首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Batch cultures were carried out to study the kinetic, stoichiometry, and regulation of glucose and glutamine metabolism of a murine hybridoma line. Asymmetric logistic equations (ALEs) were used to fit total and viable cell density, and nutrient and metabolite/product concentrations. Since these equations were analytically differentiable, specific rates and yield coefficients were readily calculated. Asymmetric logistic equations described satisfactorily uncontrolled batch cultures, including death phase. Specific growth rate showed a Monod-type dependence on initial glucose and glutamine concentrations. Yield coefficients of cell and lactate from glucose, and cell and ammonium from glutamine were all found to change dramatically at low residual glucose and glutamine concentrations. Under stoichiometric glucose limitation, the glucose-to-cell yield increased and glucose-to-lactate yield decreased, indicating a metabolic shift. Under stoichiometric glutamine limitation the glutamine-to-cell and glutamine-to-ammonium yields increased, but also glucose-to-cell yield increased and the glucose-to-lactate yield decreased. Monoclonal antibody production was mainly non-growth associated, independently of glucose and glutamine levels.  相似文献   

2.
Cultures of endothelial cells and cell lines of endothelial origin were maintained at confluence without medium exchange for a period of 72 h. During this time period the concentration of nutrients — amino acids and glucose — and metabolic waste products — lactate and ammonium — was determined as well as cell vitality and cell numbers. Metabolic rates were calculated and compared for the different cell lines. Surprisingly the primary cells showed significantly higher rates of glucose and glutamine consumption, respectively lactate production than the immortalized cell lines. Except for one tumorigenic cell line all cells showed a significant participation of transaminases in glutamine/ammonium metabolism. Furthermore it could be shown that in routine culture there was no depletion of nutrients or critical accumulation of ammonium or lactate over a culture period of 72 h.Abbreviations BAEC bovine aorta endothelial cells - EC vascular endothelial cells - FGF fibroblast growth factor - HUVEC vascular endothelial cells from human umbilical cord veins - IF 1:1 mixture of Iscove's MDM and Ham's F12 basal media - MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromid - NCS newborn calf serum - PBS phosphate buffered saline - TE 0.05% (w/V) trypsin, 0.02% (w/v) EDTA in PBS  相似文献   

3.
This is the first study to examine PER.C6 cell glucose/energy and glutamine metabolism with fed-batch cultures at controlled low glutamine, low glucose, and simultaneous low glucose and low glutamine levels. PER.C6(TM) cell metabolism was investigated in serum-free suspension bioreactors at two-liter scale. Control of glucose and/or glutamine concentrations had a significant effect on cellular metabolism leading to an increased efficiency of nutrient utilization, altered byproduct synthesis, while having no effect on cell growth rate. Cultivating cells at a controlled glutamine concentration of 0.25 mM reduced q(Gln) and q(NH(4)(+)) by approximately 30%, q(Ala) 85%, and q(NEAA) 50%. The fed-batch control of glutamine also reduced the overall accumulation of ammonium ion by approximately 50% by minimizing the spontaneous chemical degradation of glutamine. No major impact upon glucose/energy metabolism was observed. Cultivating cells at a glucose concentration of 0.5 mM reduced q(Glc) about 50% and eliminated lactate accumulation. Cells exhibited a fully oxidative metabolism with Y(O(2)/Glc) of approximately 6 mol/mol. However, despite no increase in q(Gln), an increased ammonium ion accumulation and Y(NH(4)(+)/Gln) were also observed. Effective control of lactate and ammonium ion accumulation by PER.C6 cells was achieved using fed-batch with simultaneously controlled glucose and glutamine. A fully oxidative glucose metabolism and a complete elimination of lactate production were obtained. The q(Gln) value was again reduced and, despite an increased q(NH(4)(+)) compared with batch culture, ammonium ion levels were typically lower than corresponding ones in batch cultures, and the accumulation of non-essential amino acids (NEAA) was reduced about 50%. In conclusion, this study shows that PER.C6 cell metabolism can be confined to a state with improved efficiencies of nutrient utilization by cultivating cells in fed-batch at millimolar controlled levels of glucose and glutamine. In addition, PER.C6 cells fall into a minority category of mammalian cell lines for which glutamine plays a minor role in energy metabolism.  相似文献   

