首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
Cancer is a genetic disease and carcinogenesis is the process whereby the relevant genetic alterations are acquired. Environmental carcinogens may damage DNA to induce mutations and chromosomal aberrations as permanent heritable changes in the genome that initiate carcinogenesis. For many carcinogens initiation of carcinogenesis requires the initiation of DNA replication suggesting that genetic alterations are fixed in the genome during replication of damaged DNA. It is of great interest to understand the mechanisms whereby carcinogen-induced damage to DNA causes mutations and chromosomal aberrations, and how cells may resist such events. It is clear now that cells express a complex repertoire of responses to DNA damage including several pathways of DNA repair and cell cycle checkpoints that protect against carcinogenesis. This commentary is concerned with the protective influence of DNA damage checkpoints that delay or arrest progression through the cell division cycle and especially with the responses of S phase cells to the environmental carcinogens UV and benzo[a]pyrene diolepoxide I (BPDE). Recent studies indicate that checkpoint responses may act at the very point of replication of damaged DNA to slow DNA chain elongation, inhibit replicon initiation, and suppress initiation of carcinogenesis.  相似文献   

3.
Mutagenesis is a prerequisite for evolution and also is an important contributor to human diseases. Most mutations in actively dividing cells originate during DNA replication as errors introduced when copying an undamaged DNA template or during the bypass of DNA lesions. In addition, mutations can be introduced during the repair of DNA double-strand breaks by either homologous recombination or non-homologous end-joining pathways. Finally, although generally considered to be a very high-fidelity process, the excision repair of DNA damage may be an important contributor to mutagenesis in non-dividing cells. In this review, we will discuss the well-known contributions of DNA replication to mutagenesis in Saccharomyces cerevisiae, as well as the less-appreciated contributions of recombination and repair to mutagenesis in this organism.  相似文献   

4.
Garber PM  Rine J 《Genetics》2002,161(2):521-534
The MAD2-dependent spindle checkpoint blocks anaphase until all chromosomes have achieved successful bipolar attachment to the mitotic spindle. The DNA damage and DNA replication checkpoints block anaphase in response to DNA lesions that may include single-stranded DNA and stalled replication forks. Many of the same conditions that activate the DNA damage and DNA replication checkpoints also activated the spindle checkpoint. The mad2Delta mutation partially relieved the arrest responses of cells to mutations affecting the replication proteins Mcm3p and Pol1p. Thus a previously unrecognized aspect of spindle checkpoint function may be to protect cells from defects in DNA replication. Furthermore, in cells lacking either the DNA damage or the DNA replication checkpoints, the spindle checkpoint contributed to the arrest responses of cells to the DNA-damaging agent methyl methanesulfonate, the replication inhibitor hydroxyurea, and mutations affecting Mcm2p and Orc2p. Thus the spindle checkpoint was sensitive to a wider range of chromosomal perturbations than previously recognized. Finally, the DNA replication checkpoint did not contribute to the arrests of cells in response to mutations affecting ORC, Mcm proteins, or DNA polymerase delta. Thus the specificity of this checkpoint may be more limited than previously recognized.  相似文献   

5.
Fluorescent DNA probes are used to characterise the chromosome constitution of preimplantation embryos. FISH is used to select normal or balanced embryos in carriers of balanced chromosomal rearrangements, for embryo sexing or for aneuploidy screening in women of advanced age, who have had recurrent abortions or IVF failures. In most cases, FISH is performed on interphase blastomeres which are asynchronously dividing cells, that can be in G1, S or G2. However, a correct interpretation of a double FISH signal, which may correspond to a split signal, to a replicated chromosome region or to the presence of an extra chromosome is essential to establish an accurate diagnosis. To determine if the cell stage could influence the interpretation of FISH results, we compared the signal characteristics of one locus-specific probe, two different subtelomere region probes, and a centromere region probe in non-dividing Sertoli cells and in proliferating lymphocytes. Most cells had two signals per chromosome pair (i.e., a situation corresponding to G0 in Sertoli cells and to G1 or to a prereplication stage in lymphocytes). Nevertheless, in proliferating cells the percentage of nuclei with a number of signals different from the expected (two unreplicated chromosomes per pair) was different from that found in non-dividing cells (P < 0.05). It was estimated that 10.8% of double dots in dividing cells resulted from DNA replication. The sequence of replication was first the locus-specific region, second a telomere region, and third the centromere. In conclusion, the DNA replication process could result in errors of interpretation (misdiagnosis) in 7% of proliferating cells. Thus, the use of a cell cycle phase-specific marker could avoid errors by indicating the cell stage in which the nucleus analysed is found.  相似文献   

