首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Voltage-gated calcium channels (VGCCs) regulate calcium influx into all excitable cells. In the heart, the main calcium channels are the L-type VGCCs (LTCCs). These are localised to the sarcolemmal membrane, and are hetero-oligomeric complexes comprised of three non-covalently associated polypeptides; alpha1 (CaV1.2), alpha2delta and beta. We recently reported the 3D structure for a monomeric form of the cardiac LTCC1 using electron microscopy and single particle analysis. We also determined the first medium/low resolution structure of a T-type voltage gated calcium channel (CaV3.1) polypeptide. We identified the transmembrane and cytoplasmic domains of the T-type channel using labelling studies to determine the position of the C-terminus. By modelling of the CaV3.1 structure (comparable at these resolutions to CaV1.2) into the cardiac LTCC volume, we were able to delineate the subunit boundaries of the cardiac LTCC, leading to a proposal for a putative orientation of the LTCC with respect to the membrane bilayer. We have now extended these studies to include labelling of the extracellular alpha2 polypeptide using affinity purified antibodies raised against the Von Willebrand Factor A (VWA) domain and calmodulin-gold labelling of the C-terminus of CaV1.2. These data provide further support for the proposed orientation of the 3D structure of the cardiac LTCC.  相似文献   

2.
Syntaxin 1A (Sx1A) modifies the activity of voltage-gated Ca2+ channels acting via the cytosolic and the two vicinal cysteines (271 and 272) at the transmembrane domain. Here we show that Sx1A modulates the Lc-type Ca2+ channel, Cav1.2, in a cooperative manner, and we explore whether channel clustering or the Sx1A homodimer is responsible for this activity. Sx1A formed homodimers but, when mutated at the two vicinal transmembrane domain cysteines, was unable to either dimerize or modify the channel activity suggesting disulfide bond formation. Moreover, applying global molecular dynamic search established a theoretical prospect of generating a disulfide bond between two Sx1A transmembrane helices. Nevertheless, Sx1A activity was not correlated with Sx1A homodimer. Application of a vicinal thiol reagent, phenylarsine oxide, abolished Sx1A action indicating the accessibility of Cys-271,272 thiols. Sx1A inhibition of channel activity was restored by phenylarsine oxide antidote, 2,3-dimercaptopropanol, consistent with thiol interaction of Sx1A. In addition, the supralinear mode of channel inhibition was correlated to the monomeric form of Sx1A and was apparent only when the three channel subunits alpha11.2/alpha2delta1/beta2a were present. This functional demonstration of cooperativity suggests that the three-subunit channel responds as a cluster, and Sx1A monomers associate with a dimer (or more) of a three-subunit Ca2+ channel. Consistent with channel cluster linked to Sx1A, a conformational change driven by membrane depolarization and Ca2+ entry would rapidly be transduced to the exocytotic machinery. As shown herein, the supralinear relationship between Sx1A and the voltage-gated Ca2+ channel within the cluster could convey the cooperativity that distinguishes the process of neurotransmitter release.  相似文献   

3.
Usher Syndrome Type 1 is an autosomal recessive disease characterized by profound congenital hearing impairement and vestibular dysfunction followed by the onset of retinitis pigmentosa in childhood or early adolescence. Members of the Usher Syndrome Consortium, whose objective is to locate and isolate the genes for Usher syndrome, have pooled linkage data from 36 families with 111 affected individuals. We report the analysis of 206 blood group, protein, and DNA marker polymorphisms. No evidence of linkage heterogeneity among families was found for any of the markers studied; the negative lod scores exclude the locus for this disease from about 39% of the genome. Our results indicate the regions of the genome to which our continuing efforts should be directed.  相似文献   