4.
Mammalian cells have the ability to proliferate under different nutrient environments by utilizing different combinations of the nutrients, especially glucose and the amino acids. Under the conditions often used in in vitro cultivation, the cells consume glucose and amino acids in great excess of what is needed for making up biomass and products. They also produce large amounts of metabolites with lactate, ammonia, and some non-essential amino acids such as alanine as the most dominant ones. By controlling glucose and glutamine at low levels, cellular metabolism can be altered and can result in reduced glucose and glutamine consumption as well as in reduced metabolite formation. Using a fed-batch reactor to manipulate glucose at a low level (as compared to a typical batch culture), cell metabolism was altered to a state with substantially reduced lactate production. The culture was then switched to a continuous mode and allowed to reach a steady-state. At this steady-state, the concentrations of cells and antibody were substantially higher than a control culture that was initiated from a batch culture without first altering cellular metabolism. The lactate and other metabolite concentrations were also substantially reduced as compared to the control culture. This newly observed steady-state was achieved at the same dilution rate and feed medium as the control culture. The paths leading to the two steady-states, however, were different. These results demonstrate steady-state multiplicity. At this new steady-state, not only was glucose metabolism altered, but the metabolism of amino acids was altered as well. The amino acid metabolism in the new steady-state was more balanced, and the excretion of non-essential amino acids and ammonia was substantially lower. This approach of reaching a more desirable steady-state with higher concentrations of cells and product opens a new avenue for high-density- and high-productivity-cell culture.  相似文献   

5.
Alteration of mammalian cell metabolism by dynamic nutrient feeding   总被引:3,自引:0,他引:3  
Zhou W  Rehm J  Europa A  Hu WS 《Cytotechnology》1997,24(2):99-108
The metabolism of hybridoma cells was controlled to reduce metabolic formation in fed-batch cultures by dynamically feeding a salt-free nutrient concentrate. For this purpose, on-line oxygen uptake rate (OUR) measurement was used to estimate the metabolic demand of hybridoma cells and to determine the feeding rate of a concentrated solution of salt-free DMEM/F12 medium supplemented with other medium components. The ratios among glucose, glutamine and other medium components in the feeding nutrient concentrate were adjusted stoichiometrically to provide balanced nutrient conditions for cell growth. Through on-line control of the feeding rate of the nutrient concentrate, both glucose and glutamine concentrations were maintained at low levels of 0.5 and 0.2 mM respectively during the growth stage. The concentrations of the other essential amino acids were also maintained without large fluctuations. The cell metabolism was altered from that observed in batch cultures resulting in a significant reduction of lactate, ammonia and alanine production. Compared to a previously reported fed-batch culture in which only glucose was maintained at a low level and only a reduced lactate production was observed, this culture has also reduced the production of other metabolites, such as ammonium and alanine. As a result, a high viable cell concentration of more than 1.0 × 107 cells/mL was achieved and sustained over an extended period. The results demonstrate an efficient nutrient feeding strategy for controlling cell metabolism to achieve and sustain a high viable cell concentration in fed-batch mammalian cell cultures in order to enhance the productivity. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
An on-line high-pressure liquid chromatography (HPLC) system capable of measuring amino acids and carbohydrates was used to study metabolism in mammalian cell culture systems. The HPLC method utilized anion-exchange chromatography followed by integrated pulsed amperometric detection. The method is capable of measuring 19 amino acids plus glucose with a complete method time of 65 min. In actual cell cultures, the method was shown to be useful for monitoring 17 amino acids plus glucose. The two amino acids that were not accurately monitored were arginine and lysine, possibly due to their elution near the void volume of the column. The HPLC system was used to study variability in metabolism across different cell culture processes, as well as the effect of glucose and glutamine limitation on a single cell culture process. Chemometric analysis was used to draw statistically meaningful conclusions from the highly correlated, multivariate data set that resulted from these experiments. Using chemometrics, variation between processes was linked to differences in uptake rates of seven amino acids. Similarly, lactate concentration, cell density, and aspartate uptake rate were linked to glucose and glutamine limitation. The effect of nutrient limitation on glutamate, alanine, and ammonium was also considered.  相似文献   