6.
Mutations are defined as stable and irreversible modifications of the normal genetic message due to small changes in the number or type of bases, or to large modifications of the genome such as deletions, insertions or chromosome rearrangements. These lesions are due to either polymerase errors during normal DNA replication or unrepaired DNA lesions, which will give rise to mutations through a mutagenic pathway. The molecular process leading to mutagenesis depends largely on the type of DNA lesions. Base modifications, such as 8-oxo-guanine or thymine glycol, both induced by ionizing radiations (IR), are readily replicated leading to direct mutations, usually base-pair substitutions. The 8-oxo-G gives rise predominantly to G to T transversions, the type of mutations found in ras or p53 gene from IR-induced tumors. Bulky adducts produced by chemical carcinogens or UV-irradiation are usually repaired by the nucleotide excision repair (NER) pathway which is able to detect structural distortion in the normal double-strand DNA backbone. These lesions represent a blockage to DNA and RNA polymerases as well as some signal for p53 accumulation in the damaged cell. In the absence of repair, these lesions could be eventually replicated owing to the induction of specific proteins at least in bacteria during the SOS process. The precise nature of the error-prone replication across an unexcised DNA lesion in the template is not fully understood in detailed biochemical terms, in mammalian cells. IR basically produce a very large number of DNA lesions from unique base modifications to single- or double-strand breaks and even complex DNA lesions due to the passage of very high energy particles or to a local re-emission of numerous radicals. The breakage of the double-helix is a difficult lesion to repair. Either it will result in cell death or, after an incorrect recombinational pathway, it will induce frameshifts, large deletions or chromosomal rearrangements. Most of the IR-induced mutations are recessive ones, requiring therefore a second genetic event in order to exhibit any harmful effect and a long latency period before the development of a radiation-induced tumor. The fact that IR essentially induced deletions and chromosomal translocations renders very difficult the use of the p53 gene as a marker for mutation analysis. In agreement with the type of lesions induced by IR, it is interesting to point out that the presence has been observed, in a vast majority of radiation-induced papillary thyroid carcinomas (PTC), of an activated ret proto-oncogene originated by the fusion of the tyrosine kinase 3' domain of this gene with the 5' domain of four different genes. These ret chimeric genes which are due to intra- or inter-chromosomal translocations, were called RET/PTC1 to PTC5. The RET/PTC rearrangements were found in PTC from children contaminated by the Chernobyl fall-out as well as in tumours from patients with a history of therapeutic external radiation, with a frequency of 60-84%. This frequency was only 15% in 'spontaneous' PTC. The type of ret chimeric gene predominantly originated by the accidental or therapeutic IR was different. Indeed, PTC1 was present in 75% of the tumours linked to a therapeutic radiation and PTC3 in 75% of the Chernobyl ones. The other forms of RET/PTC were observed in only a minority of the post-Chernobyl PTC (< 20%). The difference in the frequency of PTC1 and PTC3 in both types of PTC, is statistically significant (P < 10(-5), Fischer's exact test). In two of the post-therapeutic radiation PTC, RET/PTC1 and PTC3 were simultaneously present. A PTC1 gene was also observed in 45% of the adenomas appearing after therapeutic radiation. The long-period of latency between exposure to IR and the appearance of thyroid tumours is probably due to the conversion of a heterozygote genotype of IR-induced mutations to a homozygote one. It will be interesting to use this time lag in accidental or therapeutic-irradiated p  相似文献   

7.
The use of transgenic mouse models as somatic mutation assays allows determination of mutation in all tissues of the mouse, including non-dividing tissues. In this regard, these models can be used to study the possibility that mutations can be induced in mitotically quiescent organs such as the heart. Mutations are generally thought to be associated with mitotic processes of DNA replication. Mutations, however, are also postulated to occur in the absence of mitosis as the result of DNA repair. In order to determine whether or not mutations could be induced in the heart, we analyzed the mutant frequency in the hearts of F(1) (Muta Mouse X SWR) mice that had been treated acutely with 250 mg/kg ENU and sampled at days 10, 35, and 70 post-treatment. A significant increase in mutant frequency at day 70 shows that mutations can be induced in the heart. Since the heart contains small numbers of non-muscle cells, additional mechanisms that could explain these results were also considered. The effect of ENU-induced cell proliferation or a sub-population of rapidly dividing cells is ruled out by C(14)-thymidine uptake studies which showed minimal proliferation. By the same token, the influence of ex vivo mutations (i.e., DNA adducts fixed as mutations during replication in the bacteria) is ruled out by the observed time course of mutations, as well as experimental evidence showing that such mutations are not detected in the lacZ assay.  相似文献   

