首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Immunocytochemical localization of two distinct intracellular aspartic proteinases, cathepsins E and D, in human gastric mucosal cells and various rat cells was investigated by immunogold technique using discriminative antibodies specific for each enzyme. Cathepsin D was exclusively confined to primary or secondary lysosomes in almost all the cell types tested, whereas cathepsin E was not detected in the lysosomal system. The localization of cathepsin E varied with different cell types. Microvillous localization of cathepsin E was found in the intracellular canaliculi of human and rat gastric parietal cells, rat renal proximal tubule cells, and the bile canaliculi of rat hepatic cells. The immunolocalization of each enzyme in gastric cells were essentially the same in humans and rats. In the gastric feveolar epithelial cells and parietal cells, definite immunolabeling for cathepsin E was observed in the cytoplasmic matrix, the cisternae of the rough endoplasmic reticulum, and the dilated perinuclear envelope. In rat kidney, cathepsin E was detected only in the proximal tubule cells, while cathepsin D was found mainly in the lysosomes of the distal tubule cells but not in those of the proximal tubule cells. These results clearly indicate the distinct intracytoplasmic localization of cathepsins E and D and suggest the possible involvement of cathepsin E in extralysosomal proteolysis that is related to specialized functions of each cell type.  相似文献   

2.
Inhibition of aspartic proteinases by alpha 2-macroglobulin.   总被引:1,自引:0,他引:1       下载免费PDF全文
The effect of alpha 2-macroglobulin, one of the major antiproteinases in the plasma of vertebrates, on the action of the aspartic proteinases chymosin, cathepsin D and cathepsin E towards peptide and protein substrates at pH 6.2 was examined. Activities towards protein substrates were blocked, thus demonstrating that alpha 2-macroglobulin can inhibit aspartic proteinases, in addition to serine proteinases, cysteine proteinases and metalloproteinases.  相似文献   

3.
The interactions of five human enzymes (renin, pepsin, gastricsin, cathepsin D and cathepsin E) and the aspartic proteinase from Endothia parasitica with several series of synthetic inhibitors were examined. All of the inhibitors contained the dipeptide analogue statine or its phenylalanine or cyclohexylalanine homologues in the P1-P1' positions. The residues occupying the peripheral sub-sites (P4 to P3') were varied systematically and inhibitory constants were determined for the interactions with each of the proteinases. Inhibitors were elucidated that specifically inhibited human renin and did not affect any of the other human enzymes or the fungal proteinase. With suitable selection of residues to occupy individual sub-sites, effective inhibitors of specific human aspartic proteinases may now be designed.  相似文献   

4.
Aspartic proteinases are produced in the human body by a variety of cells. Some of these proteins, examples of which are pepsin, gastricsin, and renin, are secreted and exert their effects in the extracellular spaces. Cathepsin D and cathepsin E on the other hand are intracellular enzymes. The least characterized of the human aspartic proteinases is cathepsin E. Presented here are results of studies designed to characterize the binding specificities in the active site of human cathepsin E with comparison to othermechanistically similar enzymes. A peptide series based on Lys-Pro-Ala-Lys-Phe*Nph-Arg-Leu was generatedto elucidate the specificity in the individual binding pockets with systematic substitutions in the P5? P2 and P2′-P3′ based on charge, hydrophobicity, and hydrogen bonding. Also, to explore the S2 binding preferences, asecond series of peptides based on Lys-Pro-Ile-Glu-Phe*Nph-Arg-Leu was generated with systematic replacements in the P2 position. Kinetic parameters were determined forboth sets of peptides. The results were correlated to a rule-based structural model of human cathepsin E, constructed on the known three-dimensional structures of several highly homologous aspartic proteinases; porcine pepsin, bovine chymosin, yeast proteinase A, human cathepsin D, andmouse and human renin. Important specificity-determining interactions were found in the S3 (Glu13) and S2 (Thr-222, Gln-287, Leu-289, Ile-300)subsites. © 1995 Wiley-Liss, Inc.  相似文献   