7.
In this study the effects of ammonium and lactate on a culture of channel catfish ovary (CCO) cells were examined. We also made investigation on the influence of glutamine, since our previous research revealed that this amino acid stimulated CCO cell growth more than glucose in a concentration-dependent manner. The effect of ammonium in cell culture included the considerable decrease in cell growth rate with eventual growth arrest as well as the retardation of glucose consumption. At ammonium concentrations above 2.5 mM, the cells displayed specific morphological changes. The effect of lactate was different to that of ammonium since the cell growth rate was progressively decreasing with the increase of lactate concentration, whereas the glucose consumption rate remained almost unchanged. Besides that, it was found that lactate was steadily eliminated from the culture medium when its initial concentration was relatively high. The influence of glutamine on CCO cell propagation showed that nutrient requirements of this cell line were mainly dependent on glutamine rather than glucose. The increase in glutamine concentration led to the increase in cell growth rate and consequent ammonia accumulation while the glucose utilization and lactate production were reduced. Without glutamine in culture medium cell growth was arrested. However, the lack of glucose reversed the stimulating effect of glutamine by decreasing cell growth rate and affecting amino acid utilization.  相似文献   

8.
The present work aims at characterizing the regulatory mechanisms of metabolism and product formation of BHK cells producing a recombinant antibody/cytokine fusion protein. This work was carried out through the achievement of several steady-states in chemostat cultures, corresponding to different glucose and glutamine levels in the feed culture medium. Results obtained indicate that both glucose and glutamine consumptions show a Michaelis-Menten dependence on residual glucose and glutamine concentrations, respectively. Similar dependence was also observed for lactate and ammonia productions. K(Glc)(Glc) and K(Gln)(Gln) were estimated to be 0.4 and 0.15 mM, respectively, while q(max)(Glc) and q(max)(Gln) were estimated to be 1.8 and 0.55 nmol 10(-6)cells min(-1), respectively. At very low glucose concentrations, the glucose-to-lactate yield decreased markedly showing a metabolic shift towards lower lactate production; also, the glucose-to-cells yield was increased. At very low-glutamine concentrations, the glutamine-to-ammonia and glutamine-to-cells yields increased, showing a more efficient glutamine metabolism. Overall, amino acid consumption was increased under low glucose or glutamine concentrations. Metabolic-flux analysis confirmed the metabolic shifts by showing increases in the fluxes of the more energetically efficient pathways, at low-nutrient concentrations. No effect of glucose or glutamine concentrations on the cell-specific productivity was observed, even under metabolically shifted metabolism; therefore, it is possible to confine the cells to a more efficient metabolic state maintaining the productivity of the recombinant product of interest, and consequently, increasing final product titers by increasing cell concentration and culture length. This work is intended to be a model approach to characterize cell metabolism in an integrated way; it is highly valuable for the establishment of operating strategies in mammalian cell fermentations in which cell metabolism is to be confined to a desired state.  相似文献   

