首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Tetracentron sinense of the basal eudicot family Trochodendraceae, the flower primordium, together with the much retarded floral subtending bract primordium appear to form a common primordium. The four tepals and the four stamens are initiated in four distinct alternating pairs, the first tepal pair is in transverse position. The four carpels arise in a whorl and alternate with the stamens. This developmental pattern supports the interpretation of the flower as dimerous in the perianth and androecium, but tetramerous in the gynoecium. There is a relatively long temporal gap between the initiation of the stamens and the carpels. The carpel primordia are then squeezed into the narrow gaps between the four stamens. In contrast to Trochodendron, the residual floral apex after carpel formation is inconspicuous. In their distinct developmental dimery including four tepals and four stamens, flowers of Tetracentron are reminiscent of other, related basal eudicots, such as Buxaceae and Proteaceae.  相似文献   

2.
The floral ontogeny of two species of Knema and one of Horsfieldia was examined and described using scanning electron microscopy. The perianth is trimerous with three tepals arising in succession. Pistillate flowers have a rounded floral apex with a convex top. The single carpel primordium is initiated along the margin of the bud and develops a plicate shape with an apical bilobed stigma. In staminate flowers, the floral apex is broadly hemispherical with a somewhat three‐sided shape. Several anther primordia are initiated almost simultaneously around the margin of the floral apex. In Horsfieldia, stamens extend laterally in antetepalous groups, whereas, in Knema, anthers form two whorls. The alternitepalous stamens were found to be different from the antetepalous stamens, which are pressed within a limited space. The anther primordia remain adnate to the receptacle and grow longitudinally, producing a pair of microsporangia. The central area of the floral apex persists as an undifferentiated residuum without any trace of a gynoecium. Myristicaceous anthers are basically homologous, although the number of anthers, pollen sacs and shape of the androecium are variable. The evolution of the androecium is discussed in the family, with opposing possibilities for reductions and increases in anther number in Myristicaceae. © 2010 The Linnean Society of London, Botanical Journal of the Linnean Society, 2010, 164 , 42–52.  相似文献   

3.
Arrom L  Munné-Bosch S 《Planta》2012,236(2):343-354
Much effort has been focussed on better understanding the key signals that modulate floral senescence. Although ethylene is one of the most important regulators of floral senescence in several species, Lilium flowers show low sensitivity to ethylene; thus their senescence may be regulated by other hormones. In this study we have examined how (1) endogenous levels of hormones in various floral tissues (outer and inner tepals, androecium and gynoecium) vary throughout flower development, (2) endogenous levels of hormones in such tissues change in cut versus intact flowers at anthesis, and (3) spray applications of abscisic acid and pyrabactin alter flower longevity. Results show that floral tissues behave differently in their hormonal changes during flower development. Cytokinin and auxin levels mostly increased in tepals prior to anthesis and decreased later during senescence. In contrast, levels of abscisic acid increased during senescence, but only in outer tepals and the gynoecium, and during the latest stages. In addition, cut flowers at anthesis differed from intact flowers in the levels of abscisic acid and auxins in outer tepals, salicylic acid in inner tepals, cytokinins, gibberellins and jasmonic acid in the androecium, and abscisic acid and salicylic acid in the gynoecium, thus showing a clear differential response between floral tissues. Furthermore, spray applications of abscisic acid and pyrabactin in combination accelerated the latest stages of tepal senescence, yet only when flower senescence was delayed with Promalin. It is concluded that (1) floral tissues differentially respond in their endogenous variations of hormones during flower development, (2) cut flowers have drastic changes in the hormonal balance not only of outer and inner tepals but also of androecium and gynoecium, and (3) abscisic acid may accelerate the progression of tepal senescence in Lilium.  相似文献   