5.
Three aspartic proteinases with similar Mr values (approx. 80,000) but from distinct sources (human gastric mucosa, human erythrocyte membranes and rat spleen) were shown to have immunological cross-reactivity and comparable mobilities when subjected to polyacrylamide-gel electrophoresis under non-denaturing conditions. Kinetic parameters (kcat, Km and Ki) were determined for the interactions of the three enzymes with two synthetic chromogenic substrates and five inhibitors (naturally occurring and synthetic). On this basis it would appear that all of the enzymes should be considered equivalent to cathepsin E. pH-activity measurements indicated that the aspartic proteinase that originated from the erythrocyte membranes retained activity at a higher pH value than either of its readily soluble counterparts.  相似文献   

6.
M Fusek  M Mares  J Vágner  Z Voburka  M Baudys 《FEBS letters》1991,287(1-2):160-162
Two propart peptides of aspartic proteinases, the propart peptide of chicken pepsin and human cathepsin D, respectively, were investigated from the point of view of their inhibitory activity for a set of aspartic proteinases. These peptides display a very broad inhibitory spectrum. The strongest inhibition was observed for pepsin A-like proteinases where propart peptides can be used as titrants of active enzymes.  相似文献   

7.
The family of aspartic proteinases includes several human enzymes that may play roles in both physiological and pathophysiological processes. The human lysosomal aspartic proteinase cathepsin D is thought to function in the normal degradation of intracellular and endocytosed proteins but has also emerged as a prognostic indicator of breast tumor invasiveness. Presented here are results from a continuing effort to elucidate the factors that contribute to specificity of ligand binding at individual subsites within the cathepsin D active site. The synthetic peptide Lys-Pro-Ile-Glu-Phe*Nph-Arg-Leu has proven to be an excellent chromogenic substrate for cathepsin D yielding a value of kcat/Km = 0.92 x 10(-6) s-1 M-1 for enzyme isolated from human placenta. In contrast, the peptide Lys-Pro-Ala-Lys-Phe*Nph-Arg-Leu and all derivatives with Ala-Lys in the P3-P2 positions are either not cleaved at all or cleaved with extremely poor efficiency. To explore the binding requirements of the S3 and S2 subsites of cathepsin D, a series of synthetic peptides was prepared with systematic replacements at the P2 position fixing either Ile or Ala in P3. Kinetic parameters were determined using both human placenta cathepsin D and recombinant human fibroblast cathepsin D expressed in Escherichia coli. A rule-based structural model of human cathepsin D, constructed on the basis of known three-dimensional structures of other aspartic proteinases, was utilized in an effort to rationalize the observed substrate selectivity.  相似文献   

8.
Procathepsin E and progastricsin were purified from the gastric mucosa of the guinea pig. They were converted to the active form autocatalytically under acidic conditions. Each active form hydrolyzed protein substrates maximally at around pH 2.5. Pepstatin inhibited cathepsin E very strongly at an equimolar concentration, whereas the inhibition was much weaker for gastricsin. Molecular cloning of the respective cDNAs permitted us to deduce the complete amino acid sequences of their pre-proforms; preprocathepsin E and preprogastricsin consisted of 391 and 394 residues, respectively. Procathepsin E has unique structural and enzymatic features among the aspartic proteinases. Lys at position 37, which is common to various aspartic proteinases and is thought to be important for stabilizing the activation segment, was absent at the corresponding position, as in human procathepsin E. The rate of activation of procathepsin E to cathepsin E is maximal at around pH 4.0. It is very different from the pepsinogens and may be correlated with the absence of Lys37. Native procathepsin E is a dimer, consisting of two monomers covalently bound by a disulfide bridge between 2 Cys37. Interconversion between the dimer and the monomer was reversible and regulated by low concentrations of a reducing reagent. Although the properties of the dimeric and monomeric cathepsins E are quite similar, a marked difference was found between them in terms of their stability in weakly alkaline solution: monomeric cathepsin E was unstable at weakly alkaline pH whereas the dimeric form was stable. The generation of the monomer was thought to be the process leading to inactivation, hence degradation of cathepsin E in vivo.  相似文献   

