首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The heart remodels myocardial tissue in physiological and pathological response. The cell-extracellular matrix (ECM) interaction provides not only structural and mechanical support but also important biological signaling during tissue remodeling. Among various ECM molecules, tenascin-C (TNC) is well known as a regulator of multiple cellular functions during embryogenesis, wound healing or cancer progression. In the heart, TNC appears in several important steps of embryonic development such as the initial differentiation of cardiomyocytes or coronary vasculo/angiogenesis, but it is not detected in a normal adult myocardium. However, TNC is found to re-express after myocardial injury and may regulate cellular behavior during tissue remodeling by modulating the attachment of cardiomyocytes to connective tissue, by enhancing migration and differentiation of myofibroblasts, and by inducing matrix metallo-proteinases. TNC also interacts with other ECM molecules and may modulate progression of fibrosis. Furthermore, transient and site specific expression of TNC closely associated with myocardial injury and inflammation suggests not only its key roles during tissue remodeling but also that TNC can be a marker for myocardial disease activity.  相似文献   

2.

Background

The extracellular matrix (ECM) is constituted by diverse composite structures, which determine the specific to each organ, histological architecture and provides cells with biological information, mechanical support and a scaffold for adhesion and migration. The pleiotropic effects of the ECM stem from the dynamic changes in its molecular composition and the ability to remodel in order to effectively regulate biological outcomes. Besides collagens, fibronectin and laminin are two major fiber-forming constituents of various ECM structures.

Scope of review

This review will focus on the properties and the biological functions of non-collagenous extracellular matrix especially on laminin and fibronectin that are currently emerging as important regulators of blood vessel formation and function in health and disease.

Major conclusions

The ECM is a fundamental component of the microenvironment of blood vessels, with activities extending beyond providing a vascular scaffold; extremely versatile it directly or indirectly modulates all essential cellular functions crucial for angiogenesis, including cell adhesion, migration, proliferation, differentiation and lumen formation. Specifically, fibronectin and laminins play decisive roles in blood vessel morphogenesis both during embryonic development and in pathological conditions, such as cancer.

General significance

Emerging evidence demonstrates the importance of ECM function during embryonic development, organ formation and tissue homeostasis. A wealth of data also illustrates the crucial role of the ECM in several human pathophysiological processes, including fibrosis, skeletal diseases, vascular pathologies and cancer. Notably, several ECM components have been identified as potential therapeutic targets for various diseases, including cancer. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties.  相似文献   

3.
Extracellular matrix (ECM) provides both structural support and contextual information to cells within tissues and organs. The combination of biochemical and biomechanical signals from the ECM modulates responses to extracellular signals toward differentiation, proliferation, or apoptosis; alterations in the ECM are necessary for development and remodeling processes, but aberrations in the composition and organization of ECM are associated with disease pathology and can predispose to development of cancer. The primary cell surface sensors of the ECM are the integrins, which provide the physical connection between the ECM and the cytoskeleton and also convey biochemical information about the composition of the ECM. Transforming growth factor-β (TGF-β) is an extracellular signaling molecule that is a powerful controller of a variety of cellular functions, and that has been found to induce very different outcomes according to cell type and cellular context. It is becoming clear that ECM-mediated signaling through integrins is reciprocally influenced by TGF-β: integrin expression, activation, and responses are affected by cellular exposure to TGF-β, and TGF-β activation and cellular responses are in turn controlled by signaling from the ECM through integrins. Epithelial-mesenchymal transition (EMT), a physiological process that is activated by TGF-β in normal development and in cancer, is also affected by the composition and structure of the ECM. Here, we will outline how signaling from the ECM controls the contextual response to TGF-β, and how this response is selectively modulated during disease, with an emphasis on recent findings, current challenges, and future opportunities.  相似文献   

