首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The urea and heat-induced unfolding-refolding behaviours of chicken egg white ovomucoid and its four fragments representing domains I, II + III, I + II and III were systematically investigated in 0.06 M sodium phosphate buffer (pH 7.0) by difference spectral measurements. The effect of temperature on ovomucoid and its fragments was also studied in 0.05 M sodium acetate buffer (pH 5.0) and in presence of 2 M urea at pH 7.0. Intrinsic viscosity data showed that ovomucoid and its different fragments did not lose any significant amount of their structure under mild acidic conditions (pH 4.6). Difference spectral results showed extensive disruption of the native structure by urea or temperature. Isothermal transitions showed single-step for domain I, domain I + II and domain III, and two-step having one stable intermediate, for ovomucoid and its fragment representing domain II + III. However, the presence of intermediate was not detected when the transitions were studied with temperature at pH 7.0. Strikingly, the single-step thermal transitions of ovomucoid and its fragment representing domain II + III, became two-step when measured either at pH 5.0 or in presence of 2 M urea at pH 7.0. Analysis of the equilibrium data on urea and heat denaturation showed that the second transition observed with ovomucoid or domain II + III represent the unfolding of domain III. The kinetic results of ovomucoid and its fragments indicate that the protein unfolds with three kinetic phases. A comparison of three rate constants for the unfolding of intact ovomucoid with that of its various fragments revealed that domain I, II and III of the protein correspond to the three kinetic phases having rate constants 0.456, 0.120 and 0.054 min-1, respectively. These data have led us to conclude: (i) the unusual stability of ovomucoid towards various denaturants, including temperature, is due to its domain III, (ii) initiation of the folding of the ovomucoid molecule starts from its NH2-terminal region which probably provides the nucleation site for the formation of the subsequent structure and (iii) domains I and II have greater mutual recognition between them as compared to the recognition either of them have with domain III.  相似文献   

2.
Wang MY  Siddiqi MY  Ruth TJ  Glass A 《Plant physiology》1993,103(4):1259-1267
Short-term influxes of 13NH4+ were measured in intact roots of 3-week-old rice (Oryza sativa L. cv M202) seedlings that were hydroponically grown at 2, 100, or 1000 [mu]M NH4+. Below 1 mM external concentration ([NH4+]0), influx was saturable and due to a high-affinity transport system (HATS). For the HATS, Vmax values were negatively correlated and Km values were positively correlated with NH4+ provision during growth and root [NH4+]. Between 1 and 40 mM [NH4+]0, 13NH4+ influx showed a linear response due to a low-affinity transport system (LATS). The 13NH4+ influxes by the HATS, and to a lesser extent the LATS, are energy-dependent processes. Selected metabolic inhibitors reduced influx of the HATS by 50 to 80%, but of the LATS by only 31 to 51%. Estimated values for Q10 (the ratio of rates at temperatures differing by 10[deg]C) for HATS were greater than 2.4 at root temperatures from 5 to 10[deg]C and were constant at approximately 1.5 between 5 and 30[deg]C for the LATS. Influx of 13NH4+ by the HATS was insensitive to external pH in the range from 4.5 to 9.0, but influx by the LATS declined significantly beyond pH 6.0. The data presented are discussed in the context of the kinetics, energy dependence, and the regulation of ammonium influx.  相似文献   

3.
Potassium Fluxes in Chlamydomonas reinhardtii (II. Compartmental Analysis)   总被引:2,自引:2,他引:0  
Malhotra B  Glass A 《Plant physiology》1995,108(4):1537-1545
42K+ and 86Rb+ were used to determine the subcellular distribution of potassium in Chlamydomonas reinhardtii by compartmental analysis. In both wild type and a mutant strain, three distinct compartments (referred to as I, II, and III) were apparent. Using 42K+, we found that these had half-lives for K+ exchange of 1.07 min, 12.8 min, and 2.9 h, respectively, in wild-type cells and 0.93 min, 14.7 min, and 9.8 h, respectively, for the mutants. Half-lives were not significantly different when 86Rb+ was used to trace K+. Compartments I and II probably correspond to the cell wall and cytoplasm, respectively. Based on the lack of a large central vacuole in Chlamydomonas, the effect of a dark pretreatment on the kinetic properties of compartment III and the similarity between the [K+] of compartment III and that of isolated chloroplasts, this slowly exchanging compartment was identified as the chloroplast. Growth of wild-type cells at 100 [mu]M (instead of 10 mM K+) caused no change of cytoplasmic [K+] but reduced chloroplast [K+] very substantially. The mutants failed to grow at 100 [mu]M K+.  相似文献   

