首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Access to glycopeptides with C-terminal thioester functionality is essential for the synthesis of large glycopeptides and glycoproteins through the use of native chemical ligation. Toward that end, we have developed a concise method for the synthesis of a glycopeptide thioester having an intact complex-type dibranched disialyl-oligosaccharide. The synthesis employed a coupling reaction between benzylthiol and a free carboxylic acid at the C-terminus of a glycopeptide in which the peptide side chains are protected. After construction of glycopeptide on the HMPB-PEGA resin through the Fmoc-strategy, the protected glycopeptide was released upon treatment with acetic acid/trifluoroethanol and then the C-terminal carboxylic acid was coupled with benzylthiol at -20 degrees C in DMF. For this coupling, PyBOP/DIPEA was found to be the best for the formation of the thioester, while avoiding racemization. Finally, the protecting groups were removed in good yield with 95% TFA, thus affording a glycopeptide-thioester having an intact and homogeneous complex-type disialyl-oligosaccharide.  相似文献   

2.
Glycoprotein is one of the important biopolymer in a biological system. In order to understand the complex correlation between the exact oligosaccharide structure of the glycoprotein and its function, preparation of homogeneous glycoprotein is to be essential. For such a purpose, chemical synthesis is one of the most promising methods to obtain homogeneous glycoproteins. Glycopolypeptide, which is a backbone of glycoprotein and an essential intermediate for glycoprotein synthesis, can be obtained through coupling of peptide and glycopeptide segments because straightforward synthesis of such a long glycopolypeptide is still a challenging task. Native chemical ligation (NCL) is one of the powerful methods for the coupling reaction of peptides, however, despite extensive investigation, NCL has site limitation for the coupling. In this context, we discovered NCL at serine site, where is a highly conserved amino acid residue in glycoproteins. This reaction strategy is owed to conversion reaction of cysteine residue to serine residue after conventional NCL. This conversion reaction is consisted of three steps; S-methylation of cysteine, CNBr reaction to afford O-ester linked peptide, and O to N acyl shift to get native peptide linkage with serine residue. During extensive investigation of the strategy, we found new reaction media for CNBr reaction, which is the key reaction in the strategy. This enabled us to synthesize not only N-linked glycopeptides but also O-linked sialyl glycopeptides. Thus we could demonstrate the usefulness of this new glycopeptide ligation strategy. In this short review, we will introduce our newly developed cysteine to serine conversion reaction which will expand the application of NCL in peptide as well as glycopeptide synthesis.  相似文献   

3.
To prepare a small library of homogeneous glycoconjugates with varying oligosaccharide structures, a combinatorial strategy was employed. The target glycopeptide was divided into two peptide segments (A and B) and both were prepared by solid phase peptide synthesis. These peptides, which can be coupled by native chemical ligation through an amide bond, were subsequently coupled to two kinds of human complex type oligosaccharides. This process systematically afforded the desired glycoconjugate library.  相似文献   

4.
Peptide thioesters are important tools for the total synthesis of proteins using native chemical ligation (NCL). Preparation of glycopeptide thioesters, that enable the assembly of homogeneously glycosylated proteins, is complicated by the perceived fragile nature of the sugar moiety. Herein, we demonstrate the compatibility of thioester formation via NS acyl transfer with native N-glycopeptides and report observations that will aid in their preparation.  相似文献   

5.
The technology of glycopeptide synthesis has recently developed into a fully mature science capable of creating diverse glycopeptides of biological interest, even in combinatorial displays. This has allowed biochemists to investigate substrate specificity in the biosynthetic processing and immunology of various protein glycoforms. The construction of all the mucin core structures and a varietyof cancer-related glycopeptides has facilitated detailed analysis of the interaction between MHC-bound glycopeptides and T cell receptors. Novel dendritic neoglycopeptide ligands have been shown to demonstrate high affinity for carbohydrate receptors and these interactions are highly dendrimer specific. Large complex N-linked oligosaccharides have been introduced into glycopeptides using synthetic or chemoenzymatic procedures, both methods affording pure glycopeptides corresponding to a single glycoform in preparative quantities. The improved availability of glycosyl transferases has led to increased use of chemoenzymatic synthesis. Chemical ligation has been introduced as a method of attaching glycans to peptide templates. Combinatorial synthesis and the analysis of resin-bound glycopeptide libraries have been successfully carried out by applying the ladder synthesis principle. Direct quantitative glycosylation of peptide templates on solid phase has paved the way for the synthesis of templated glycopeptide mixtures as libraries of libraries.  相似文献   