4.
Bones are constantly remodeled throughout life to maintain robust structure and function. Dysfunctional remodeling can result in pathological conditions such as osteoporosis (bone loss) or osteosclerosis (bone gain). Bone contains 100s of extracellular matrix (ECM) proteins and the ECM of the various bone tissue compartments plays essential roles directing the remodeling of bone through the coupled activity of osteoclasts (which resorb bone) and osteoblasts (which produce new bone). One important role for the ECM is to serve as a scaffold upon which mineral is deposited. This scaffold is primarily type I collagen, but other ECM components are involved in binding of mineral components. In addition to providing a mineral scaffolding role, the ECM components provide structural flexibility for a tissue that would otherwise be overly rigid. Although primarily secreted by osteoblast-lineage cells, the ECM regulates cells of both the osteoblast-lineage (such as progenitors, mature osteoblasts, and osteocytes) and osteoclast-lineage (including precursors and mature osteoclasts), and it also influences the cross-talk that occurs between these two oppositional cells. ECM influences the differentiation process of mesenchymal stem cells to become osteoblasts by both direct cell-ECM interactions as well as by modulating growth factor activity. Similarly, the ECM can influence the development of osteoclasts from undifferentiated macrophage precursor cells, and influence osteoclast function through direct osteoclast cell binding to matrix components. This comprehensive review will focus on how networks of ECM proteins function to regulate osteoclast- and osteoblast-mediated bone remodeling. The clinical significance of these networks on normal bone and as they relate to pathologies of bone mass and geometry will be considered. A better understanding of the dynamic role of ECM networks in regulating tissue function and cell behavior is essential for the development of new treatment approaches for bone loss.  相似文献   

5.
Dynamic remodeling of the extracellular matrix (ECM) is essential for development, wound healing and normal organ homeostasis. Life-threatening pathological conditions arise when ECM remodeling becomes excessive or uncontrolled. In this Perspective, we focus on how ECM remodeling contributes to fibrotic diseases and cancer, which both present challenging obstacles with respect to clinical treatment, to illustrate the importance and complexity of cell-ECM interactions in the pathogenesis of these conditions. Fibrotic diseases, which include pulmonary fibrosis, systemic sclerosis, liver cirrhosis and cardiovascular disease, account for over 45% of deaths in the developed world. ECM remodeling is also crucial for tumor malignancy and metastatic progression, which ultimately cause over 90% of deaths from cancer. Here, we discuss current methodologies and models for understanding and quantifying the impact of environmental cues provided by the ECM on disease progression, and how improving our understanding of ECM remodeling in these pathological conditions is crucial for uncovering novel therapeutic targets and treatment strategies. This can only be achieved through the use of appropriate in vitro and in vivo models to mimic disease, and with technologies that enable accurate monitoring, imaging and quantification of the ECM.  相似文献   

6.
Extracellular matrix (ECM) provides both structural support and contextual information to cells within tissues and organs. The combination of biochemical and biomechanical signals from the ECM modulates responses to extracellular signals toward differentiation, proliferation, or apoptosis; alterations in the ECM are necessary for development and remodeling processes, but aberrations in the composition and organization of ECM are associated with disease pathology and can predispose to development of cancer. The primary cell surface sensors of the ECM are the integrins, which provide the physical connection between the ECM and the cytoskeleton and also convey biochemical information about the composition of the ECM. Transforming growth factor-β (TGF-β) is an extracellular signaling molecule that is a powerful controller of a variety of cellular functions, and that has been found to induce very different outcomes according to cell type and cellular context. It is becoming clear that ECM-mediated signaling through integrins is reciprocally influenced by TGF-β: integrin expression, activation, and responses are affected by cellular exposure to TGF-β, and TGF-β activation and cellular responses are in turn controlled by signaling from the ECM through integrins. Epithelial-mesenchymal transition (EMT), a physiological process that is activated by TGF-β in normal development and in cancer, is also affected by the composition and structure of the ECM. Here, we will outline how signaling from the ECM controls the contextual response to TGF-β, and how this response is selectively modulated during disease, with an emphasis on recent findings, current challenges, and future opportunities.  相似文献   