4.
Intact hair cells of young rice (Oryza sativa L.) and maize roots (Zea mays L.), grown without external nitrogen, were specifically loaded with 2[prime],7[prime]-bis-(2-carboxyethyl)-5 (and -6)-carboxyfluorescein acetoxymethyl ester to monitor fluorescence ratio cytosolic pH changes in response to external ammonia (NH4+/NH3) application. In neutral media, cytosolic pH of root hairs was 7.15 [plus or minus] 0.13 (O. sativa) and 7.08 [plus or minus] 0.11 (Z. mays). Application of 2 mM ammonia at external pH 7.0 caused a transient cytosolic alkalization (7.5 [plus or minus] 0.15 in rice; 7.23 [plus or minus] 0.13 in maize). Alkalization increased with an increase of external pH; no pH changes occurred at external pH 5.0. The influx of 13N-labeled ammonia in both plant species did not differ between external pH 5.0 and 7.0 but increased significantly with higher pH. Pretreatment with 1 mM 1-methionine sulfoximine significantly reduced the ammonia-elicited pH increase in rice but not in maize. Application of 2 mM methylammonia only caused a cytosolic pH increase at high external pH; the increase in both species compared with the ammonia-elicited alkalization in 1-methionine sulfoximine-treated roots. The differential effects indicate that cytosolic alkalization derived from (a) NH3 protonation after passive permeation of the plasma membrane and, particularly in rice, (b) additional proton consumption via the glutamine synthetase/glutamate synthase cycle.  相似文献   

5.
Subunit arrangement in beef heart complex III   总被引:6,自引:0,他引:6  
Beef heart mitochondrial complex III was separated into 12 polypeptide bands representing 11 different subunits by using the electrophoresis conditions described by Sch?gger et al. [(1986) Methods Enzymol. 126, 224-237]. Eight of the 12 polypeptide bands were identified from their NH2-terminal sequences as obtained by electroblotting directly from the NaDodSO4-polyacrylamide gel onto a solid support. The topology of the subunits in complex III was explored by three different approaches. (1) Protease digestion experiments of submitochrondrial particles in the presence and absence of detergent showed that subunits II and VI are on the M side of the inner membrane and subunits V and XI on the C side. (2) Labeling experiments with the membrane-intercalated probes [125I]TID and arylazidoPE indicated that cytochrome b is the predominant bilayer embedded subunit of complex III, while the non-heme iron protein appears to be peripherally located. (3) Cross-linking studies with carbodiimides and homobifunctional cleavable reagents demonstrated that near-neighbor pairs include subunits I+II, II+VI, III+VI, IV+V, V+X, and reagents demonstrated that near-neighbor pairs include subunits I+II, II+VI, III+VI, IV+V, V+X, and VI+VII. The cytochrome c binding site was found to include subunits IV, VIII, and X. The combined data are used to provide an updated model for the topology of beef heart complex III.  相似文献   