6.
(S-2-amino-5-(aminooxy)pentanoic acid (L -homocanaline, HCan), a structural analogue of lysine, contains a reactive alkyloxyamine side chain and is therefore considered to react chemoselectively with carbonyl compounds by forming a kinetically stable oxime bond. The chemical synthesis of L -homocanaline starting from protected glutamic acid derivatives is described. Two orthogonally protected homocanaline derivatives were synthesized and their use in standard SPPS procedures was exemplified for the synthesis of a chemoselectively addressable cyclic peptide for use in TASP design. Moreover, the wide range of applications of this unique building block was demonstrated for the chemoselective ligation of an unprotected disaccharide to a HCan containing model peptide resulting in a chimeric glycopeptide structure. © 1998 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

7.
Native chemical ligation has enabled the chemical synthesis of proteins for a wide variety of applications (e.g., mirror-image proteins). However, inefficiencies of this chemoselective ligation in the context of large or otherwise challenging protein targets can limit the practical scope of chemical protein synthesis. In this review, we focus on recent developments aimed at enhancing and expanding native chemical ligation for challenging protein syntheses. Chemical auxiliaries, use of selenium chemistry, and templating all enable ligations at otherwise suboptimal junctions. The continuing development of these tools is making the chemical synthesis of large proteins increasingly accessible.  相似文献   

8.
9.
We report here the use of TEV protease cleavable fusion proteins to produce glycosylated bioactive peptides and proteins. Bacterial expression was utilized to produce two fusion proteins, GPRT-C37-H6 and His-tagged interleukin-2 (amino acids 6-133), which when cleaved by the tobacco etch virus NIa protease (TEV protease) to generate HIV entry inhibitor peptide C37-H6 and a truncated version of the cytokine interleukin-2, both containing N-terminal cysteines. The N-terminal cysteine containing C37-H6 and truncated interleukin-2 were then joined to a synthetic glycopeptide thioester utilizing native chemical ligation under nondenaturing and denaturing conditions, respectively. The ligations of the glycopeptide to the C37-H6 peptide and the truncated interleukin-2 protein both proceeded in high yield, though the size, and physical properties of the two polypeptides differ greatly.  相似文献   

10.
The glycopeptide antibiotics are the most important class of drugs used in the treatment of resistant bacterial infections including those caused by methicillin-resistant Staphylococcus aureus (MRSA). After more than 50 years of clinical use, the emergence of glycopeptide-resistant Gram-positive pathogens such as vancomycin-resistant enterococci (VRE) and vancomycin-resistant Staphylococcus aureus (VRSA) presents a serious global challenge to public health at a time few new antibiotics are being developed. This has led to renewed interest in the search for additional effective treatments including the development of new derivatives of the glycopeptide antibiotics. General approaches have been explored for modifying glycopeptide antibiotics, typically through the derivatization of the natural products themselves or more recently through chemical total synthesis. In this Perspective, we consider recent efforts to redesign glycopeptide antibiotics for the treatment of resistant microbial infections, including VRE and VRSA, and examine their future potential for providing an even more powerful class of antibiotics that are even less prone to bacterial resistance.  相似文献   