4.
5.
6.
Usher syndrome is an autosomal recessive condition characterized by sensorineural hearing loss, variable vestibular dysfunction, and visual impairment due to retinitis pigmentosa (RP). The seven proteins that have been identified for Usher syndrome type 1 (USH1) and type 2 (USH2) may interact in a large protein complex. In order to identify novel USH genes, we followed a candidate strategy, assuming that mutations in proteins interacting with this “USH network” may cause Usher syndrome as well. The DFNB31 gene encodes whirlin, a PDZ scaffold protein with expression in both hair cell stereocilia and retinal photoreceptor cells. Whirlin represents an excellent candidate for USH2 because it binds to Usherin (USH2A) and VLGR1b (USH2C). Genotyping of microsatellite markers specific for the DFNB31 gene locus on chromosome 9q32 was performed in a German USH2 family that had been excluded for all known USH loci. Patients showed common haplotypes. Sequence analysis of DFNB31 revealed compound heterozygosity for a nonsense mutation, p.Q103X, in exon 1, and a mutation in the splice donor site of exon 2, c.837+1G>A. DFNB31 mutations appear to be a rare cause of Usher syndrome, since no mutations were identified in an additional 96 USH2 patients. While mutations in the C-terminal half of whirlin have previously been reported in non-syndromic deafness (DFNB31), both alterations identified in our USH2 family affect the long protein isoform. We propose that mutations causing Usher syndrome are probably restricted to exons 1–6 that are specific for the long isoform and probably crucial for retinal function. We describe a novel genetic subtype for Usher syndrome, which we named USH2D and which is caused by mutations in whirlin. Moreover, this is the first case of USH2 that is allelic to non-syndromic deafness. Electronic Supplementary Material The online version of this article () contains supplementary material, which is available to authorized users.  相似文献   

7.
The aim of this study is to examine how sustained exposure to two 1,4-benzodiazepines (BZDs) with different action period, diazepam and brotizolam, and a 1,5-BZD, clobazam, affects L-type high voltage-gated calcium channel (HVCC) functions and its mechanisms using primary cultures of mouse cerebral cortical neurons. The sustained exposure to these three BZDs increased [45Ca2+] influx, which was due to the enhanced [45Ca2+] entry through L-type HVCCs but not through of Cav2.1 and Cav2.2. Increase in [3H]diltiazem binding after the exposure to these three BZDs was due to the increase in the binding sites of [3H]diltiazem. Western blot analysis showed increase of Cav1.2 and Cav1.3 in association with the increased expression of α2/δ1 subunit. Similar changes in [3H]diltiazem binding and L-type HVCC subunit expression were found in the cerebral cortex from mouse with BZD physical dependence. These results indicate that BZDs examined here have the potential to increase L-type HVCC functions mediated via the enhanced expression of not only Cav1.2 and Cav1.3 but also α2/δ1 subunit after their sustained exposure, which may participate in the development of physical dependence by these BZDs.  相似文献   

8.
Benz(othi)azepine (BTZ) derivatives constitute one of three major classes of L-type Ca(2+) channel ligands. Despite intensive experimental studies, no three-dimensional model of BTZ binding is available. Here we have built KvAP- and KcsA-based models of the Ca(v)1.2 pore domain in the open and closed states and used multiple Monte Carlo minimizations to dock representative ligands. In our open channel model, key functional groups of BTZs interact with BTZ-sensing residues, which were identified in previous mutational experiments. The bulky tricyclic moiety occupies interface between domains III and IV, while the ammonium group protrudes into the inner pore, where it is stabilized by nucleophilic C-ends of the pore helices. In the closed channel model, contacts with several ligand-sensing residues in the inner helices are lost, which weakens ligand-channel interactions. An important feature of the ligand-binding mode in both open and closed channels is an interaction between the BTZ carbonyl group and a Ca(2+) ion chelated by the selectivity filter glutamates in domains III and IV. In the absence of Ca(2+), the tricyclic BTZ moiety remains in the domain interface, while the ammonium group directly interacts with a glutamate residue in the selectivity filter. Our model suggests that the Ca(2+) potentiation involves a direct electrostatic interaction between aCa(2+) ion and the ligand rather than an allosteric mechanism. Energy profiles indicate that BTZs can reach the binding site from the domain interface, whereas access through the open activation gate is unlikely, because reorientation of the bulky molecule in the pore is hindered.  相似文献   

9.
We study numerically the local dynamics of the intracellular calcium concentration in the vicinity of a voltage- and calcium-dependent plasma membrane L-type calcium channel. To account for the low number of Ca2+ ions and buffer molecules present in sub-femtoliter volumes, we use an exact stochastic simulation algorithm including diffusion. We present a novel, unified simulation method that implements reaction-diffusion events of Ca2+ ions and buffer molecules, stochastic ion channel gating and channel conductance as a multivariate Markov process. For fixed-voltage dynamics, e.g. under voltage-clamp conditions, it is shown that voltage-sensitive channel-gating steps can be incorporated exactly. We compare multi- and single-voxel geometries and show that the single-voxel approach leads to almost identical first- and second-order moments, at much lower computation time. Numerical examples illustrate the variability in local Ca2+ fluctuations as induced by bursts of channel openings in response to membrane depolarisations. Finally, by introducing calmodulin as a link, it is shown how this variability is passed on to downstream signalling pathways. The method may prove useful to study calcium microdomains and calcium-regulated processes triggered by membrane depolarisations as evoked by, e.g., viral channel-forming proteins during virus-host cell interactions.  相似文献   