4.
利用扫描电镜(SEM)观察了吉祥草(Reineckia carnea)(铃兰科)的花部器官发生发育过程。吉祥草花被片、雄蕊的发生方式是由近轴端向远轴端发生的逆单向型(reversed unidirection),花发育后期花被片合生形成花被筒,花丝与之贴生。伴随花被片、雄蕊发生,三枚心皮也由近轴向远轴方向相继发生,随后彼此合生发育。花序顶部的花易发生花器官数目变异。结合早期花原基形态以及花器官数目变异情况分析,吉祥草的花被片与雄蕊可能是由共同原基分化而成。从花部器官发生式样和花被筒形成时间两方面比较吉祥草属、白穗花属和铃兰属的特征发现,三属中,铃兰属处于相对进化的位置,而白穗花属比吉祥草属更为原始。  相似文献   

5.
 The South African Restionaceae make up a highly diverse group of genera displaying several reductive trends in the configuration of the flower, especially in the gynoecium. In this paper the floral ontogeny of fourteen species representing nine of the 11 genera of the Restio clade is studied with the SEM. Although flowers are basically simple, the variability in both mature and developmental stages is striking. Differences between species are the result of changes in growth rate, coupled with differential pressures of organs. Trends in the elaboration of bracts, perianth, androecium and gynoecium are compared. Together with data that have been presented elsewhere about the other clade of African Restionaceae, viz. the Willdenowia-clade, a scheme with potential developmental pathways is proposed and the most evident routes are selected based on ontogenetic evidence. Nine possible reductions are presented arising through three main routes. Received August 27, 2001 Accepted October 26, 2001  相似文献   

6.
Floral development was investigated in Ruta graveolens and Psilopeganum sinense, representing two genera in the tribe Ruteae. Special attention was paid to the sequence of initiation of organ whorls in the androecium and gynoecium. The antepetalous stamens arise at the same level as the antesepalous stamens in both species. The carpels are antepetalous in both taxa, indicating the androecium in both genera is obdiplostemonous. Compared with floral ontogeny of the ancestral genus Phellodendron (Toddalioideae), the obdiplostemonous androecium is a derived condition. The floral apex in P. sinense is quadrangular before initiation of the two carpels. Additionally, there are four dorsal and four ventral traces in the ovary. Integrated morphological and anatomical evidence indicates that the bicarpellate gynoecium in Psilopeganum most likely evolved from a tetracarpellate ancestor. Considering the similarities in morphological, geographical and chromosomal features, the ancestor may be Ruta‐like. Further molecular phylogenetic and genetic studies are needed to verify this assumption.  相似文献   

7.

Background and Aims

Annonaceae are one of the largest families of Magnoliales. This study investigates the comparative floral development of 15 species to understand the basis for evolutionary changes in the perianth, androecium and carpels and to provide additional characters for phylogenetic investigation.

Methods

Floral ontogeny of 15 species from 12 genera is examined and described using scanning electron microscopy.

Key Results

Initiation of the three perianth whorls is either helical or unidirectional. Merism is mostly trimerous, occasionally tetramerous and the members of the inner perianth whorl may be missing or are in double position. The androecium and the gynoecium were found to be variable in organ numbers (from highly polymerous to a fixed number, six in the androecium and one or two in the gynoecium). Initiation of the androecium starts invariably with three pairs of stamen primordia along the sides of the hexagonal floral apex. Although inner staminodes were not observed, they were reported in other genera and other families of Magnoliales, except Magnoliaceae and Myristicaceae. Initiation of further organs is centripetal. Androecia with relatively low stamen numbers have a whorled phyllotaxis throughout, while phyllotaxis becomes irregular with higher stamen numbers. The limits between stamens and carpels are unstable and carpels continue the sequence of stamens with a similar variability.

Conclusions

It was found that merism of flowers is often variable in some species with fluctuations between trimery and tetramery. Doubling of inner perianth parts is caused by (unequal) splitting of primordia, contrary to the androecium, and is independent of changes of merism. Derived features, such as a variable merism, absence of the inner perianth and inner staminodes, fixed numbers of stamen and carpels, and capitate or elongate styles are distributed in different clades and evolved independently. The evolution of the androecium is discussed in the context of basal angiosperms: paired outer stamens are the consequence of the transition between the larger perianth parts and much smaller stamens, and not the result of splitting. An increase in stamen number is correlated with their smaller size at initiation, while limits between stamens and carpels are unclear with easy transitions of one organ type into another in some genera, or the complete replacement of carpels by stamens in unisexual flowers.  相似文献   