11.
Chemical gene synthesis is a powerful tool for basic biological research and biotechnology applications. During the last 30 years, major advances have been made in the chemical synthesis of DNA sequences ranging from fragments of <1 kb to multi-gene sequences of >30 kb. There is a need for simple, reproducible, less error-prone and cost-effective methods that guarantee successful synthesis of the desired genes and are amenable to automation. Many polymerase chain reaction (PCR)-based and non-polymerase-cycling-assembly (PCA)-based strategies have been developed for chemical gene synthesis. The PCR-based method has been the subject of several recent reviews. Here, we provide an overview of the progress in non-PCA-based chemical gene synthesis using different strategies and methods, including enzymatic gene synthesis, annealing and ligation reaction, simultaneous synthesis of two genes via a hybrid gene, shotgun ligation and co-ligation, insertion gene synthesis, gene synthesis via one strand of DNA, template-directed ligation, ligase chain reaction, microarray-mediated gene synthesis, Blue Heron solid support technology and Sloning building block technology. The fundamental principle underlying each strategy, an example where applicable, and the advantages and disadvantages are discussed. The emphasis is on discussion of the most recent technologies and their potential applications, particularly for microarray-based genomics research.  相似文献   

12.
The synthesis of proteins by native chemical ligation greatly enhances the application of chemistry to complex molecules such as proteins. The essential building blocks for this approach traditionally have been peptide-thioester segments that are linked chemoselectively in consecutive reactions. By using peptide selenoesters instead of thioesters, the ligation rate can be significantly accelerated permitting couplings at difficult sites and potentially enabling new ligation strategies. To facilitate the routine synthesis of selenoester peptides, a general and straightforward procedure has been developed that generates a suitably functionalized resin from which the desired selenoester peptide can be readily synthesized. This simple approach utilizes readily available and cheap chemical agents and enables production of peptide selenoesters of excellent quality in short time and with high recovery. In addition, the stability of peptide selenoesters was examined under different native chemical ligation conditions and compared to thioesters. Selenoesters are slightly more reactive and more susceptible to hydrolysis and aminolysis than thioesters but sufficiently stable under mildly acidic conditions (pH 6.5). Under these conditions, rapid selenoester-mediated ligation is kinetically favoured.  相似文献   

13.
The non-codable amino acid O-amino-serine, Ams, has been prepared in both L- and D-forms as the orthogonally protected derivative, Fmoc-Ams(Boc)-OH (1 and 2). This new amino acid derivative is useful for chemoselective ligations. Under acidic conditions and in the presence of all other common amino acid functionalities, the oxyamine function selectively forms oxime linkages with aldehydes. The Ams residue has been incorporated into both ends of the peptide sequence Asp-Leu-Trp-Gln-Lys using standard SPPS. The deprotected peptide has been used for chemical ligation to afford a peptide dimer as well as a glycopeptide. Ams racemization was found to be negligible, as monitored by HPLC separation of Ams dipeptide diastereomers.  相似文献   

14.
The chemical synthesis of proteins has facilitated functional studies of proteins due to the site‐specific incorporation of post‐translational modifications, labels, and non‐proteinogenic amino acids. Moreover, native chemical ligation provides facile access to proteins by chemical means. However, the application of the native chemical ligation reaction in the synthesis of parallel formats such as protein arrays has been complicated because of the often cumbersome and time‐consuming synthesis of the required peptide thioesters. An Fmoc‐based peptide thioester synthesis with self‐purification on the sulfonamide ‘safety‐catch’ linker widens this bottleneck because HPLC purification can be avoided. The method is based on an on‐resin cyclization–thiolysis reaction sequence. A macrocyclization via the N‐terminus of the full‐length peptide followed by a thiolytic C‐terminal ring opening allows selective detachment of the truncation products and the full‐length peptide. A brief overview of the chemical aspects of this method is provided including the optimization steps and the automation process. Furthermore, the application of the cyclization–thiolysis approach combined with the native chemical ligation reaction in the parallel synthesis of a library of 16 SH3‐domain variants of SHO1 in yeast is described, demonstrating the value of this new technique for the chemical synthesis of protein arrays. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