7.
Lymphocytes accumulate within the extracellular matrix (ECM) of tumor, wound, or inflammatory tissues. These tissues are largely comprised of polymerized adhesion proteins such as fibrin and fibronectin or their fragments. Nonactivated lymphoid cells attach preferentially to polymerized ECM proteins yet are unable to attach to monomeric forms or fragments of these proteins without previous activation. This adhesion event depends on the appropriate spacing of integrin adhesion sites. Adhesion of nonactivated lymphoid cells to polymeric ECM components results in activation of the antigen receptor-associated Syk kinase that accumulates in adhesion-promoting podosomes. In fact, activation of Syk by antigen or agonists, as well as expression of an activated Syk mutant in lymphoid cells, facilitates their adhesion to monomeric ECM proteins or their fragments. These results reveal a cooperative interaction between signals emanating from integrins and antigen receptors that can serve to regulate stable lymphoid cell adhesion and retention within a remodeling ECM.  相似文献   

8.
Invadopodia are actin-based protrusions of the plasma membrane that penetrate into the extracellular matrix (ECM), and enzymatically degrade it. Invadopodia and podosomes, often referred to, collectively, as “invadosomes,” are actin-based membrane protrusions that facilitate matrix remodeling and cell invasion across tissues, processes that occur under specific physiological conditions such as bone remodeling, as well as under pathological states such as bone, immune disorders, and cancer metastasis. In this review, we specifically focus on the functional architecture of invadopodia in cancer cells; we discuss here three functional domains of invadopodia responsible for the metalloproteinase-based degradation of the ECM, the cytoskeleton-based mechanical penetration into the matrix, and the integrin adhesome-based adhesion to the ECM. We will describe the structural and molecular organization of each domain and the cross-talk between them during the invasion process.  相似文献   

9.
Metalloproteases are important in many aspects of biology, ranging from cell proliferation, differentiation and remodeling of the extracellular matrix (ECM) to vascularization and cell migration. These events occur several times during organogenesis in both normal development and during tumor progression. Mechanisms of metalloprotease action underlying these events include the proteolytic cleavage of growth factors so that they can become available to cells not in direct physical contact, degradation of the ECM so that founder cells can move across tissues into nearby stroma, and regulated receptor cleavage to terminate migratory signaling. Most of these processes require a delicate balance between the functions of matrix metalloproteases (MMPs) or metalloprotease-disintegrins (ADAMs) and natural tissue inhibitors of metalloproteases (TIMPs). In this review, we discuss recent progress in identifying an essential role for metalloproteases in axon outgrowth, as an example of a focal invasive event. We also discuss the evolving concept of how MMPs might regulate stem cell fate during tumor development.  相似文献   

10.
Invadopodia are actin-based protrusions of the plasma membrane that penetrate into the extracellular matrix (ECM), and enzymatically degrade it. Invadopodia and podosomes, often referred to, collectively, as “invadosomes,” are actin-based membrane protrusions that facilitate matrix remodeling and cell invasion across tissues, processes that occur under specific physiological conditions such as bone remodeling, as well as under pathological states such as bone, immune disorders, and cancer metastasis. In this review, we specifically focus on the functional architecture of invadopodia in cancer cells; we discuss here three functional domains of invadopodia responsible for the metalloproteinase-based degradation of the ECM, the cytoskeleton-based mechanical penetration into the matrix, and the integrin adhesome-based adhesion to the ECM. We will describe the structural and molecular organization of each domain and the cross-talk between them during the invasion process.  相似文献   

11.
Dynamic imaging of cellular interactions with extracellular matrix   总被引:6,自引:2,他引:4  
Adhesive and proteolytic interactions of cells with components of the extracellular matrix (ECM) are fundamental to morphogenesis, tissue assembly and remodeling, and cell migration as well as signal acquisition from tissue-bound factors. The visualization from fixed samples provides snapshot-like, static information on the cellular and molecular dynamics of adhesion receptor and protease functions toward ECM, such as interstitial fibrillar tissues and basement membranes. Recent technological developments additionally support the dynamic imaging of ECM scaffolds and the interaction behavior of cells contained therein. These include differential interference contrast, confocal reflection microscopy, optical coherence tomography, and multiphoton microscopy and second-harmonic generation imaging. Most of these approaches are combined with fluorescence imaging using derivates of GFP and/or other fluorescent dyes. Dynamic 3D imaging has revealed an unexpected degree of dynamics and turnover of cell adhesion and migration as well as basic mechanisms that lead to proteolytic remodeling of connective tissue by stromal cells and invading tumor cells.Electronic Supplementary Material Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s00418-004-0682-0The Histochemistry and Cell Biology Lecture presented at the 12th International Congress of Histochemistry and Cytochemistry in La Jolla, California, USA, 24–28 July 2004  相似文献   