9.
A specific rabbit anti-human serum was used selectively to localize the aspartic proteinase cathepsin E to follicle associated epithelium (FAE) of human and rat intestine, including jejunum, ileum, appendix, colon and rectum, as well as of human palatine, pharyngeal and lingual tonsils. Coexpression of class II histocompatibility antigen HLA-DR antigen has been observed in some of the cathepsin E-positive epithelial cells. In addition, cathepsin E has been detected in a few mononuclear cells of intestinal lymphoid structures and tonsils resembling interdigitating reticulum cells of lymph nodes. Another aspartic proteinase, cathepsin D, has been found to be poorly represented in FAE and intensely expressed by macrophages. Electron immunocytochemistry localized cathepsin E to endosomal vesicles and endoplasmic reticulum of M cells in rat and human ileum as well as of M-like cells in human palatine tonsil. The results suggest a possible role of endosomal cathepsin E in the processing of macromolecules and microorganisms transported by M cells and related epithelial cells to mucosal associated lymphoid tissue (MALT).  相似文献   

10.
The interaction of a variety of aspartic proteinases with a recombinant tomato protein produced in Pichia pastoris was investigated. Only human cathepsin D and, even more potently, proteinase A from Saccharomyces cerevisiae were inhibited. The tomato polypeptide has >80% sequence identity to a previously reported potato inhibitor of cathepsin D. Re-evaluation of the potato inhibitor revealed that it too was more potent (>20-fold) towards yeast proteinase A than cathepsin D and so might be renamed the potato inhibitor of proteinase A. The potency towards yeast proteinase A may reflect a similarity between this fungal enzyme and aspartic proteinases produced by fungal pathogens which attack tomato and/or potatoes.  相似文献   

11.
We isolated and characterized a chymotryptic serine proteinase from dog mastocytomas. Chymotryptic activity extracted at high ionic strength from mastocytomas propagated in nude mice was separated from tryptic activity by gel filtration and rapidly purified by sequential high-performance hydrophobic interaction and cation-exchange chromatography. The purified enzyme had an Mr of 27,000-30,000 by both analytical gel filtration and SDS-polyacrylamide gel electrophoresis, and a single amino-terminal sequence by automated Edman degradation. Like chymases from rat and human mast cells, the mastocytoma enzyme exhibited a high kcat/Km (1.1.10(5) M-1.s-1) employing succinyl-L-Val-Pro-Phe-p-nitroanilide, the best of several p-nitroanilide substrates screened. It was inhibited by diisopropyl fluorophosphate and soybean trypsin inhibitor, but not by aprotinin, distinguishing it from the otherwise closely related neutrophil enzyme, cathepsin G. The amino-terminal 25 residues of mastocytoma chymase were found to be 72 and 68% identical to the corresponding sequences of chymases from rat peritoneal and mucosal mast cells, respectively; they were also closely related to human cathepsin G and to proteinase sequences from mouse cytotoxic T-lymphocytes. The mastocytoma chymotryptic enzyme contained an octapeptide sequence which is common to all chymotryptic leukocyte proteinases sequenced to date from four mammalian species; this feature distinguishes chymases and other chymotryptic leukocyte proteinases from serine proteinases of coagulation and digestion.  相似文献   

