperser of these seeds and a species sensitive to displacement by L. humile, than from those stations at sites where L. humile was in the majority. Predation of seeds was high, but variable, across sites, suggesting that reduced dispersal could result in increased seed predation in some habitats. Removal of elaiosomes did not affect the frequency with which predators removed seeds, but ants removed significantly more seeds with elaiosomes than without. In behavior trials, only P. subnitidus was able to carry seeds of Dendromecon rigida effectively. L. humile and a small native ant species, Dorymyrmex insanus, while displaying interest in the diaspores, were seldom able to carry whole seeds and, when they did, only carried them a few centimeters. Displacement of native harvester ants by L. humile appears to decrease the dispersal of Dendromecon rigida seeds and may be increasing loss of seeds due to predation.  相似文献   

14.
Ant behaviour and seed morphology: a missing link of myrmecochory   总被引:2,自引:2,他引:0  
Gómez C  Espadaler X  Bas JM 《Oecologia》2005,146(2):244-246
Seed dispersal by ants (myrmecochory) is mediated by the presence of a lipid-rich appendage (elaiosome) on the seed that induces a variety of ants to collect the diaspores. When seeds mature or fall onto the ground, these ant species transport them to their nest. After eating the elaiosome, the seed is discarded in nest galleries or outside, in the midden or farther away, where seeds can potentially germinate. The final location of seeds with their elaiosomes removed was evaluated to assess the importance of possible handles (structures that ants can grasp to carry) in transporting ants during re-dispersal experiments of seeds from nests of six species of ants. The results indicate that seeds remained within the nest because the ants were not able to transport them out of the nest. As a consequence of the elaiosome being removed, small ant species could not take Euphorbia characias seeds out of their nests. Only large ant species could remove E. characias seeds from their nests. Attaching an artificial handle to E. characias seeds allowed small ant species to redistribute the seeds from their nests. On the other hand, Rhamnus alaternus seeds that have a natural handle after the elaiosome removal were removed from the nests by both groups of ant species. If a seed has an element that acts as a handle, it will eventually get taken out of the nest. The ants’ size and their mandible gap can determine the outcome of the interaction (i.e. the pattern of the final seed shadow) and as a consequence, could influence the events that take place after the dispersal process.  相似文献   

15.
Auld  Tony D.  Denham  A.J. 《Plant Ecology》1999,144(2):201-213
The role seed predators play in influencing the dynamics of plant populations has been little studied in Australia. The interaction of ant dispersal and seed predation on the soil seedbank in six shrubby species of Grevillea from the Sydney region of southeastern Australia was examined in selective exclusion experiments, seed array trials and placement of single seeds on the ground.Two distinct seed types in Grevillea were examined and different seed dispersal and post-dispersal seed predation patterns were associated with each: (a) seeds lacking an elaiosome were not attractive to ants and annual seed losses of between 82 and 95% were found in vegetation unburnt for greater than 8 years. Native rodents, Rattus fuscipes, and macropods, Wallabia bicolor, were responsible for these seed losses; (b) seeds with an elaiosome were rapidly handled by ants. Two functional types of ants were recognised. Most encounters were by ants that were small (Local) relative to seed size and these ants simply removed the elaiosome in situ or moved seeds only small distances (<20 cm). Some 0–24% of ant/seed encounters were by large (Removalist) ant species that were capable of moving seeds back to nests. In addition, Rattus fuscipes and Wallabia bicolor consumed at least 32–68% of seeds of Grevillea species with an elaiosome.Ants may reduce the overall levels of seed predation where seeds moved by Removalist ant species escape predation and are deposited in safe sites, hence allowing more seeds to reach the persistent soil seedbank. Mammals do not consume all seeds when ants are excluded, allowing for the potential for some seed escape from predation after seeds are discarded by Local ant species.  相似文献   

16.
Erodium paularense is a threatened plant species that is subject to seed predation by the granivorous ant Messor capitatus. In this paper we assessed the intensity and pattern of ant seed predation and looked for possible adaptive strategies at the seed and plant levels to cope with this predation. Seed predation was estimated in 1997 and 1998 at the population level by comparing total seed production and ant consumption, assessed by counting seed hulls in refuse piles. According to this method, ant seed predation ranged between 18% and 28%. A more detailed and direct assessment conducted in 1997 raised this estimate to 43%. In this assessment spatial and temporal patterns of seed predation by ants were studied by mapping all nest entrances in the studied area and marking the mature fruits of 109 reproductive plants with a specific colour code throughout the seed dispersal period. Intact fruit coats were later recovered from the refuse piles, and their mother plants and time of dispersal were identified. Seeds dispersed at the end of the dispersal period had a greater probability of escaping from ant seed predation. Similarly, in plants with late dispersal a greater percentage of seeds escaped from ant predation. Optimum dispersal time coincided with the maximum activity of granivorous ants because, at this time, ants focused their harvest on other plant species of the community. It was also observed that within-individual seed dispersal asynchrony minimised seed predation. From a conservation perspective, results show that the granivorous ant–plant interaction cannot be assessed in isolation and that the intensity of its effects basically depends on the seed dispersal pattern of the other members of the plant community. Furthermore, this threat must be assessed by considering the overall situation of the target population. Thus, in E. paularense, the strong limitation of safe-sites for seedling establishment reduces the importance of seed predation.  相似文献   