12.
13.
Physical cues in the extracellular microenvironment regulate cancer cell metastasis. Functional microRNA (miRNA) carried by cancer derived exosomes play a critical role in extracellular communication between cells and the extracellular microenvironment. However, little is known about the role of exosomes loaded miRNAs in the mechanical force transmission between cancer cells and extracellular microenvironment. Herein, our results suggest that stiff extracellular matrix (ECM) induced exosomes promote cancer cell migration. The ECM mechanical force regulated the exosome miRNA cargo of prostate cancer cells. Exosome miRNAs regulated by the ECM mechanical force modulated cancer cell metastasis by regulating cell motility, ECM remodeling and the interaction between cancer cells and nerves. Focal adhesion kinase mediated-ECM mechanical force regulated the intracellular miRNA expression, and F-actin mediate-ECM mechanical force regulated miRNA packaging into exosomes. The above results demonstrated that the exosome miRNA cargo promoted cancer metastasis by transmitting the ECM mechanical force. The ECM mechanical force may play multiple roles in maintaining the microenvironment of cancer metastasis through the exosome miRNA cargo.  相似文献   

14.
The correct control of cell fate decisions is critical for metazoan development and tissue homeostasis. It is established that the integrin family of cell surface receptors regulate cell fate by mediating cell–cell and cell–extracellular matrix (ECM) interactions. However, our understanding of how the different family members control discrete aspects of cell biology, and how this varies between tissues and is temporally regulated, is still in its infancy. An emerging area of investigation aims to understand how integrins translate changes in tension in the surrounding microenvironment into biological responses. This is particularly pertinent due to changes in the mechanical properties of the ECM having been linked to diseases, such as cancer. In this review, we provide an overview of the roles integrins play in important developmental processes, such as proliferation, polarity, apoptosis, differentiation and maintenance of “stemness”. We also discuss recent advances in integrin mechanobiology and highlight the involvement of integrins and aberrant ECM in cancer.  相似文献   

15.
Integrins are cell adhesion receptors that sense the extracellular matrix (ECM) environment. One of their functions is to regulate cell fate decisions, although the question of how integrins initiate intracellular signaling is not fully resolved. In this paper, we examine the role of talin, an adapter protein at cell-matrix attachment sites, in outside-in signaling. We used lentiviral small hairpin ribonucleic acid to deplete talin in mammary epithelial cells. These cells still attached to the ECM in an integrin-dependent manner and spread. They had a normal actin cytoskeleton, but vinculin, paxillin, focal adhesion kinase (FAK), and integrin-linked kinase were not recruited to adhesion sites. Talin-deficient cells showed proliferation defects, and reexpressing a tail portion of the talin rod, but not its head domain, restored integrin-mediated FAK phosphorylation, suppressed p21 expression, and rescued cell cycle. Thus, talin recruits and activates focal adhesion proteins required for proliferation via the C terminus of its rod domain. Our study reveals a new function for talin, which is to link integrin adhesions with cell cycle progression.  相似文献   

16.
Matrix metalloproteinase stromelysin-3 in development and pathogenesis   总被引:1,自引:0,他引:1  
The extracellular matrix (ECM) serves as a medium for cell-cell interactions and can directly signal cells through cell surface ECM receptors, such as integrins. In addition, many growth factors and signaling molecules are stored in the ECM. Thus, ECM remodeling and/or degradation plays a critical role in cell fate and behavior during many developmental and pathological processes. ECM remodeling/degradation is, to a large extent, mediated by matrix metalloproteinases (MMPs), a family of extracellular or membrane-bound, Zn2+-dependent proteases that are capable of digesting various proteinaceous components of the ECM. Of particular interest among them is the MMP11 or stromelysin-3, which was first isolated as a breast cancer associated protease. Here, we review some evidence for the involvement of this MMP in development and diseases with a special emphasis on amphibian metamorphosis, a postembryonic, thyroid hormone-dependent process that transforms essentially every organ/tissue of the animal.  相似文献   