12.
Riggio M  Scudiero R  Filosa S  Parisi E 《Gene》2002,295(2):241-246
Aspartic proteinases are a group of endoproteolytic proteinases active at acidic pH and characterized by the presence of two aspartyl residues in the active site. They include related paralogous proteins such as cathepsin D, cathepsin E and pepsin. Although extensively investigated in mammals, aspartic proteinases have been less studied in other vertebrates. In a previous work, we cloned and sequenced a DNA complementary to RNA encoding an enzyme present in zebrafish liver. The sequence resulted to be homologous to a novel form of aspartic proteinase firstly described by us in Antarctic fish. In zebrafish, the gene encoding this enzyme is expressed only in the female liver, in contrast with cathepsin D that is expressed in all the tissues examined independently of the sex. For this reason we have termed the new enzyme liver-specific aspartic proteinase (LAP).Northern blot analyses indicate that LAP gene expression is under hormonal control. Indeed, in oestrogen-treated male fish, cathepsin D expression was not enhanced in the various tissues examined, but the LAP gene product appeared exclusively in the liver. Our results provide evidence for an oestrogen-induced expression of LAP gene in liver. We postulate that the sexual dimorphic expression of the LAP gene may be related to the reproductive process.  相似文献   

13.
The presence of procathepsin D, a zymogen of the soluble lysosomal aspartic proteinase cathepsin D, was detected in rat milk using Western blot analysis and assay of proteolytic activity in acidic buffers. No other forms of cathepsin D were found. Two different polyclonal anti-procathepsin D antibodies were used for immunochemical detection of procathepsin D. Both antibodies we found to recognize rat procathepsin D. Proteolytic activity in acidic buffers was detected using a fluorogenic substrate specific for cathepsin D and was abolished by pepstatin A, a specific inhibitor of aspartic proteinases. This study represents third demonstration of presence of procathepsin D in mammal breast milk. Potential sources and physiological functions are discussed.  相似文献   

14.
The nature and levels of hemoglobin (Hb)-hydrolyzing acidic proteinases including cathepsin D and cathepsin E, which were most active at pH 3.5-4.0, were enzymatically and immunochemically compared between human and rat neutrophils. By subcellular fractionation and immunoprecipitation with discriminative antibodies specific for each enzyme, cathepsin D was shown to be present in the granular content fraction of both human and rat neutrophils and to account for about 35% of the total Hb-hydrolyzing activity. Cathepsin E was observed mainly in the cytoplasmic fraction of rat neutrophils from peripheral blood and peritoneal exudates and accounted for about 65% of the total activity, but it was not detected in human blood neutrophils. Immunoelectron microscopy on rat neutrophils revealed that cathepsin D was exclusively confined to lysosomes, whereas cathepsin E was localized mainly in the cytoplasmic matrix and often in the perinuclear spaces and the rough endoplasmic reticulum. The non-cathepsin D activity in human neutrophils, which represented about 65% of the total activity, appeared to be due to a serine proteinase, since it was inhibited by diisopropyl fluorophosphate and phenylmethylsulfonyl fluoride and was not inhibited by agents specific for aspartic-, cysteine-, or metallo proteinases. The enzyme(s) responsible for this activity was largely associated with the granular membranes, and a half of it could be described as an integral membrane protein on the basis of phase separation with Triton X-114 at 35 degrees C. The levels of these Hb-hydrolases in gingival crevicular fluid from human chronic inflammatory periodontitis patients were examined in order to clarify their participation in the periodontal tissue breakdown.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The distribution of cathepsins E and D in various rat tissues and blood cells was determined by immunoprecipitation and by immunohistochemistry with discriminative antibodies specific for each enzyme. While cathepsin D was detected in all of the tissues and blood cells tested (except for erythrocytes), cathepsin E had a relatively limited distribution. The cathepsin E content was highest in the stomach and was succeeded in the following order by the urinary bladder, thymus, spleen, cervical lymph node and bone marrow. Significant amounts of cathepsin E were also found in the colon, rectum, jejunum, skin, lung, kidney and submandibular gland. The other tissues tested had little or no detectable cathepsin E content. Of the blood cells tested, lymphocytes and peritoneal neutrophils contained high levels of cathepsin E. Erythrocytes had cathepsin E only as aspartic proteinases. When the subcellular localization of cathepsin E in the neutrophils was investigated by fractionation of the postnuclear supernatants, the enzyme behaved as a soluble cytosolic enzyme. In contrast, cathepsin D was mainly associated with the granular fraction. The immunohistochemical localization of cathepsins E and D was clearly different in the stomach, large intestines, kidney and urinary bladder, but was similar in the lymph node and spleen. The tissue-fixed macrophages, which were notable in the skeletal and cardiac muscle tissues, submucosal layers of the gastrointestinal tracts, salivary gland, lung and trachea, also exhibited similar intense immunoreactivities demonstrative of both cathepsins E and D.  相似文献   