17.
  • To determine seed removal influence on seed populations, we need to quantify pre‐ and post‐dispersal seed removal. Several studies have quantified seed removal in temperate American deserts, but few studies have been performed in tropical deserts. These studies have only quantified pre‐ or post‐dispersal seed removal, thus underestimating the influence of seed removal. We evaluated pre‐ and post‐dispersal seed removal in the columnar cactus Stenocereus stellatus in a Mexican tropical desert.
  • We performed selective exclosure experiments to estimate percentage of seeds removed by ants, birds and rodents during the pre‐ and post‐dispersal phases. We also conducted field samplings to estimate abundance of the most common seed removers.
  • Birds (10–28%) removed a higher percentage of seeds than ants (2%) and rodents (1–4%) during pre‐dispersal seed removal. Melanerpes hypopolius was probably the main bird removing seeds from fruits. Ants (62–64%) removed a higher percentage of seeds than birds (34–38%) and rodents (16–30%) during post‐dispersal seed removal. Pogonomyrmex barbatus was probably the main ant removing seeds from soil.
  • Birds and ants are the main pre‐ and post‐dispersal seed removers in S. stellatus, respectively. Further studies in other S. stellatus populations and plants with different life forms and fruit types will contribute to evaluate seed removal in tropical American deserts.
  相似文献   

18.
It has been suggested that one of the selective advantages of ant dispersal is the burial of seeds in ant nests where predators such as small rodents cannot find them. The elaiosomes of Corydalis aurea (Fumariaceae) are extremely attractive to ants, which assiduously gather the seeds and take them to nests. However, seed production commonly exceeds the gathering capacity of ants so that seeds accumulate beneath the parent plants. In spite of this, no signs of rodent predation are evident. Experiments with a major seed predator, the deer mouse Peromyscus maniculatus, show that when given the choice of seeds with and without elaiosomes, the mice consume significantly more seeds without elaiosomes. This remains true whether or not the intact seeds bear fresh, moist elaiosomes or dry, withered ones. Our experiments strongly suggest that the elaiosome has a dual function, the attraction of the ant seed dispersers and the repulsion of seed predators.  相似文献   

19.
The reproductive ecology of Jeffersonia diphylla (L.) Pers. (Berberidaceae) was investigated by studying its breeding system, ovule production, seed set, seed dispersal by ants and seed predation by rodents. This species flowers early in the spring and is facultatively autogamous. In a typical year fruit and seed set is high (90%), however, freezing temperatures from late spring frosts in 1983 and 1985 resulted in low fruit set (7% and 20%, respectively), and reduced seed set in those flowers that produced fruit. No differences in seed set between selfed and outcrossed flowers were observed over a two-yr period (1983–84). Ovule number per capsule increased with plant size as measured by leaf number. Seed set and seed wt were unaffected by leaf number unless leaves were removed after flowering was initiated. Jeffersonia diphylla is myrmecochorous. Ants removed seeds faster when seeds were placed in areas where J. diphylla plants were absent, suggesting that dispersal within J. diphylla populations is ant limited. Moreover, fresh (1 day old) seeds were removed by ants faster than 3 day old seeds. Seed predation by rodents prior to dehiscence from capsules is heavy in large populations (85–90%), and apparently negligible in small populations. Predation of seeds that are released from capsules is heavy (approx. 66%), particularly at night. Overall, seed predators consume about 96% of the seed crop in well established populations, but probably much less in small young populations. Hence, seedling recruitment is likely to be higher in small populations, whereas ramet production from rhizomes is the primary mode of propagation in large ones. The evolution of autogamy, early flowering, and myrmecochory are discussed in light of the results of this study.  相似文献   

20.
Viola is one of the diplochorous plant genera that disperse their seeds in two ways, ballistic and ant dispersal. We compared the seed dispersal of two major Viola species of northern Japan, V. selkirkii and V. verecunda. The mean weight of seed was less in V. verecunda (0.42 ± SD 0.03 mg) than in V. selkirkii (0.61 ± 0.12 mg). The elaiosome of V. selkirkii (0.02 ± 0.004 mg) was larger than in of V. verecunda (0.006 ± 0.0004 mg), whereas the lipid component of elaiosome was not remarkably different between the two species. In ballistic dispersal, the mean dispersal distance was 56.0 ± 17.5 cm in V. verecunda but only 38.3 ± 5.1 cm in V. selkirkii. In ant dispersal, the mean dispersal distance was 28.1 ± 24.9 cm in V. selkirkii and 36.1 ± 33.7 cm in V. verecunda; however, the seed removal frequency of V. selkirkii (15.5%) was much higher than that of V. verecunda (3.0%). These results suggest that V. selkirkii is more dependent on ant dispersal while V. verecunda is more dependent on ballistic dispersal. The effect of seed predation was very serious in both species. In the quadrat census, 99.0% of V. selkirkii seeds and 99.1% of V. verecunda seeds were damaged by ground beetles, spiders, ticks, and others which frequently devoured diaspores. An experiment with V. verecunda seeds demonstrated that the overdispersion of seeds on the forest floor enhanced the frequency of removal by ants and reduced seed damage by predators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号