9.
Oxygen is an important nutrient that may limit the productivity of commercial cell culture reactors. The transient responses of hybridoma growth and metabolism to step changes in the oxygen supply rate have been examined for dissolved oxygen concentrations (DO) ranging from 0.1% to 10% of air saturation in continuous culture. Metabolic quotients are reported for glucose, lactate, ammonia, oxygen, glutamine, alanine and other amino acids. A majority of the estimated ATP production was due to oxidative phosphorylation under all conditions tested. Decreases in the oxygen supply rate below the value required to maintain 0.5% DO caused the viable cell concentration to decrease. Glycolysis was enhanced at the lower oxygen concentrations, and after an initial decrease, the specific glutamine consumption rate was also higher. High residual glutamine concentrations occurred below 0.5% DO. Oxidation of other amino acids and production of serine were also inhibited. The cells subsequently adapted to low oxygen concentrations. The increase in cell concentration following the return to 10% DO was preceded by increased biosynthetic activity, as evidenced by transiently reduced yields of lactate from glucose, and alanine and ammonia from glutamine.  相似文献   

10.
Glucose and glutamine metabolism in several cultured mammalian cell lines (BHK, CHO, and hybridoma cell lines) were investigated by correlating specific utilization and formation rates with specific maximum activities of regulatory enzymes involved in glycolysis and glutaminolysis. Results were compared with data from two insect cell lines and primary liver cells. Flux distribution was measured in a representative mammalian (BHK) and an insect (Spodoptera frugiperda) cell line using radioactive substrates. A high degree of similarity in many aspects of glucose and glutamine metabolism was observed among the cultured mammalian cell lines examined. Specific glucose utilization rates were always close to specific hexokinase activities, indicating that formation of glucose-6-phosphate from glucose (catalyzed by hexokinase) is the rate limiting step of glycolysis. No activity of the key enzymes connecting glycolysis with the tricarboxylic acid cycle, such as pyruvate dehydrogenase, pyruvate carboxylase, and phosphoenolpyruvate carboxykinase, could be detected. Flux distribution in BHK cells showed glycolytic rates very similar to lactate formation rates. No glucose- or pyruvate-derived carbon entered the tricarboxylic acid cycle, indicating that glucose is mainly metabolized via glycolysis and lactate formation. About 8% of utilized glucose was metabolized via the pentose phosphate shunt, while 20 to 30% of utilized glucose followed pathways other than glycolysis, the tricarboxylic acid cycle, or the pentose phosphate shunt. About 18% of utilized glutamine was oxidized, consistent with the notion that glutamine is the major energy source for mammalian cell lines. Mammalian cells cultured in serum-free low-protein medium showed higher utilization rates, flux rates, and enzyme activities than the same cells cultured in serum-supplemented medium. Insect cells oxidized glucose and pyruvate in addition to glutamine. Furthermore, insect cells produced little or no lactate and were able to channel glycolytic intermediates into the tricarboxylic acid cycle. Metabolic profiles of the type presented here for a variety of cell lines may eventually enable one to interfere with the metabolic patterns of cells relevant to biotechnology, with the hope of improving growth rate and/or productivity. © 1996 Wiley-Liss, Inc.  相似文献   