6.
Wang MY  Siddiqi MY  Ruth TJ  Glass A 《Plant physiology》1993,103(4):1249-1258
The time course of 13NH4+ uptake and the distribution of 13NH4+ among plant parts and subcellular compartments was determined for 3-week-old rice (Oryza sativa L. cv M202) plants grown hydroponically in modified Johnson's nutrient solution containing 2,100, or 1000 [mu]M NH4+ (referred to hereafter as G2, G100, or G1000 plants, respectively). At steady state, the influx of 13NH4+ was determined to be 1.31, 5.78, and 10.11 [mu]mol g-1 fresh weight h-1, respectively, for G2, G100, and G1000 plants; efflux was 11, 20, and 29%, respectively, of influx. The NH4+ flux to the vacuole was calculated to be between 1 and 1.4 [mu]mol g-1 fresh weight h-1. By means of 13NH4+ efflux analysis, three kinetically distinct phases (superficial, cell wall, and cytoplasm) were identified, with t1/2 for 13NH4+ exchange of approximately 3 s and 1 and 8 min, respectively. Cytoplasmic [NH4+] was estimated to be 3.72, 20.55, and 38.08 mM for G2, G100, and G1000 plants, respectively. These concentrations were higher than vacuolar [NH4+], yet 72 to 92% of total root NH4+ was located in the vacuole. Distributions of newly absorbed 13NH4+ between plant parts and among the compartments were also examined. During a 30-min period G100 plants metabolized 19% of the influxed 13NH4+. The remainder (81%) was partitioned among the vacuole (20%), cytoplasm (41%), and efflux (20%). Of the metabolized 13N, roughly one-half was translocated to the shoots.  相似文献   

7.
BACKGROUND AND AIMS: Tea (Camellia sinensis) is considered to be acid tolerant and prefers ammonium nutrition, but the interaction between root zone acidity and N form is not properly understood. The present study was performed to characterize their interaction with respect to growth and mineral nutrition. METHODS: Tea plants were hydroponically cultured with NH4+, NO3- and NH(4+) + NO3-, at pH 4.0, 5.0 and 6.0, which were maintained by pH stat systems. KEY RESULTS: Plants supplied with NO3- showed yellowish leaves resembling nitrogen deficiency and grew much slower than those receiving NH4+ or NH(4+) + NO3- irrespective of root-zone pH. Absorption of NH4+ was 2- to 3.4-fold faster than NO3- when supplied separately, and 6- to 16-fold faster when supplied simultaneously. Nitrate-grown plants had significantly reduced glutamine synthetase activity, and lower concentrations of total N, free amino acids and glucose in the roots, but higher concentrations of cations and carboxylates (mainly oxalate) than those grown with NH4+ or NH(4+) + NO3-. Biomass production was largest at pH 5.0 regardless of N form, and was drastically reduced by a combination of high root-zone pH and NO3-. Low root-zone pH reduced root growth only in NO(3-)-fed plants. Absorption of N followed a similar pattern as root-zone pH changed, showing highest uptake rates at pH 5.0. The concentrations of total N, free amino acids, sugars and the activity of GS were generally not influenced by pH, whereas the concentrations of cations and carboxylates were generally increased with increasing root-zone pH. CONCLUSIONS: Tea plants are well-adapted to NH(4+)-rich environments by exhibiting a high capacity for NH4+ assimilation in their roots, reflected in strongly increased key enzyme activities and improved carbohydrate status. The poor plant growth with NO3- was largely associated with inefficient absorption of this N source. Decreased growth caused by inappropriate external pH corresponded well with the declining absorption of nitrogen.  相似文献   

8.
Ammonia accumulation in acetate-growing yeast   总被引:1,自引:0,他引:1  
During growth on acetate, the pH of yeast cultures rises from 5.8 to around 7-8 in the stationary phase. This was found to result from acetic acid uptake and accompanying H+ loss. In addition, acetate-growing yeast were found to accumulate ammonia. The influence of pH on ammonia transport and accumulation was studied with the analogue [14C]methylamine with the following results. (a) Methylamine uptake kinetics from 0.1-50 mM were consistent with a single-component uptake system (NH+4 permease) at pH values more acidic than 6.5, and with a two-component system (NH+4 permease and NH3 diffusion) above pH 7.5. (b) Equilibrium accumulation of methylamine was found to increase with increasing pH. (c) Methylamine efflux from methylamine-loaded cells increased as the external pH decreased. It was concluded from measurements of the internal pH under various culture conditions that the accumulation of ammonia in acetate-growing alkaline cultures resulted from the sum of two processes: (1) an energy-driven NH+4 transport; and (2) NH3 diffusion dependent on the delta pH.  相似文献   