15.
C-terminal peptide alpha-thioesters are valuable intermediates in the synthesis/semisynthesis of proteins by native chemical ligation. They are prepared either by solid-phase peptide synthesis (SPPS) or biosynthetically by protein splicing techniques. The present paper reviews the different methods available for the chemical synthesis of peptide alpha-thioesters using Fmoc-based SPPS.  相似文献   

16.
The total chemical synthesis of RNase A using modern chemical ligation methods is described, illustrating the significant advances that have been made in chemical protein synthesis since Gutte and Merrifield's pioneering preparation of RNase A in 1969. The identity of the synthetic product was confirmed through rigorous characterization, including the determination of the X-ray crystal structure to 1.1 Angstrom resolution.  相似文献   

17.
Chemical ligation methods for the assembly of functional proteins continue to advance our basic understanding of protein structure and function. In this work, we report on our progress towards the full synthesis of HIV-1 Tat utilizing our newly developed ligation method; side-chain assisted ligation. The HIV-1 Tat was assembled from three fragments wherein the two thioester peptides were synthesized efficiently using the side-chain anchoring strategy following Fmoc-SPPS. The side-chain assisted ligation step was efficient and provided the ligation product in good yield. Following this step, native chemical ligation was used to fully assemble the HIV-1 Tat protein. Although the removal of the auxiliary in small peptides was straightforward, in the case of HIV-1 Tat this step was inefficient thus hampering the completion of the synthesis.  相似文献   

18.
Circular proteins, once thought to be rare, are now commonly found in plants. Their chemical synthesis, once thought to be difficult, is now readily achievable. The enabling methodology is largely due to the advances in entropic chemical ligation to overcome the entropy barrier in coupling the N- and C-terminal ends of large peptide segments for either intermolecular ligation or intramolecular ligation in end-to-end cyclization. Key elements of an entropic chemical ligation consist of a chemoselective capture step merging the N and C termini as a covalently linked O/S-ester intermediate to permit the subsequent step of an intramolecular O/S-N acyl shift to form an amide. Many ligation methods exploit the supernucleophilicity of a thiol side chain at the N terminus for the capture reaction, which makes cysteine-rich peptides ideal candidates for the entropy-driven macrocyclization. Advances in desulfurization and modification of the thiol-containing amino acids at the ligation sites to other amino acids add extra dimensions to the entropy-driven ligation methods. This minireview describes recent advances of entropy-driven ligation to prepare circular proteins with or without a cysteinyl side chain.  相似文献   

19.
The process of native chemical ligation (NCL) is well described in the literature. An N-terminal cysteine-containing peptide reacts with a C-terminal thioester-containing peptide to yield a native amide bond after transesterification and acyl transfer. An N-terminal cysteine is required as both the N-terminal amino function and the sidechain thiol participate in the ligation reaction. In certain circumstances it is desirable, or even imperative, that the N-terminal region of a peptidic reaction partner remain unmodified, for Instance for the retention of biological activity after ligation. This work discusses the synthesis of a pseudo-N-terminal cysteine building block for incorporation into peptides using standard methods of solid phase synthesis. Upon deprotection, this building block affords a de facto N-terminal cysteine positioned on an amino acid sidechain. which is capable of undergoing native chemical ligation with a thioester. The syntheses of several peptides and structures containing this motif are detailed, their reactions discussed. and further applications of this technology proposed.  相似文献   

20.
In this paper, ultrafiltration was employed to facilitate the isolation of intermediates in native chemical ligation. Depending on the molecular weight cutoff of the membrane used, molecules with different sizes could be purified, separated, or concentrated by the ultrafiltration process. Total chemical synthesis of the polypeptide chain of the enzyme Sortase AΔN59 was used as an example of the application of ultrafiltration in chemical protein synthesis. Sortase A is a ligase that catalyzes transpeptidation reactions between proteins that have C‐terminal LPXTG recognition sequence and Gly5‐ on the peptidoglycan of bacterial cell walls [3]. Ultrafiltration technique facilitated synthesis of Sortase AΔN59 and was a promising tool in isolation of intermediates in native chemical ligation. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号