8.
The ability to bypass DNA lesions encountered during replication is important in order to maintain cell viability and avoid genomic instability. Exposure of mammalian cells to UV-irradiation induces the formation of DNA lesions that stall replication forks. In order to restore replication, different bypass mechanisms are operating, previously named post-replication repair. Translesion DNA synthesis is performed by low-fidelity polymerases, which can replicate across damaged sites. The nature of lesions and of polymerases involved influences the resulting frequency of mutations. Homologous recombination represents an alternative pathway for the rescue of stalled replication forks. Caffeine has long been recognized to influence post-replication repair, although the mechanism is not identified. Here, we found that caffeine delays the progress of replication forks in UV-irradiated Chinese hamster cells. The length of this enhanced delay was similar in wild-type cells and in cell deficient in either homologous recombination or nucleotide excision repair. Furthermore, caffeine attenuated the frequency of UV-induced mutations in the hprt gene, whereas the frequency of recombination, monitored in this same gene, was enhanced. These observations indicate that in cells exposed to UV-light, caffeine inhibits the rescue of stalled replication forks by translesion DNA synthesis, thereby causing a switch to bypass via homologous recombination. The biological consequence of the former pathway is mutations, while the latter results in chromosomal aberrations.  相似文献   

9.
The checkpoint response to replication stress   总被引:1,自引:0,他引:1  
Genome instability is a hallmark of cancer cells, and defective DNA replication, repair and recombination have been linked to its etiology. Increasing evidence suggests that proteins influencing S-phase processes such as replication fork movement and stability, repair events and replication completion, have significant roles in maintaining genome stability. DNA damage and replication stress activate a signal transduction cascade, often referred to as the checkpoint response. A central goal of the replication checkpoint is to maintain the integrity of the replication forks while facilitating replication completion and DNA repair and coordinating these events with cell cycle transitions. Progression through the cell cycle in spite of defective or incomplete DNA synthesis or unrepaired DNA lesions may result in broken chromosomes, genome aberrations, and an accumulation of mutations. In this review we discuss the multiple roles of the replication checkpoint during replication and in response to replication stress, as well as the enzymatic activities that cooperate with the checkpoint pathway to promote fork resumption and repair of DNA lesions thereby contributing to genome integrity.  相似文献   

10.
A transformation assay has been used to follow the fixation of mutations to novobiocin resistance induced by N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) in Haemophilus influenzae. Very few mutations are produced by recently treated DNA, but many are produced by the DNA from cells that have been incubated for a time after exposure to MNNG. The time course of this mutation fixation is shown to coincide reasonably well with the time course of semiconservative DNA synthesis, as judged by uptake studies and by isopycnic centrifugation of density-labeled cells. Incubation with bromodeoxyuridine (BrdUrd) during the fixation period decreases the number of mutations that are fixed, showing in another way the importance of DNA synthesis for fixation.Mutations fixed in the presence of BrdUrd are not more sensitive to 313-nm radiation than those fixed in its absence, suggesting that these residual mutations are fixed in the absence of extensive DNA replication. Mutations newly fixed in the absence of BrdUrd are much more sensitive to 313-nm radiation than are the same mutations some cell generations later. This shows that the newly fixed mutations are in a state that is different from their final form, either because they are in regions of DNA with special configurations of the strands or because they are in a region of DNA that is a hybrid between an old, alkylated strand and a new strand with some bases different from normal. The data suggest that it is unlikely that anything like all the mutations that are fixed in H. influenzae arise by direct action of MNNG on the replication fork. Many of the results can be explained in terms of fixation during semiconservative replication of premutational lesions, some of which are initially located some distance from the replication fork. The final yield would then depend on the relative rates of removal of the lesions by repair and of fixation by replication.  相似文献   