8.
Zippelia begoniaefolia Bl., a monotypic species having characteristics of both Piperaceae and Saururaceae, has racemes of about 20 small flowers lacking a perianth, each with six free stamens and a four-carpellate syncarpous gynoecium. The inflorescence apical meristem initiates bracts acropetally and helically, each of which subtends a later initiated single floral apex; there are no “common” primordia. The six stamens are initiated as two lateral pairs and two solitary successive primordia, the latter two opposite in median sagittal positions. Four carpel primordia are initiated as a lateral pair and two successively initiated in the median sagittal plane. This order of organ inception is unique among Piperaceae and Saururaceae. Intercalary growth below carpellary attachment raises them up on a common cylindrical base that becomes the syncarpous ovary, covered with unique glochidiate hairs and containing a single basal ovule. The free portions of the carpels become the reflexed papillate stigmas. The floral vascular system has a single bundle at base that branches to supply the bract and flower traces. The floral vasculature is similar but not identical to that of Saururus (Saururaceae) and some Piper species (Piperaceae). Plesiomorphic character states of Zippelia that are shared with Saururus include hypogyny, free stamens, cleft stigma, and a similar floral groundplan. Synapomorphies, derived shared character states that unite Zippelia with Piperaceae, include syncarpy, solitary ovule, basal placentation, fused ventral carpellary bundles, and a double vascular cylinder in the stem. Cladistic analysis aligns Zippelia with Piperaceae because they share apomorphies, and because Zippelia shares only plesiomorphies with Saururus.  相似文献   

9.
Initiation of floral primordia begins in Agalinis densiflora with production of two lateral adaxial calyx lobe primordia followed by a midadaxial primordium, and then primordia of two abaxial calyx lobes. Initiation of three abaxial corolla lobe primordia is succeeded by that of two stamen pairs and then by primordia of two adaxial corolla lobes. The primordium of the abaxial carpel appears before the adaxial one. Except for the calyx, initiation of primordia proceeds unidirectionally from the abaxial to the adaxial side of the floral apex. Zygomorphy in the calyx, corolla, and androecium is evident during initiation of primordia and is accentuated during organogenesis. The calyx undergoes comparatively rapid organogenesis, but the inner three floral series undergo a protracted period of organogenesis. The perianth series reach maturation prior to meiosis in the anthers. Maturation of the androecium and gynoecium are postmeiotic events.  相似文献   

10.
The flowers of Limnocharis flava (L.) Buch. are borne in an indeterminate umbel and each consists of three sepals, three yellow petals, and about 18 carpels surrounded by numerous stamens and staminodia. The androecium is centrifugally developed, and the last-formed members are staminodial; it is supplied by branching vascular systems. Carpels arise almost simultaneously, and a prominent residual floral apex remains. The carpels are partially conduplicately closed and are also primitive in possessing laminar placentation and in lacking differentiation of a style. The gynoecium is essentially apocarpous, but there are slight fusions of adjacent carpels near their ventral margins where they are attached to the receptacle. It is suggested that the Limnocharis flower is the most primitive in the family.  相似文献   

11.
Early floral development of four species from the genera Anneslea, Cleyera, Eurya, and Ternstroemia of Pentaphylacaceae, was studied comparatively using scanning electron microscopy. Together with earlier studies in Euryodendron and Adinandra, 6 out of 12 genera of Pentaphylacaceae have now been studied for their floral development. The usually pentamerous flowers of these taxa share a number of developmental features: the perianth organs appear in a clockwise or anticlockwise spiral sequence on the floral apex with relatively long plastochrons between successive organs, resulting in conspicuous size differences among perianth organs during early developmental stages. The early development of the usually polystemonous androecium is characterized by an indistinct ring-primordium and a mostly concave floral apex; individual stamens appear subsequently on this ring-primordium. However, further development of the androecium differs conspicuously among taxa and we describe three main developmental patterns for the family including features such as centripetal stamen whorls and stamens fascicles. Unusual features of floral development and organization of Pentaphylacaceae include: (1) a pronounced spiral sequence of organ appearance during early floral development in perianth and androecium; (2) the occurrence of paired organs in the corolla and the androecium of some species; (3) sepals and petals that are positioned opposite from each other in the genera Anneslea and Ternstroemia; and (4) a concave floral apex at the beginning of androecium development. From a systematic point of view our results clearly support a close relationship between Anneslea and Ternstroemia and also suggest a closer relationship among Adinandra, Cleyera, and Euryodendron on the one hand and between Eurya and Visnea on the other. Further, our developmental study stresses the differences between Pentaphylacaceae and Theaceae, which earlier where thought to form a natural group of plants. While high stamen numbers are achieved via centripetal pattern of stamen formation in the former family, stamens are formed centrifugally in the latter.  相似文献   