10.
Calcium channels play crucial physiological roles. In the absence of high-resolution structures of the channels, the mechanism of ion permeation is unknown. Here we used a method proposed in an accompanying paper (Cheng and Zhorov in Eur Biophys J, 2009) to predict possible chelation patterns of calcium ions in a structural model of the L-type calcium channel. We compared three models in which two or three calcium ions interact with the four selectivity filter glutamates and a conserved aspartate adjacent to the glutamate in repeat II. Monte Carlo energy minimizations yielded many complexes with calcium ions bound to at least two selectivity filter carboxylates. In these complexes calcium-carboxylate attractions are counterbalanced by calcium-calcium and carboxylate-carboxylate repulsions. Superposition of the complexes suggests a high degree of mobility of calcium ions and carboxylate groups of the glutamates. We used the predicted complexes to propose a permeation mechanism that involves single-file movement of calcium ions. The key feature of this mechanism is the presence of bridging glutamates that coordinate two calcium ions and enable their transitions between different chelating patterns involving four to six oxygen atoms from the channel protein. The conserved aspartate is proposed to coordinate a calcium ion incoming to the selectivity filter from the extracellular side. Glutamates in repeats III and IV, which are most distant from the repeat II aspartate, are proposed to coordinate the calcium ion that leaves the selectivity filter to the inner pore. Published experimental data and earlier proposed permeation models are discussed in view of our model.  相似文献   

11.
The 1c subunit (DHP receptor) of the L-type Ca2+ channel is important for calcium homeostasis in cardiac muscle. The DHPr provides the primary mechanism for calcium influx during contraction. Published results demonstrate three in vitro signaling pathways that are important in the regulation of DHPr gene expression in neonatal cardiac myocytes, the protein kinase A (PKA), protein kinase C (PKC) pathways, and intracellular calcium. To determine whether these pathways are important in vivo, we treated adult rats with infusions of isoproterenol, or norepinephrine at 200 g/kg/h and assessed DHPr mRNA and protein levels. Following a 3-day infusion isoproterenol (ISO) and norepinephrine (NE) produced a small but insignificant reduction in DHPr mRNA levels. When the infusions were continued for 7 days isoproterenol increased DHPr mRNA accumulation to control levels while NE stimulated a 35% increase in DHPr mRNA levels and a 35% increase in protein abundance when compared to controls (p < 0.05). Furthermore, contractility and Ca2+ transient measurements of isolated cardiac myocytes from NE infused animals also display shortened duration of contraction/relaxation and increased intracellular free Ca2+ (DFFI) in response to electrical stimulation (p < 0.01). We conclude norepinephrine treatment alters DHPr mRNA and protein levels, and augments excitation-contraction coupling, and thus may be important for modulating cardiac calcium homeostasis in vivo.  相似文献   

12.
Human chromosome 10q21-22 harbors USH1F in a region of conserved synteny to mouse chromosome 10. This region of mouse chromosome 10 contains Pcdh15, encoding a protocadherin gene that is mutated in ames waltzer and causes deafness and vestibular dysfunction. Here we report two mutations of protocadherin 15 (PCDH15) found in two families segregating Usher syndrome type 1F. A Northern blot probed with the PCDH15 cytoplasmic domain showed expression in the retina, consistent with its pathogenetic role in the retinitis pigmentosa associated with USH1F.  相似文献   

13.
We describe here the first three-dimensional structure of the cardiac L-type voltage-gated calcium channel (VGCC) purified from bovine heart. The structure was determined by electron microscopy and single particle analysis of negatively stained complexes, using the angular reconstitution method. The cardiac VGCC can be isolated as a stable dimer, as reported previously for the skeletal muscle VGCC, with a central aqueous chamber formed by the two halves of the complex. Moreover, we demonstrate that the dimeric cardiac VGCC binds the dihydropyridine [3H]azidopine with a Kd approximately 310 pM. We have compared the cardiac VGCC structure with the skeletal muscle form, determined using the same reconstructive methodology, allowing us to identify common and distinct features of the complexes. By using antibody and lectin-gold labeling, we have localized the intracellular beta polypeptides and the extracellular glycosylation sites of the skeletal muscle VGCC, which can be correlated to the cardiac three-dimensional structure. From the data presented here the assignment of the orientation of the VGCC complexes with respect to the lipid bilayer is now possible. A difference between the cardiac and skeletal muscle ion channels is apparent in the putative transmembrane region, which would be consistent with the absence of the gamma subunit in the cardiac VGCC assembly.  相似文献   