11.
DNA damage impairs cell growth by delaying or preventing critical processes such as DNA replication and chromosome segregation. In normal proliferating cells, initiation of these processes is controlled by genetically-defined pathways known as checkpoints. Tumors often acquire mutations that disable checkpoints and cancer cells can therefore progress unimpeded into S-phase, through G2 and into mitosis with chromosomal DNA damage. Checkpoint bypass in cancer cells is associated with cell death and loss of proliferative capacity and therefore is believed to contribute to the efficacy of DNA-damaging therapies. Are cancer cell clones that bypass checkpoints invariably more sensitive to DNA damage than checkpoint-proficient cells in normal tissues? We present evidence that the inherent survival of damaged human cells can be surprisingly independent of checkpoint control.  相似文献   

12.
Adaptive or selection-induced mutations are defined as mutations that occur in non-dividing cells as a response to prolonged non-lethal selective pressure such as starvation for an essential amino acid. In the absence of DNA replication, the processing of endogenous DNA lesions by repair enzymes probably acts as a source of mutations. We are studying selection-induced reversions of frameshift alleles in the eukaryote Saccharomyces cerevisiae. Here we show that respiration-deficient strains, totally devoid of mitochondrial DNA, yield selection-induced mutants at slightly elevated frequencies compared to isonucleic respiration-competent strains. Therefore factors of mitochondrial origin such as reactive oxygen species or hypothetical recombinogenic DNA fragments are unlikely to be mediators of selection-induced nuclear frameshift mutation in yeast. Furthermore we compared sequence spectra of reversions of the +1 hom3-10 frameshift allele and found a strong preference for ?1 deletions in mononucleotide repeats in selection-induced and replication-dependent revertants, indicating slippage errors during DNA repair synthesis as well as during DNA replication. Remarkably, a higher degree of variation in the site of the reverting frameshift and accompanying base substitutions was found among selection-induced revertants.  相似文献   

13.
We analyzed the nature of spontaneous mutations at the autosomal locus coding for adenine phosphoribosyltransferase in the human colorectal carcinoma cell line SW620 to establish whether distinctive mutational pathways exist that might underlie the more complex genome rearrangements arising in tumor cells. Point mutations occur at a low rate in aprt hemizygotes derived from SW620, largely as a result of base substitutions at G.C base pairs to yield transversions and transitions. However, a novel pathway is evident in the form of multiple dispersed mutations in which two errors, separated by as much as 1,800 bp, fall in the same mutant gene. Such mutations could be the result of error-prone DNA synthesis occurring during normal replication or during long-patch excision-repair of spontaneously arising DNA lesions. This process could also contribute to the chromosomal instability evident in these tumor cells.  相似文献   

14.
Molecular anatomy of the DNA damage and replication checkpoints   总被引:12,自引:0,他引:12  
Qin J  Li L 《Radiation research》2003,159(2):139-148
Cell cycle checkpoints are signal transduction pathways that enforce the orderly execution of the cell division cycle and arrest the cell cycle upon the occurrence of undesirable events, such as DNA damage, replication stress, and spindle disruption. The primary function of the cell cycle checkpoint is to ensure that the integrity of chromosomal DNA is maintained. DNA lesions and disrupted replication forks are thought to be recognized by the DNA damage checkpoint and replication checkpoint, respectively. Both checkpoints initiate protein kinase-based signal transduction cascade to activate downstream effectors that elicit cell cycle arrest, DNA repair, or apoptosis that is often dependent on dose and cell type. These actions prevent the conversion of aberrant DNA structures into inheritable mutations and minimize the survival of cells with unrepairable damage. Genetic components of the damage and replication checkpoints have been identified in yeast and humans, and a working model is beginning to emerge. We summarize recent advances in the DNA damage and replication checkpoints and discuss the essential functions of the proteins involved in the checkpoint responses.  相似文献   

15.
We have previously observed in Chinese hamster cells that ethyl methane sulfonate (EMS) induces mutations which are distributed over at least 10-14 cell divisions following treatment. This delayed appearance of mutations could be explained by EMS-induced lesions which remain in DNA and have a probability that is significantly less than 1.0 of producing base mispairing errors during successive replication cycles (replication-dependent). Alternatively, delayed mutation may be a time-dependent process in which a slow acting or damage inducible error-prone repair process removes persistent DNA lesions and replaces them with an incorrect base during the course of 7-10 days of colony growth following EMS exposure. To address this question, the distribution of HGPRT delayed mutation events (fifth division or later) in cells plated immediately for exponential growth after EMS treatment was compared with the distribution in cells which remained under confluent growth conditions for 8 days and then were replated. Both the distribution and rate of accumulation of delayed mutations (mutations/cell division) were similar in the two culture conditions. In contrast, the frequency of early mutations (before the fifth division) in the confluent population was reduced more than 2-fold compared to dividing cells. A comparison of the frequency of EMS-induced DNA lesions in the two populations revealed that the density inhibited population contained one third the DNA lesions of the exponential population. These results argue against a time-dependent process since, if this mechanism applies, one would expect an increase in early mutant events and a decrease in delayed events in the confluent population. The results, however, are consistent with a replication model in which potential early mutant lesions are preferentially removed in the density inhibited culture during the 8 days of incubation while lesions producing late mutants are not removed.  相似文献   

