首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Asymmetric flies     
What are the sources of phenotypic variation and which factors shape this variation are fundamental questions of developmental and evolutionary biology. Despite this simple formulation and intense research, controversy remains. Three points are particularly discussed: (1) whether adaptive developmental mechanisms buffering variation exist at all; (2) if yes, do they involve specific genes and processes, i.e., different from those involved in the development of the traits that are buffered?; and (3) whether different mechanisms specifically buffer the various sources of variation, i.e., genetic, environmental and stochastic, or whether a generalist process buffers them all at once. We advocate that experimental work integrating different levels of analysis will improve our understanding of the origin of phenotypic variation and thus help answering these contentious questions. In this paper, we first survey the current views on these issues, highlighting potential sources of controversy. We then focus on the stochastic part of phenotypic variation, as measured by fluctuating asymmetry, and on current knowledge about the genetic basis of developmental stability. We report our recent discovery that an individual gene, Cyclin G, plays a central role—adaptive or not—in developmental stability in Drosophila.1 We discuss the implications of this discovery on the regulation of organ size and shape, and finally point out open questions.  相似文献   

2.
SARM1 is the founding member of the TIR-domain family of NAD+ hydrolases and the central executioner of pathological axon degeneration. SARM1-dependent degeneration requires NAD+ hydrolysis. Prior to the discovery that SARM1 is an enzyme, SARM1 was studied as a TIR-domain adaptor protein with non-degenerative signaling roles in innate immunity and invertebrate neurodevelopment, including at the Drosophila neuromuscular junction (NMJ). Here we explore whether the NADase activity of SARM1 also contributes to developmental signaling. We developed transgenic Drosophila lines that express SARM1 variants with normal, deficient, and enhanced NADase activity and tested their function in NMJ development. We find that NMJ overgrowth scales with the amount of NADase activity, suggesting an instructive role for NAD+ hydrolysis in this developmental signaling pathway. While degenerative and developmental SARM1 signaling share a requirement for NAD+ hydrolysis, we demonstrate that these signals use distinct upstream and downstream mechanisms. These results identify SARM1-dependent NAD+ hydrolysis as a heretofore unappreciated component of developmental signaling. SARM1 now joins sirtuins and Parps as enzymes that regulate signal transduction pathways via mechanisms that involve NAD+ cleavage, greatly expanding the potential scope of SARM1 TIR NADase functions.  相似文献   

3.
The particular fascination of butterfly wings for developmental biologists (and others) lies in their spectacular array of colour patterns. The evolutionary and developmental relationships between these patterns have been analysed and we know something of the cell interactions involved in their formation(1). Now butterfly homologues of Drosophila wing-patterning genes have been identified, and their expression patterns offer the first clues to the molecular mechanisms which specify wing colour patterns(2).  相似文献   

4.

Background  

The silkworm Bombyx mori is a lepidopteran insect with four developmental stages: egg, larva (caterpillar), pupa, and adult. The hemolymph of the silkworm is in an open system that circulates among all organs, and functions in nutrient and hormone transport, injury, and immunity. To understand the intricate developmental mechanisms of metamorphosis, silkworm hemolymph from different developmental stages, including the 3rd day of fifth instar, the 6th day of fifth instar, the 3rd day of pupation, the 8th day of pupal stage and the first day of the moth stage, was investigated by two-dimensional electrophoresis and mass spectrometry.  相似文献   

5.
Due to work in model systems (e.g., flies and mice), the molecular mechanisms of embryogenesis are known in exquisite detail. However, these organisms are incapable of asexual reproduction and possess limited regenerative abilities. Thus, the mechanisms of alternate developmental trajectories and their relation to embryonic mechanisms remain understudied. Because these developmental trajectories are present in a diverse group of animal phyla spanning the metazoan phylogeny, including cnidarians, annelids, and echinoderms, they are likely to have played a major role in animal evolution. The starlet sea anemone Nematostella vectensis, an emerging model system, undergoes larval development, asexual fission, and complete bi-directional regeneration in the field and laboratory. In order to investigate to what extent embryonic patterning mechanisms are utilized during alternate developmental trajectories, we examined expression of developmental regulatory genes during regeneration and fission. When compared to previously reported embryonic expression patterns, we found that all genes displayed some level of expression consistent with embryogenesis. However, five of seven genes investigated also displayed striking differences in gene expression between one or more developmental trajectory. These results demonstrate that alternate developmental trajectories utilize distinct molecular mechanisms upstream of major developmental regulatory genes such as fox, otx, and Hox-like.  相似文献   