11.
The aim of this study was to understand the metabolism kinetics of Vero cells grown on microcarriers in bioreactors in serum-free medium (SFM). We sought to determine what nutrients are essential for Vero cells and how they are consumed. Contrary to glucose and to most of the amino acids, glutamine and serine were very quickly depleted in this medium and can be supposed to be responsible for cell apoptosis. Lactate and ammonium ions did not reach toxic levels for Vero cells. We payed more attention to the lactate metabolism. Usually we observed that after about 2 days lactate was consumed in serum-containing media, but its concentration plateaud in SFM. Moreover, the addition of serum in SFM provoked lactate consumption and the rate of glucose and glutamine consumption was twice as high as in the SFM not supplemented with serum. The depletion of glutamine and serine and the metabolic deviations leading to a shortage of intermediate products required for other metabolic pathways probably contribute to the lower cell yield and higher cell death rate in SFM. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
In a previous article (Yallop and Svendsen 2001), recombinant CHO and BHK cell lines, expressing the human glucagon receptor and the gastric inhibitory peptide receptor, respectively, showed reduced growth rates and altered nutrient utilisation when grown with increasing concentrations of G418. This response was associated with an increased expression of the neo r protein, while expression of the recombinant membrane receptors remained unaltered. The metabolic response was characterised in both cell lines by an increase in the specific rate of glutamine utilisation and in CHO cells by a decrease in the yield of lactate from glucose, suggesting a change in the flux of glucose through central metabolism. The aim of this study was to further elucidate these metabolic changes by determining the activity and relative expression of key enzymes involved in glucose and glutamine metabolism. For both CHO and BHK cells, there was an increase in the activity of glutaminase, glutamate dehydrogenase and glutamine synthetase, suggesting an increased flux through the glutaminolysis pathway. The activity of glucose-6-phosphate dehydrogenase and pyruvate carboxylase in CHO cells was also increased whilst lactate dehydrogenase activity remained unaltered, suggesting an increased flux to the pentose phosphate pathway and TCA cycle, respectively. The activity of these enzymes in BHK cells was unchanged. Quantitative RT-PCR showed that expression levels of glutaminase and pyruvate carboxylase were the same with and without G418, indicating that the differences in activities were likely due to post-translational modifications. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
重组CHO细胞培养过程中氨对细胞代谢的影响   总被引:6,自引:2,他引:4  
研究了重组CHO细胞批培养过程中,氨浓度对细胞的葡萄糖、谷氨酰胺及其它氨基酸代谢的影响。表明,细胞对葡萄糖和谷氨酰胺的得率系数随着氨浓度的增加而降低,起始氨浓度为566mmol/L的批培养过程与起始氨浓度为021mmol/L的批培养过程相比,细胞对葡萄糖和谷氨酰胺的得率系数分别下降了78%和74%,细胞对其它氨基酸的得率系数也分别下降了50%~70%。氨浓度的增加明显地改变了细胞的代谢途径,葡萄糖代谢更倾向于厌氧的乳酸生成。在谷氨酰胺的代谢过程中,谷氨酸经谷氨酸脱氢酶进一步生成α酮戊二酸的过程受到了氨的抑制,而氨对谷氨酸经谷氨酸转氨酶反应生成α酮戊二酸的过程有促进作用,但总体上谷氨酸进一步脱氨生成α酮戊二酸的反应受到了氨的限制。  相似文献   

14.
In mammalian cell culture technology glutamine is required for biomass synthesis and as a major energy source together with glucose. Different pathways for glutamine metabolism are possible, resulting in different energy output and ammonia release. The accumulation of ammonia in the medium can limit cell growth and product formation. Therefore, numerous ideas to reduce ammonia concentration in cultivation broths have been developed. Here we present new aspects on the energy metabolism of mammalian cells. The replacement of glutamine (2 mM) by pyruvate (10 mM) supported cell growth without adaptation for at least 19 passages without reduction in growth rate of different adherent commercial cell lines (MDCK, BHK21, CHO-K1) in serum-containing and serum-free media. The changes in metabolism of MDCK cells due to pyruvate uptake instead of glutamine were investigated in detail (on the amino acid level) for an influenza vaccine production process in large-scale microcarrier culture. In addition, metabolite profiles from variations of this new medium formulation (1-10 mM pyruvate) were compared for MDCK cell growth in roller bottles. Even at very low levels of pyruvate (1 mM) MDCK cells grew to confluency without glutamine and accumulation of ammonia. Also glucose uptake was reduced, which resulted in lower lactate production. However, pyruvate and glutamine were both metabolized when present together. Amino acid profiles from the cell growth phase for pyruvate medium showed a reduced uptake of serine, cysteine, and methionine, an increased uptake of leucine and isoleucine and a higher release of glycine compared to glutamine medium. After virus infection completely different profiles were found for essential and nonessential amino acids.  相似文献   