14.
15.
16.
Hidalgo P  Neely A 《Cell calcium》2007,42(4-5):389-396
For a long time the auxiliary beta-subunit of voltage-gated calcium channels was thought to be engaged exclusively in the regulation of calcium channel function, including gating, intracellular trafficking, assembly and membrane expression. The beta-subunit belongs to the membrane-associated guanylate kinase class of scaffolding proteins (MAGUK) that comprises a series of protein interaction motifs. Two such domains, a Src homology 3 and a guanylate kinase domain are present in the beta-subunit. Recently, it was shown that this subunit interacts with a variety of proteins and regulates diverse cellular processes ranging from gene expression to hormone secretion and endocytosis. In light of these new findings, the beta-subunit deserves to be promoted to the category of multifunctional regulatory protein. Some of these new functions support a tighter regulation of calcium influx through voltage-gated calcium channels and others apparently serve channel unrelated processes. Here we discuss a variety of protein-protein interactions held by the beta-subunit of voltage-gated calcium channels and their functional consequences. Certainly the identification of additional binding partners and effector pathways will help to understand how the different beta-subunit-mediated processes are interwoven.  相似文献   

17.
18.
Increased function of neuronal L-type voltage-sensitive Ca(2+) channels (L-VSCCs) is strongly linked to impaired memory and altered hippocampal synaptic plasticity in aged rats. However, no studies have directly assessed L-VSCC function in any of the common mouse models of Alzheimer's disease where neurologic deficits are typically more robust. Here, we used cell-attached patch-clamp recording techniques to measure L-VSCC activity in CA1 pyramidal neurons of partially dissociated hippocampal "zipper" slices prepared from 14-month-old wild-type mice and memory-impaired APP/PS1 double knock-in mice. Surprisingly, the functional channel density of L-VSCCs was significantly reduced in the APP/PS1 group. No differences in voltage dependency and unitary conductance of L-VSCCs were observed. The results suggest that mechanisms for Ca(2+) dysregulation can differ substantially between animal models of normal aging and models of pathological aging.  相似文献   

19.
Deafness is the most common sensory disorder in humans and the aetiology of genetic deafness is complex. Mouse mutants have been crucial in identifying genes involved in hearing. However, many deafness genes remain unidentified. Using N -ethyl N −nitrosourea (ENU) mutagenesis to generate new mouse models of deafness, we identified a novel semi-dominant mouse mutant, Cloth-ears ( Clth ). Cloth-ears mice show reduced acoustic startle response and mild hearing loss from ∼30 days old. Auditory-evoked brainstem response (ABR) and distortion product otoacoustic emission (DPOAE) analyses indicate that the peripheral neural auditory pathway is impaired in Cloth-ears mice, but that cochlear function is normal. In addition, both Clth/Clth and Clth/+ mice display paroxysmal tremor episodes with behavioural arrest. Clth/Clth mice also show a milder continuous tremor during movement and rest. Longitudinal phenotypic analysis showed that Clth/+ and Clth/Clth mice also have complex defects in behaviour, growth, neurological and motor function. Positional cloning of Cloth-ears identified a point mutation in the neuronal voltage-gated sodium channel α-subunit gene, Scn8a , causing an aspartic acid to valine (D981V) change six amino acids downstream of the sixth transmembrane segment of the second domain (D2S6). Complementation testing with a known Scn8a mouse mutant confirmed that this mutation is responsible for the Cloth-ears phenotype. Our findings suggest a novel role for Scn8a in peripheral neural hearing loss and paroxysmal motor dysfunction.  相似文献   

20.
Increased function of neuronal L-type voltage-sensitive Ca2 + channels (L-VSCCs) is strongly linked to impaired memory and altered hippocampal synaptic plasticity in aged rats. However, no studies have directly assessed L-VSCC function in any of the common mouse models of Alzheimer's disease where neurologic deficits are typically more robust. Here, we used cell-attached patch-clamp recording techniques to measure L-VSCC activity in CA1 pyramidal neurons of partially dissociated hippocampal “zipper” slices prepared from 14-month-old wild-type mice and memory-impaired APP/PS1 double knock-in mice. Surprisingly, the functional channel density of L-VSCCs was significantly reduced in the APP/PS1 group. No differences in voltage dependency and unitary conductance of L-VSCCs were observed. The results suggest that mechanisms for Ca2 + dysregulation can differ substantially between animal models of normal aging and models of pathological aging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号