16.
Antiserum against a rat gastric mucosa non-pepsin acid proteinase precipitates rat neutrophil cathepsin E, with a precipitation curve essentially similar to that of the gastric enzyme. Taken together that the antiserum precipitates a cathepsin E-like acid proteinase from rat spleen (Muto, N., Yamamoto, M. and Tani, S. (1987) J. Biochem. (Tokyo) in press), the data indicate that the non-cathepsin D acid proteinases in rat neutrophils, gastric mucosa and spleen are immunochemically closely related. In contrast with the earlier data, cathepsin E from rabbit neutrophils exhibited a maximal activity at around pH 3.0-3.2 and preferred hemoglobin to albumin as substrate, which supports that the non-cathepsin D acid proteinases in the rat tissues are relevantly classified as cathepsin E.  相似文献   

17.
Activation of the erythrocyte cathepsin E located on the cytoplasmic surface of the membrane in a latent form was studied in stripped inside-out membrane vesicles prepared from human erythrocyte membranes. Incubation of the vesicles at 40 degrees C at pH 4 resulted in increased degradation of the membrane proteins, especially band 3. This proteolysis was selectively inhibited by the inclusion of pepstatin (isovaleryl-Val-Val-statyl-Ala-statine) or H 297 [Pro-Thr-Glu-Phe(CH2-NH)Nle-Arg-Leu] in the incubation mixtures, indicating that cathepsin E, as the only aspartic proteinase in erythrocytes, is responsible for the proteolysis. Two potential active-site-directed inhibitors of aspartic proteinases, pepstatin and H 297, were used to prove the occurrence of the membrane-associated active enzyme. To minimize potential errors arising from non-specific binding, the concentrations of the inhibitors used in the binding assay (pepstatin, 5 x 10(-8) M; H 297, 1 x 10(-5) M) were determined by calibration for purified and membrane-associated cathepsin E. The inhibition of the membrane-associated cathepsin E by each inhibitor, which showed the binding of the inhibitor to the activated enzyme, was temperature- and time-dependent. The binding of each inhibitor to the enzyme on the exposed surface of the membrane at pH 4 was highly specific, saturable, and reversible. The present study thus provides the first evidence that cathepsin E tightly bound to the membrane is converted to the active enzyme in the membrane-associated form, and suggests that this enzyme may be responsible for the degradation of band 3.  相似文献   

18.
Cathepsin E is an intracellular aspartic proteinase of the pepsin family predominantly expressed in cells of the immune system and believed to contribute to homeostasis by participating in host defense mechanisms. Studies on its enzymatic properties, however, have been limited by a lack of sensitive and selective substrates. For a better understanding of the importance of this enzyme in vivo, we designed and synthesized a highly sensitive peptide substrate for cathepsin E based on the sequence of the specific cleavage site of alpha2-macroglobulin. The substrate constructed, MOCAc-Gly-Ser-Pro-Ala-Phe-Leu-Ala-Lys(Dnp)-D-Arg-NH2 [where MOCAc is (7-methoxycoumarin-4-yl)acetyl and Dnp is dinitrophenyl], derived from the cleavage site sequence of human alpha2-macroglobulin, was the most sensitive and selective for cathepsin E, with k(cat)/K(m) values of 8-11 microM(-1) s(-1), whereas it was resistant to hydrolysis by the analogous aspartic proteinases cathepsin D and pepsin, as well as the lysosomal cysteine proteinases cathepsins B, L, and H. The assay allows the detection of a few fmol of cathepsin E, even in the presence of plasma and cell lysate, and gives accurate results over a wide enzyme concentration range. This substrate might represent a useful tool for monitoring and accurately quantifying cathepsin E, even in crude enzyme preparations.  相似文献   