15.
In mammalian cell cultures, ammonia that is released into the medium as a result of glutamine metabolism and lactate that is excreted due to incomplete glucose oxidation are both known to essentially inhibit the growth of cells. For some cell lines, for example, hybridoma cells, excreted ammonia also has an effect on product formation. Although glutamine has been generally considered as the major energy source for mammalian cells, it was recently found that various adherent cell lines (MDCK, CHO-K1, and BHK21) can grow as well in glutamine-free medium, provided glutamine is substituted with pyruvate. In such a medium the level of both ammonia and lactate released was significantly reduced. In this study, metabolic flux analysis (MFA) was applied to Madin Darby Canine Kidney (MDCK) cells cultivated in glutamine-containing and glutamine-free medium. The results of the MFA allowed further investigation of the influence of glutamine substitution with pyruvate on the metabolism of MDCK cells during different growth stages of adherent cells, e.g., early exponential and late contact-inhibited phase. Pyruvate seemed to directly enter the TCA cycle, whereas most of the glucose consumed was excreted as lactate. Although the exact mechanisms are not clear so far, this resulted in a reduction of the glucose uptake necessary for cellular metabolism in glutamine-free medium. Furthermore, consumption of ATP by futile cycles seemed to be significantly reduced when substituting glutamine with pyruvate. These findings imply that glutamine-free medium favors a more efficient use of nutrients by cells. However, a number of metabolic fluxes were similar in the two cultivations considered, e.g., most of the amino acid uptake and degradation rates or fluxes through the branch of the TCA cycle converting alpha-ketoglutarate to malate, which is responsible for the mitochondrial ATP synthesis. Besides, the specific rate of cell growth was approximately the same in both cultivations. Thus, the switch from glutamine-containing to glutamine-free medium with pyruvate provided a series of benefits without dramatic changes of cellular metabolism.  相似文献   

16.
The effects of dissolved oxygen concentration (DO) on hybridoma cell physiology were examined in a continuous stirred tank bioreactor with a murine hybridoma cell line (167.4G5.3). Dissolved oxygen concentration was varied between 0% and 100% air saturation. Cell growth and viability, carbohydrate, amino acid, and energy metabolism, oxygen uptake, and antibody production rates were investigated. Cell growth was inhibited at both high and low DO. Cells could grow at 0% DO and maintain viability under a nitrogen atmosphere. Cell viability was higher at low DO. Glucose, glutamine, and oxygen consumption rates changed little at DO above 1% air saturation. However, the metabolic uptake rates changed below 1% DO, where growth became oxygen limited, and a Km value of 0.6% DO was obtained for the specific oxygen uptake rate. The metabolic rates of glucose, glutamine, lactate, and ammonia increased 2-3-fold as the DO dropped from 1% to 0%. Amino acid metabolism followed the same general pattern as that of glutamine and glucose. Alanine was the only amino acid produced. The consumption rates of amino acids changed little above 1% DO, but under anaerobic conditions the consumption rates of all amino acids increased severalfold. Cells obtained most of their metabolic energy from glutamine oxidation except under oxygen limitation, when glucose provided most of the energy. The calculated ATP production rate was only slightly influenced by DO and rose at 0% DO. Antibody concentration was highest at 35% DO, while the specific antibody production rate was insensitive to DO.  相似文献   

17.
Five types of dextran-based microcarriers (Dormacell, Pfeifer and Langen) with different concentrations of dimeric DEAE anion-exchange groups (nitrogen contents from 1.2 up to 2.9%) were tested as growth substrates for the cultivation of human umbilical vein endothelial cells (HUVECs). All microcarriers were gelatinized before use to improve cell adhesion. The one with the highest DEAE-group density was found to be most suitable for HUVEC propagation reaching final cell densities of 8×105 viable cells ml-1 (95% viability) using microcarrier concentrations of 3 g l–1. Furthermore, metabolic data of glucose/lactate and amino acid metabolism are presented in this study. The concentrations of 18 amino acids were monitored throughout cultivation. A considerable decrease of glutamine and inverse increase of glutamate was observed. Cultivation with initial glucose concentration of 16.5 mmol l–1 resulted in high glutamine consumption rates, whereas high glucose-supplemented starting culture medium (30 mmol l-1) gave considerably lowered rates, indicating altered glutamine metabolism due to different glucose feeding. The glucose consumption and lactate production rates increased 2.6 fold and 3.5 fold, respectively, due to switch over from low to high glucose supplemented cultures. The rate of glucose metabolism was found not to be directly related to cell growth, because almost identical growth rates and doubling times were obtained. Considering the remaining 16 amino acids measured, serine concentrations considerably declined and glycine as well as alanine concentrations raised strongly. Most amino acid values were found insignificantly altered during 14 days of cultivation. Spinner vessel cultures served as inoculum for up scale propagation of HUVECs in membrane stirred 2 liter bioreactors. About 5×109 HUVECs were produced, which were used for the isolation and structural characterization of glycosphingolipids, cell membrane compounds, which are suggested to be involved in e.g. selectin-carbohydrate interaction (cell-cell adhesion), carcinogenesis and atherogenesis.Abbreviations HUVECs human umbilical vein endothelial cells - PBS phosphate buffered saline  相似文献   