16.
The mioC gene, which neighbors the chromosomal origin of replication (oriC) in Escherichia coli, has in a number of studies been implicated in the control of oriC initiation on minichromosomes. The present work reports on the construction of cells carrying different mioC mutations on the chromosome itself. Flow cytometry was employed to study the DNA replication control and growth pattern of the resulting mioC mutants. All parameters measured (growth rate, cell size, DNA/cell, number of origins per cell, timing of initiation) were the same for the wild type and all the mioC mutant cells under steady state growth and after different shifts in growth medium and after induction of the stringent response. It may be concluded that the dramatic effects of mioC mutations reported for minichromosomes are not observed for chromosomal replication and that the mioC gene and gene product is of little importance for the control of initiation. The data demonstrate that a minichromosome is not necessarily a valid model for chromosomal replication.  相似文献   

17.
Translesion DNA synthesis (TLS) employs low-fidelity DNA polymerases to bypass replication-blocking lesions, and being associated with chromosomal replication was presumed to occur in the S phase of the cell cycle. Using immunostaining with anti-replication protein A antibodies, we show that in UV-irradiated mammalian cells, chromosomal single-stranded gaps formed in S phase during replication persist into the G2 phase of the cell cycle, where their repair is completed depending on DNA polymerase ζ and Rev1. Analysis of TLS using a high-resolution gapped-plasmid assay system in cell populations enriched by centrifugal elutriation for specific cell cycle phases showed that TLS operates both in S and G2. Moreover, the mutagenic specificity of TLS in G2 was different from S, and in some cases overall mutation frequency was higher. These results suggest that TLS repair of single-stranded gaps caused by DNA lesions can lag behind chromosomal replication, is separable from it, and occurs both in the S and G2 phases of the cell cycle. Such a mechanism may function to maintain efficient replication, which can progress despite the presence of DNA lesions, with TLS lagging behind and patching regions of discontinuity.  相似文献   

18.
Adaptive or selection-induced mutations are defined as mutations that occur in non-dividing cells as a response to prolonged non-lethal selective pressure such as starvation for an essential amino acid. In the absence of DNA replication, the processing of endogenous DNA lesions by repair enzymes probably acts as a source of mutations. We are studying selection-induced reversions of frameshift alleles in the eukaryote Saccharomyces cerevisiae. Here we show that respiration-deficient strains, totally devoid of mitochondrial DNA, yield selection-induced mutants at slightly elevated frequencies compared to isonucleic respiration-competent strains. Therefore factors of mitochondrial origin such as reactive oxygen species or hypothetical recombinogenic DNA fragments are unlikely to be mediators of selection-induced nuclear frameshift mutation in yeast. Furthermore we compared sequence spectra of reversions of the +1 hom3-10 frameshift allele and found a strong preference for −1 deletions in mononucleotide repeats in selection-induced and replication-dependent revertants, indicating slippage errors during DNA repair synthesis as well as during DNA replication. Remarkably, a higher degree of variation in the site of the reverting frameshift and accompanying base substitutions was found among selection-induced revertants. Received: 25 May 1998 / Accepted: 20 August 1998  相似文献   

19.
Most tissues in metazoans undergo continuous turnover due to cell death or epithelial shedding. Since cellular replication is associated with an inherent risk of mutagenesis, tissues are maintained by a small group of stem cells (SCs) that replicate slowly to maintain their own population and that give rise to differentiated cells. There is increasing evidence that many tumors are also maintained by a small population of cancer stem cells that may arise by mutations from normal SCs. SC replication can be either symmetric or asymmetric. The former can lead to expansion of the SC pool. We describe a simple model to evaluate the impact of (a)symmetric SC replication on the expansion of mutant SCs and to show that mutations that increase the probability of asymmetric replication can lead to rapid mutant SC expansion in the absence of a selective fitness advantage. Mutations in several genes can lead to this process and may be at the root of the carcinogenic process.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号