6.
Summary The growth of physiology in the 19th and 20th centuries was accompanied by the development of disciplinary boundaries between physiology and other biological sciences. Physiology became the study of the mechanisms that underlie the functions of organisms and their component parts. Concern with the internal workings of organisms has led physiologists to focus on the maintenance of homeostasis in the internal environment rather than on the interactions of organisms with their external environments. Moreover, interest in the cellular or biochemical mechanisms that underlie organismal function has resulted in the use of inbred populations of laboratory animals in which these mechanisms can be most rigorously studied. Finally, emphasis on the function of fully developed or adult organisms has been accompanied by a relative neglect of developmental processes. Disregard for the environment, for variation, and for development has made possible major advances in our knowledge of physiological mechanisms but has led to an impoverished concept of organisms. Incorporation of evolutionary, ecological, and developmental perspectives into the study of organisms might help to unite physiology more closely with the other biological sciences and lead to a richer and fuller understanding of organisms.  相似文献   

7.
Elucidating signal transduction mechanisms of innate immune pathways is essential to defining how they elicit distinct cellular responses. Toll-like receptors (TLR) signal through their cytoplasmic TIR domains which bind other TIR domain-containing adaptors. dSARM/SARM1 is one such TIR domain adaptor best known for its role as the central axon degeneration trigger after injury. In degeneration, SARM1’s domains have been assigned unique functions: the ARM domain is auto-inhibitory, SAM-SAM domain interactions mediate multimerization, and the TIR domain has intrinsic NAD+ hydrolase activity that precipitates axonal demise. Whether and how these distinct functions contribute to TLR signaling is unknown. Here we show divergent signaling requirements for dSARM in injury-induced axon degeneration and TLR-mediated developmental glial phagocytosis through analysis of new knock-in domain and point mutations. We demonstrate intragenic complementation between reciprocal pairs of domain mutants during development, providing evidence for separability of dSARM functional domains in TLR signaling. Surprisingly, dSARM’s NAD+ hydrolase activity is strictly required for both degenerative and developmental signaling, demonstrating that TLR signal transduction requires dSARM’s enzymatic activity. In contrast, while SAM domain-mediated dSARM multimerization is important for axon degeneration, it is dispensable for TLR signaling. Finally, dSARM functions in a linear genetic pathway with the MAP3K Ask1 during development but not in degenerating axons. Thus, we propose that dSARM exists in distinct signaling states in developmental and pathological contexts.  相似文献   

8.
Cellular dedifferentiation is an important developmental response to perturbations in morphogenesis. In the cellular slime mold Dictyostelium discoideum this process gives cells the flexibility, when multicellular development is disrupted, to respond to nutrients and reinitiate vegetative growth. Recent studies in D. discoideum described by Soll and colleagues(1) show that genes previously thought to be expressed only during spore germination are also expressed during induced dedifferentiation, suggesting that similar molecular mechanisms are involved in these two developmental processes. It should now be possible to determine whether the developmental programs that control dedifferentiation during spore germination also control conversion of cell types in the multicellular organism.  相似文献   

9.
10.
Recent insights about the transport mechanisms involved in the in and out of calcium ions in plant organelles, and their role in the regulation of cytosolic calcium homeostasis in different signaling pathways.