18.
Metabolic rewiring is an established hallmark of cancer, but the details of this rewiring at a systems level are not well characterized. Here we acquire this insight in a melanoma cell line panel by tracking metabolic flux using isotopically labeled nutrients. Metabolic profiling and flux balance analysis were used to compare normal melanocytes to melanoma cell lines in both normoxic and hypoxic conditions. All melanoma cells exhibited the Warburg phenomenon; they used more glucose and produced more lactate than melanocytes. Other changes were observed in melanoma cells that are not described by the Warburg phenomenon. Hypoxic conditions increased fermentation of glucose to lactate in both melanocytes and melanoma cells (the Pasteur effect). However, metabolism was not strictly glycolytic, as the tricarboxylic acid (TCA) cycle was functional in all melanoma lines, even under hypoxia. Furthermore, glutamine was also a key nutrient providing a substantial anaplerotic contribution to the TCA cycle. In the WM35 melanoma line glutamine was metabolized in the "reverse" (reductive) direction in the TCA cycle, particularly under hypoxia. This reverse flux allowed the melanoma cells to synthesize fatty acids from glutamine while glucose was primarily converted to lactate. Altogether, this study, which is the first comprehensive comparative analysis of metabolism in melanoma cells, provides a foundation for targeting metabolism for therapeutic benefit in melanoma.  相似文献   

19.
In-situ dc electric fields were applied to remove ammonium and lactate from suspension hybridoma cultures (ATCC-CRL-1606) which used enriched media. Nutrient concentration was increased fourfold above the normal concentration of DMEM to study enhanced protein product formation in a dc electric field. In the presence of the electric field, hybridoma growth and antibody production were increased 1.5-fold (from 3.7 x 10(6) to 9.1 x 10(6) viable cells/mL) and twofold (from 170 to 505 mg IgG/L), respectively, compared with the control. The effective removal of ammonium and lactate and increased concentrations of the various nutrients accounted for this enhancement. The enriched media caused the overflow metabolism of glucose, glutamine, and various essential amino acids. The overconsumption of glucose also produced substantial amounts of lactate, which in turn greatly increased the medium osmolarity. The increase in medium osmolarity is believed to be one of the causes of cell death in these culture systems.(c) 1995 John Wiley & Sons, Inc.  相似文献   

20.
The transient and steady-state responses of hybridoma growth and metabolism to glutamine pulse and step changes have been examined. Metabolic quotients are reported for oxygen, glucose, lactate, ammonia, glutamine, alanine, and other amino acids. The specific glutamine consumption rate increased rapidly after all glutamine additions, but the responses of the glucose and oxygen consumption rates and the cell concentration were found to depend on the intial feed glutamine concentration. The glucose consumption rate was 1.4-10.9 times that of glutamine, and serine and branched-chain amino acids were consumed in larger amounts at the higher glucose: glutamine uptake ratios. It was estimated that maintenance accounted for ca. 60% of the cellular ATP requirements at specific growth rates ranging from 0.57 to 0.68 day(-1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号