12.
Myristica fragrans and M. malabarica are dioecious. Both staminate and pistillate plants produce axillary flowering structures. Each pistillate flower is solitary, borne terminally on a short, second-order shoot that bears a pair of ephemeral bracts. Each staminate inflorescence similarly produces a terminal flower and, usually, a third-order, racemose axis in the axil of each pair of bracts. Each flower on these indeterminate axes is in the axil of a bract. On the abaxial side immediately below the perianth, each flower has a bracteole, which is produced by the floral apex. Three tepal primordia are initiated on the margins of the floral apex in an acyclic pattern. Subsequent intercalary growth produces a perianth tube. Alternate with the tepals, three anther primordia arise on the margins of a broadened floral apex in an acyclic or helical pattern. Usually two more anther primordia arise adjacent to each of the first three primordia, producing a total of nine primordia. At this stage the floral apex begins to lose its meristematic appearance, but the residuum persists. Intercalary growth below the floral apex produces a columnar receptacle. The anther primordia remain adnate to the receptacle and grow longitudinally as the receptacle elongates. Each primordium develops into an anther with two pairs of septate, elongate microsporangia. In pistillate flowers, a carpel primordium encircles the floral apex eventually producing an ascidiate carpel with a cleft on the oblique apex and upper adaxial wall. The floral ontogeny supports the morphological interpretation of myristicaceous flowers as trimerous with either four-sporangiate anthers or monocarpellate pistils.  相似文献   

13.
The floral development of five species ofTalinum is studied. Each flower is surrounded by two involucral bracts. The perianth consists of five tepals initiated in a 2/5 phyllotaxis. In all species studied a first whorl of 10–13 stamens is initiated, except inT. napiforme where this whorl is reduced to five stamens. In multistaminate androecia, additional whorls develop centrifugally. InT. paniculatum, T. portulacifolium andT. napiforme the first stamens are initiated in pairs opposite the outer tepals. In several flowers ofT. paniculatum andT. portulacifolium ten stamens are incepted in spiral sequence resembling diplostemony. Similar ontogenetic patterns are present in several species ofPhytolacca. However, within the genusTalinum the ontogenetic pattern of the firstly initiated stamens is not consistent with traditional diplostemony. InT. triangulare the firstly initiated stamens are incepted in sectors on a ring meristem, resembling the early inception in several species ofAnacampseros andPortulaca. The nectaries are associated with the filament bases and can be defined as caducous nectaries of the staminal type. The development of the tricarpellate, syncarpous gynoecium is very similar in all species studied; it is characterised by a leptate carpel-form.  相似文献   