9.
The purpose of our study was to determine the effects of specific truncations on the structural properties of human betaA3-crystallin. The following eight deletion mutants of betaA3-crystallin were generated: (i) N-terminal extension (NTE) 21 amino acids (betaA3[21] mutant), (ii) NTE 22 amino acids (betaA3[22] mutant), (iii) NTE (betaA3[N] mutant), (iv) NTE plus motif I (betaA3[N+I] mutant), (v) NTE plus motifs I and II (betaA3[N+I+II] mutant), (vi) NTE plus motifs I and II and connecting peptide (betaA3[N+I+II+CP] mutant), (vii) motifs III and IV (betaA3[III+IV] mutant), and (viii) motif IV (betaA3 [IV] mutant). The DNA sequencing and MALDI-TOF mass spectrometric methods confirmed desired specific deletions, and the purified mutant proteins exhibited a single band during SDS-PAGE analysis. When ANS bound, all the mutant proteins exhibited fluorescence quenching and a red shift, suggesting that the truncations caused changes in the exposed hydrophobic patches. The CD spectra showed that deletion of either NTE or the N-terminal domain (motifs I and II) had a relatively weaker effect on the structural stability than deletion of the C-terminal domain (motifs III and IV). Intrinsic Trp fluorescence spectral studies suggested changes in the microenvironment of the mutant proteins following truncations. HPLC multiangle light scattering analyses showed that truncation led to higher-order aggregation compared to that in the wild-type protein. Equilibrium unfolding and refolding of WT betaA3 with urea were best fit to a three-state model with transition midpoints at 2.2 and 3.1 M urea. However, the two transition midpoints of betaA3[21] and betaA3[22] and betaA3[N] mutants were similar to those of the wild type, suggesting that these truncations had a minimal effect on structural stabilization. Further, the mutant proteins containing the N-terminal domain (i.e., betaA3[III+IV] and betaA3[IV] mutants) exhibited higher transition midpoints compared to the transition midpoints of the mutant protein with the C-terminal domain (i.e., betaA3[N+I+II+CP] mutant). The results suggested that the N-terminal domain is relatively more stable than the C-terminal domain in betaA3-crystallin.  相似文献   

10.
Three new cycloartane glycosides, trigonoside I, II and III, and the known astragalosides I and II were isolated from the roots of Astragalus trigonus. The structures of the new glycosides were totally elucidated by high field (600 MHz) NMR analyses as cycloastragenol-6-O-β-xylopyranoside, cycloastragenol-3-O-[-l-arabinopyranosyl(1 → 2)-β-d-xylopyranosyl]-6-O-β- d-xylopyranoside and cycloastragenol-3-O-[-l-arabinopyranosyl(1 → 2)-β-d-(3-O-acetyl)-xylopyranosyl]-6-O-β-d-xylopyranoside.  相似文献   

11.
Symbiosome membrane vesicles, facing bacteroid-side-out, were purified from pea (Pisum sativum L.) root nodules and used to study NH4+ transport across the membrane by recording vesicle uptake of the NH4+ analog [14C]methylamine (MA). Membrane potentials ([delta][psi]) were imposed on the vesicles using K+ concentration gradients and valinomycin, and the size of the imposed [delta][psi] was determined by measuring vesicle uptake of [14C]tetraphenylphosphonium. Vesicle uptake of MA was driven by a negative [delta][psi] and was stimulated by a low extravesicular pH. Protonophore-induced collapse of the pH gradient indicated that uptake of MA was not related to the presence of a pH gradient. The MA-uptake mechanism appeared to have a large capacity for transport, and saturation was not observed at MA concentrations in the range of 25 [mu]M to 150 mM. MA uptake could be inhibited by NH4+, which indicates that NH4+ and MA compete for the same uptake mechanism. The observed fluxes suggest that voltage-driven channels are operating in the symbiosome membrane and that these are capable of transporting NH4+ at high rates from the bacteroid side of the membrane to the plant cytosol. The pH of the symbiosome space is likely to be involved in regulation of the flux.  相似文献   