The transport of Ca2+ across the membranes of subcellular compartments contributes to cytosolic Ca2+ homeostasis as well as environmental and developmental responses.  相似文献   

11.
《Epigenetics》2013,8(4):428-439
Growing evidence supports the existence of a subpopulation of cancer cells with stem cell characteristics within breast tumors. In spite of its potential clinical implications, an understanding of the mechanisms responsible for retaining the stem cell characteristics in these cells is still lacking. Here, we used the mammosphere model combined with DNA methylation bead arrays and quantitative gene expression to characterize the epigenetic mechanisms involved in the regulation of developmental pathways in putative breast cancer stem cells. Our results revealed that MCF7-derived mammospheres exhibit distinct CpG promoter methylation profiles in a specific set of genes, including those involved in Jak-STAT signaling pathway. Hypomethylation of several gene components of the Jak-STAT pathway was correlated with an increased expression in mammospheres relative to parental cells. Remarkably, cell sorting of the cells with a putative cancer stem cell phenotype (CD44+/CD24 low) suggests a constitutive activation of Jak-STAT pathway in these cells. These results show that Jak-STAT activation may represent a characteristic of putative breast cancer stem cells. In addition, they favor the concept that the expression of cancer stem-like pathways and the establishment and maintenance of defining properties of cancer stem cells are orchestrated by epigenetic mechanisms.  相似文献   

12.
Previous studies have identified two zebrafish mutants, cloche and groom of cloche, which lack the majority of the endothelial lineage at early developmental stages. However, at later stages, these avascular mutant embryos generate rudimentary vessels, indicating that they retain the ability to generate endothelial cells despite this initial lack of endothelial progenitors. To further investigate molecular mechanisms that allow the emergence of the endothelial lineage in these avascular mutant embryos, we analyzed the gene expression profile using microarray analysis on isolated endothelial cells. We find that the expression of the genes characteristic of the mesodermal lineages are substantially elevated in the kdrl + cells isolated from avascular mutant embryos. Subsequent validation and analyses of the microarray data identifies Sox11b, a zebrafish ortholog of SRY-related HMG box 11 (SOX11), which have not previously implicated in vascular development. We further define the function sox11b during vascular development, and find that Sox11b function is essential for developmental angiogenesis in zebrafish embryos, specifically regulating sprouting angiogenesis. Taken together, our analyses illustrate a complex regulation of endothelial specification and differentiation during vertebrate development.  相似文献   

13.
Variation among modules of a single genet could provide a means of adaptation to environmental heterogeneity. Two mechanisms that can give rise to such variation are programmed developmental change and phenotypic plasticity. I quantified the relative roles of these two mechanisms in causing within-individual variation in six leaf traits of an annual plant. Under controlled temperatures, morphological, anatomical, and physiological traits of leaves produced by the same individual differed as a function of both the node at which they were produced and the temperature they experienced during development. Temperature, node, and interactions between them all contributed significantly to the pattern of within-individual variation in leaf traits, although the relative contributions of programmed developmental change and phenotypic plasticity differed for different traits. I hypothesize that these two mechanisms for generating within-individual variation in module phenotype are favored by different patterns of environmental heterogeneity; when the sequence of environments encountered by modules of a single individual is predictable, programmed developmental change may be favored, and phenotypic plasticity may be favored when the sequence of environments is irregular with respect to individual ontogeny and therefore not predictable.  相似文献   

14.
Studies integrating evolutionary and developmental analyses of morphological variation are of growing interest to biologists as they promise to shed fresh light on the mechanisms of morphological diversification. Sexually dimorphic traits tend to be incredibly divergent across taxa. Such diversification must arise through evolutionary modifications to sex differences during development. Nevertheless, few studies of dimorphism have attempted to synthesize evolutionary and developmental perspectives. Using geometric morphometric analysis of head shape for 50 Anolis species, we show that two clades have converged on extreme levels of sexual dimorphism through similar, male‐specific changes in facial morphology. In both clades, males have evolved highly elongate faces whereas females retain faces of more moderate proportion. This convergence is accomplished using distinct developmental mechanisms; one clade evolved extreme dimorphism through the exaggeration of a widely shared, potentially ancestral, developmental strategy whereas the other clade evolved a novel developmental strategy not observed elsewhere in the genus. Together, our analyses indicate that both shared and derived features of development contribute to macroevolutionary patterns of morphological diversity among Anolis lizards.  相似文献   