14.
Background and AimsFloral developmental studies are crucial for understanding the evolution of floral structures and sexual systems in angiosperms. Within the monocot order Poales, both subfamilies of Eriocaulaceae have unisexual flowers bearing unusual nectaries. Few previous studies have investigated floral development in subfamily Eriocauloideae, which includes the large, diverse and widespread genus Eriocaulon. To understand floral variation and the evolution of the androecium, gynoecium and floral nectaries of Eriocaulaceae, we analysed floral development and vasculature in Eriocaulon and compared it with that of subfamily Paepalanthoideae and the related family Xyridaceae in a phylogenetic context.MethodsThirteen species of Eriocaulon were studied. Developmental analysis was carried out using scanning electron microscopy, and vasculature analysis was carried out using light microscopy. Fresh material was also analysed using scanning electron microscopy with a cryo function. Character evolution was reconstructed over well-resolved phylogenies.Key ResultsPerianth reductions can occur due to delayed development that can also result in loss of the vascular bundles of the median sepals. Nectariferous petal glands cease development and remain vestigial in some species. In staminate flowers, the inner stamens can emerge before the outer ones, and carpels are transformed into nectariferous carpellodes. In pistillate flowers, stamens are reduced to staminodes and the gynoecium has dorsal stigmas.ConclusionsFloral morphology is highly diverse in Eriocaulon, as a result of fusion, reduction or loss of perianth parts. The nectariferous carpellodes of staminate flowers originated first in the ancestor of Eriocaulaceae; petal glands and nectariferous branches of pistillate flowers originated independently in Eriocaulaceae through transfer of function. We present a hypothesis of floral evolution for the family, illustrating a shift from bisexuality to unisexuality and the evolution of nectaries in a complex monocot family, which can contribute to future studies on reproductive biology and floral evolution in other groups.  相似文献   

15.
Floral development of Araceae is compared with that of other basal monocots such as alismatids and Acorus. Flowers of Araceae, Acorus and several alismatids with spicate inflorescences lack a subtending floral bract. In Araceae and some Potamogetonaceae the subtending floral bract is suppressed, and not incorporated into the perianth. This differs from Acorus and some alismatids, where a bract-like median abaxial tepal is formed in the outer perianth whorl (i.e. developmental merger of flower-subtending bract and tepal). In Araceae, Acorus and spicate alismatids flowers develop unidirectionally, correlated with bract reduction. Araceae lack unidirectionality in the outer perianth whorl, in contrast t o Acorus and Juncaginaceae. The transition from trimerous to dimerous flowers in Onintiurn (Araceae) is by accentuation of the unidirectionality of the inner perianth. The gynoecium of Araceae and Acorus is synascidiate. However, in most Araceae the synascidiate portion is shorter than in Acorns, and a distinct basal elongation phase as in Acorus and Juncaginaceae was not found. The perianth and androecium of Lysichiton and Symplocarpus and the gynoecium of Gymnostachys differ from other Araceae and resemble those in Potamogetonaceae. Developmental findings support the isolation of Acorus from Araceae, and show similarities of Araceae with Potamogetonaceae and of Acorus with Juncaginaceae.  相似文献   

16.
以弯齿盾果草不同发育时期的花芽为材料,在体视显微镜解剖观察的基础上使用扫描电镜对弯齿盾果草花序、花及果实的发育过程进行了观察。结果显示:(1)弯齿盾果草的花序是由最初的一个球形花序原基经过多次分裂形成的,且花序发生式样符合蝎尾状聚伞花序结构,而非通常所描述的镰状或螺状聚伞花序;花序发生过程中无单一主轴,花序轴是由侧枝连接而成,每一朵花原基有其对应的1枚苞片,下一花原基是从相邻的上一枚苞腋里发生,相邻两花原基交错互生。(2)花器官的发生是按照花萼原基、花冠原基、雄蕊原基和雌蕊原基的顺序发育,但雄蕊原基的花药部分发育速度要比花冠原基快,所以花器官的发育是按照花萼、雄蕊、花冠和雌蕊的顺序发育。(3)子房四深裂结构是由4个原基分别发育,而后相互靠拢而成。(4)小坚果表面的附属结构发生于子房发育后期,其背面的内外层突起分别是由生长较快的外部组织的边缘通过上部内缩和下部向外环状生长形成。  相似文献   