17.
Interaction of cells with extracellular matrix (ECM) largely defines migration capacity of cells and ways of their dissemination in normal tissue processes and during tumor progression. We review current knowledge about structure of cell adhesions with ECM and their alterations during carcinogenesis. We analyze how changes in structure of cell-matrix adhesions and ECM itself lead to acquisition of neoplastic properties by cells. Modern concepts of tumor cell motility and changes in the relationships of cells with ECM during tumor development are presented. Contemporary approaches for influencing the cell-ECM adhesion structures for inhibition of invasion and metastasis are briefly discussed.  相似文献   

18.
Membrane type-1 matrix metalloproteinase and TIMP-2 in tumor angiogenesis.   总被引:12,自引:0,他引:12  
The matrix metalloproteinases (MMPs) constitute a multigene family of over 23 secreted and cell-surface associated enzymes that cleave or degrade various pericellular substrates. In addition to virtually all extracellular matrix (ECM) compounds, their targets include other proteinases, chemotactic molecules, latent growth factors, growth factor-binding proteins and cell surface molecules. The MMP activity is controlled by the physiological tissue inhibitors of MMPs (TIMPs). There is much evidence that MMPs and their inhibitors play a key role during extracellular remodeling in physiological situations and in cancer progression. They have other functions that promoting tumor invasion. Indeed, they regulate early stages of tumor progression such as tumor growth and angiogenesis. Membrane type MMPs (MT-MMPs) constitute a new subset of cell surface-associated MMPs. The present review will focus on MT1-MMP which plays a major role at least, in the ECM remodeling, directly by degrading several of its components, and indirectly by activating pro-MMP2. As our knowledge on the field of MT1-MMP biology has grown, the unforeseen complexities of this enzyme and its interaction with its inhibitor TIMP-2 have emerged, often revealing unexpected mechanisms of action.  相似文献   

19.
During cancer progression, tumor cells eventually invade the surrounding collagen-rich extracellular matrix. Here we show that squamous cell carcinoma cells strongly adhere to Type I collagen substrates but display limited motility and invasion on collagen barriers. Further analysis revealed that in addition to the α2β1 integrin, a second collagen receptor was identified as Syndecan-1 (Sdc1), a cell surface heparan sulfate proteoglycan. We demonstrate that siRNA-mediated depletion of Sdc1 reduced adhesion efficiency to collagen I, whereas knockdown of Sdc4 was without effect. Importantly, silencing Sdc1 expression caused reduced focal adhesion plaque formation and enhanced cell spreading and motility on collagen I substrates, but did not alter cell motility on other ECM substrates. Sdc1 depletion ablated adhesion-induced RhoA activation. In contrast, Rac1 was strongly activated following Sdc1 knockdown, suggesting that Sdc1 may mediate the link between integrin-induced actin remodeling and motility. Taken together, these data substantiate the existence of a co-adhesion receptor system in tumor cells, whereby Sdc1 functions as a key regulator of cell motility and cell invasion by modulating RhoA and Rac activity. Downregulation of Sdc1 expression during carcinoma progression may represent a mechanism by which tumor cells become more invasive and metastatic.  相似文献   

20.
肿瘤的发生发展是一个肿瘤细胞与其微环境相互促进,共同演化的动态过程.实体肿瘤的发生发展过程伴随细胞外基质的过量沉积及其组织形式的异常以及成纤维细胞的活化和富集.细胞外基质与肿瘤相关成纤维细胞不仅是实体肿瘤的重要病理特征,同时也是恶性肿瘤发展的重要驱动力量.细胞外基质与肿瘤相关成纤维细胞通过多种机制促进了肿瘤的发生、发展和转移.针对细胞外基质与肿瘤相关成纤维细胞进行肿瘤治疗,可以为肿瘤的临床治疗提供新的思路.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号