15.
This article critically reviews some widespread views about the overall functioning of development. Special attention is devoted to views in developmental genetics about the superstructure of developmental gene networks. According to these views gene networks are hierarchic and multilayered. The highest layers partition the embryo in large coarse areas and control downstream genes that subsequently subdivide the embryo into smaller and smaller areas. These views are criticized on the bases of developmental and evolutionary arguments. First, these views, although detailed at the level of gene identities, do not incorporate morphogenetic mechanisms nor do they try to explain how morphology changes during development. Often, they assume that morphogenetic mechanisms are subordinate to cell signaling events. This is in contradiction to the evidence reviewed herein. Experimental evidence on pattern formation also contradicts the view that developmental gene networks are hierarchically multilayered and that their functioning is decodable from promoter analysis. Simple evolutionary arguments suggest that, indeed, developmental gene networks tend to be non-hierarchic. Re-use leads to extensive modularity in gene networks while developmental drift blurs this modularity. Evolutionary opportunism makes developmental gene networks very dependent on epigenetic factors.  相似文献   

16.

Background  

There is spectacular morphological diversity in nature but lineages typically display a limited range of phenotypes. Because developmental processes generate the phenotypic variation that fuels natural selection, they are a likely source of evolutionary biases, facilitating some changes and limiting others. Although shifts in developmental regulation are associated with morphological differences between taxa, it is unclear how underlying mechanisms affect the rate and direction of evolutionary change within populations under selection.  相似文献   

17.
18.
Observations of atypical developmental and anatomical characteristics have been recorded for many taxa of soil nematodes. They include the unusual occurrence of extra feeding structures, aberrant configuration of features of both male and female reproductive systems, and the occurrence of intersexes assumed to be functionally female, functionally male, or non-functional. In many cases, hypotheses have been advanced regarding the genetic or developmental mechanisms and environmental stimuli that control, regulate, or facilitate abnormalities, but many are quite speculative and lack experimental verification. Further, the fitness costs or advantages, and the heritability of aberrant characters are largely unknown, except where they clearly preclude reproduction, either apomictic or amphimictic. Underlying mechanisms and ecological consequences may be difficult to study in organisms that are not readily cultured under axenic or sterile laboratory conditions, however information on developmental processes in Caenorhabditis elegans represents an important resource in which to seek homologies.  相似文献   

19.
For more than a decade, evidence has accumulated linking dysfunction of primary cilia to renal cystogenesis, yet molecular mechanisms remain undefined. The pathogenesis of renal cysts is complex, involving multiple cellular aberrations and signaling pathways. Adding to this complexity, primary cilia exhibit multiple roles in a context‐dependent manner. On renal epithelial cells, primary cilia act as mechanosensors and trigger extracellular Ca2+ influx in response to laminar fluid flow. During mammalian development, primary cilia mediate the Hedgehog (Hh), Wnt, and Notch pathways, which control cell proliferation and differentiation, and tissue morphogenesis. Further, experimental evidence suggests the developmental state of the kidney strongly influences renal cystic disease. Thus, we review evidence for regulation of Ca2+ and cAMP, key molecules in renal cystogenesis, at the primary cilium, the role of Hh, Wnt, and Notch signaling in renal cystic disease, and the interplay between these developmental pathways and Ca2+ signaling. Indeed if these developmental pathways influence renal cystogenesis, these may represent novel therapeutic targets that can be integrated into a combination therapy for renal cystic disease. Birth Defects Research (Part C) 102:159–173, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

20.
A series ofNeurospora crassamutants affected in the ability to regulate entry into conidiation (an asexual developmental program) were isolated by using an insertional mutagenesis procedure followed by a screening protocol. One of the mutants isolated by this approach consisted entirely of cells with an abnormal morphology. The mutant produces chains of swollen septated cells. The developmentally regulatedccg-1gene is constitutively expressed in these cells, suggesting that they have entered the conidial developmental program. The insertionally disrupted genecnb-1was isolated by plasmid rescue and found to encode calcineurin B, the regulatory subunit of the Ca2+and calmodulin-dependent protein phosphatase calcineurin. The data demonstrate that calcineurin B is required for normal vegetative growth inN. crassaand suggest that thecnb-1mutant is unable to repress entry into the asexual developmental program. The results suggest that Ca2+may play an important role in regulating fungal morphology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号