17.
The development of the bisexual flower of Lophotocarpus calycinus and of the unisexual flowers of Sagittaria latifolia has been observed. In all eases floral organs arise in acropetal succession. In L. calycinus, after initiation of the perianth, the first whorl of stamens to form consists of six stamens and is ordinarily followed by two alternating whorls of six stamens each. The very numerous carpels arc initiated spirally. In the male flower of S. latifolia the androecium develops in spiral order. A few rudimentary carpels appear near the floral apex after initiation of the stamens. There are no staminodia. The female flower has a similar developmental pattern to that of Lophotocarpus except that a prominent residual floral apex is left bare of carpels. The vascular system in all flowers is semiopen, with vascular bundles passing to the floral organs in a pattern unrelated to the relative positions of those organs. The androecia of these two taxa are similar to those of some Butomaceae and relationships based on ontogeny and morphology are suggested. The gynoecia are meristically less specialized but morphologically more specialized than the gynoecia of Butomaceae.  相似文献   

18.
A developmental study of the inflorescence of Liquidambar styraciflua L. was conducted to clarify morphological discrepancies reported in the literature. Salient features of development are: 1) the inflorescence apex results from the conversion of a terminal, vegetative apex; 2) partial inflorescence apices arise as ellipsoid structures in axils of leaves, bracts, or transitional phyllomes; 3) development of male heads is acropetal whereas female heads differentiate basipetally; 4) the partial inflorescence apex becomes segmented into several distinct subunits indicating an axillary branch system of the third order; 5) distinct individual floral primordia are initiated on the subunits; 6) a complete absence of perianth development; 7) inception of carpel primordia in flowers of lower male heads as well as female heads, but a failure of the gynoecium to develop beyond an incipient stage in male heads; and 8) development of sterile structures around the base of the styles of only female flowers near the time of anthesis. Carpellary characteristics of the sterile structures are described, their morphological nature is discussed, and the phylogenetic position of Liquidambar is evaluated.  相似文献   

19.
Among the 16 genera of the Berberidaceae Achlys is the only one with a reduced perianth, an irregular floral phyllotaxis, and variable stamen number. Early floral stages show an unstable (chaotic) arrangement of the organ primordia. Only the single carpel of the gynoecium has a more fixed position in that the placenta is formed in the adaxial half of the flower. The irregularities in the androecium may be caused by the lack of influence of a perianth on floral symmetry. On the other hand, the regular orientation of the carpel is perhaps due to the early polarity of the flower, whereby the abaxial half of the flower is larger (with further developed stamen primordia) at the time when carpel polarity is established.  相似文献   

20.
Floral morphology, anatomy and histology in the newly circumscribed order Celastrales, comprising Celastraceae, Parnassiaceae and Lepidobotryaceae are studied comparatively. Several genera of Celastraceae and Lepidobotrys (Lepidobotryaceae) were studied for the first time in this respect. Celastraceae are well supported as a group by floral structure (including genera that were in separate families in earlier classifications); they have dorsally bulged‐up locules (and thus apical septa) and contain oxalate druses in their floral tissues. The group of Celastraceae and Parnassiaceae is also well supported. They share completely syncarpous gynoecia with commissural stigmatic lobes (and strong concomitant development of the commissural vascular bundles but weak median carpel bundles), only weakly crassinucellar or incompletely tenuinucellar ovules with an endothelium, partly fringed sepals and petals, protandry in bisexual flowers combined with herkogamy by the movement of stamens and anther abscission, and stamens fused with the ovary. In contrast, Lepidobotryaceae are more distant from the other two families, sharing only a handful of features with Celastraceae (not Parnassiaceae), such as pseudohermaphroditic flowers, united stamen bases forming a collar around the gynoecium and seeds with a conspicuous aril. However, all three families together are also somewhat supported as a group and share petals that are not retarded in late floral bud development, 3‐carpellate gynoecia, ventral slits of carpels closed by long interlocking epidermal cells and pollen tube transmitting tissue encompassing several cell layers, both integuments usually more than two cell layers thick, and only weak or lacking floral indumentum. In some molecular analyses Celastrales form an unsupported clade with Malpighiales and Oxalidales. This association is supported by floral structure, especially between Celastrales and Malpighiales. Among Celastrales, Lepidobotryaceae especially share special features with Malpighiales, including a diplostemonous androecium with ten fertile stamens, epitropous ovules with an obturator and strong vascularization around the chalaza. © 2005 The Linnean Society of London, Botanical Journal of the Linnean Society, 2005, 149 , 129–194.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号