19.
Cathepsin E is an intracellular, non-lysosomal aspartic protease expressed in a variety of cells and tissues. The protease has proposed physiological roles in antigen presentation by the MHC class II system, in the biogenesis of the vasoconstrictor peptide endothelin, and in neurodegeneration associated with brain ischemia and aging. Cathepsin E is the only A1 aspartic protease that exists as a homodimer with a disulfide bridge linking the two monomers. Like many other aspartic proteases, it is synthesized as a zymogen which is catalytically inactive towards its natural substrates at neutral pH and which auto-activates in an acidic environment. Here we report the crystal structure of an activation intermediate of human cathepsin E at 2.35A resolution. The overall structure follows the general fold of aspartic proteases of the A1 family, and the intermediate shares many features with the intermediate 2 on the proposed activation pathway of aspartic proteases like pepsin C and cathepsin D. The pro-sequence is cleaved from the protease and remains stably associated with the mature enzyme by forming the outermost sixth strand of the interdomain beta-sheet. However, different from these other aspartic proteases the pro-sequence of cathepsin E remains intact after cleavage from the mature enzyme. In addition, the active site of cathepsin E in the crystal is occupied by N-terminal amino acid residues of the mature protease in the non-primed binding site and by an artificial N-terminal extension of the pro-sequence from a neighboring molecule in the primed site. The crystal structure of the cathepsin E/pro-sequence complex, therefore, provides further insight into the activation mechanism of aspartic proteases.  相似文献   

20.
We have investigated the degradation of 125I-labeled bovine serum albumin by lysates of rat kidney cortical lysosomes. Maximal degradation of albumin occurred at pH 3.5-4.2, with approximately 70% of the maximal rate occurring at pH 5.0. Degradation was proportional to lysosomal protein concentration (range 100-600 micrograms) and time of incubation (1-5 h). Dithioerythritol (2 mM) stimulated albumin degradation 5- to 10-fold. Albumin degradation was not inhibited by phenylmethanesulfonyl fluoride (1 mM) or EDTA (5 mM), indicating that neither serine nor metalloproteinases are involved to a significant extent. Pepstatin (5 micrograms/ml), an inhibitor of aspartic proteinases, inhibited albumin degradation by approximately 50%. Leupeptin (10 microM) and N-ethylmaleimide (10 mM), inhibitors of cysteine proteinases, decreased albumin degradation by 34 and 65%, respectively. Combinations of aspartic and cysteine proteinase inhibitors produced nearly complete inhibition of albumin degradation. Taken together, these data indicate that aspartic and cysteine proteinases are primarily responsible for albumin degradation by renal cortical lysosomes under these conditions. In keeping with the above data, we have measured high activities of the cysteine proteinases, cathepsins B, H, and L, in cortical tubules, the major site of renal protein degradation. Using the peptidyl 7-amino-4-methylcoumarin (NHMec) substrates (Z-Arg-Arg-NHMec, for cathepsin B; Arg-NHMec for cathepsin H; and Z-Phe-Phe-CHN2-inhibitable hydrolysis of Z-Phe-Arg-NHMec corrected for inhibition of cathepsin B activity for cathepsin L) values obtained were (means +/- SE, mU/mg protein, 1 mU = production of 1 nM product/min, n = 6): cathepsin B, 2.1 +/- 0.34; cathepsin H, 1.35 +/- 0.19; cathepsin L, 14.49 +/- 1.26. In comparison, the activities of cathepsins B, H, and L in liver were: 0.56 +/- 0.03, 0.28 +/- 0.04, and 1.27 +/- 0.16, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号