12.
The reaction between hydroxylamine (NH2OH) and human hemoglobin (Hb) at pH 6-8 and the reaction between NH2OH and methemoglobin (Hb+) chiefly at pH 7 were studied under anaerobic conditions at 25 degrees C. In presence of cyanide, which was used to trap Hb+, Hb was oxidized by NH2OH to methemoglobin cyanide with production of about 0.5 mol NH+4/mol of heme oxidized at pH 7. The conversion of Hb to Hb+ was first order in [Hb] (or nearly so) but the pseudo-first-order rate constant was not strictly proportional to [NH2OH]. Thus, the apparent second-order rate constant at pH 7 decreased from about 30 M-1 X s-1 to a limiting value of 11.3 M-1 X s-1 with increasing [NH2OH]. The rate of Hb oxidation was not much affected by cyanide, whereas there was no reaction between NH2OH and carbonmonoxyhemoglobin (HbCO). The pseudo-first-order rate constant for Hb oxidation at 500 microM NH2OH increased from about 0.008 s-1 at pH 6 to 0.02 s-1 at pH 8. The oxidation of Hb by NH2OH terminated prematurely at 75-90% completion at pH 7 and at 30-35% completion at pH 8. Data on the premature termination of reaction fit the titration curve for a group with pK = 7.5-7.7. NH2OH was decomposed by Hb+ to N2, NH+4, and a small amount of N2O in what appears to be a dismutation reaction. Nitrite and hydrazine were not detected, and N2 and NH+4 were produced in nearly equimolar amounts. The dismutation reaction was first order in [Hb+] and [NH2OH] only at low concentrations of reactants and was cleanly inhibited by cyanide. The spectrum of Hb+ remained unchanged during the reaction, except for the gradual formation of some choleglobin-like (green) pigment, whereas in the presence of CO, HbCO was formed. Kinetics are consistent with the view advanced previously by J. S. Colter and J. H. Quastel [1950) Arch. Biochem. 27, 368-389) that the decomposition of NH2OH proceeds by a mechanism involving a Hb/Hb+ cycle (reactions [1] and [2]) in which Hb is oxidized to Hb+ by NH2OH.  相似文献   

13.
The normal growth dynamics of plant roots is partly controlled by the gravitational force. In order to study the detailed growth behavior in absence of gravity, the growth of Lepidium sativum roots was recorded by time lapse photography at 1h intervals in a Spacelab ESA-experiment (IML-2). Plants were germinated and kept in microgravity during the experiments, while control roots were at 1 g with normal static gravistimulation. Extended image analyses allowed new information to be achieved about movements of all parts of the roots, extending earlier published results. Root contours were extracted from the images and divided into 0.6mm segments. Deviation angles were calculated for each root segment, both for the first 8-10 h (phase I) and for the last 6-8 h of the experiment (phase II). For phase I, the present analysis confirmed that the average square deviation increased linearly with time for roots in microgravity, while for roots under 1 g conditions it stayed constant. This was consistent with a random walk hypothesis for the bending pattern. In phase II, roots in microgravity stopped their spontaneous curvatures and showed more straight growth or even diminished the root curvatures that had occurred during phase I. Thus, the growth is distinctly different in the two phases and is thought to be controlled by autotropic reactions in phase II. Root hairs developed when the roots passed into phase II. During phase I, the root growth rates were equal in microgravity and on the ground (0.50 mm h-1 with SE 0.04 and 0.51 mm h-1 with SE 0.03, respectively). In phase II the growth rate on the ground was higher than in microgravity (1.44 mm h-1 with SE 0.10 and 1.07 mm h-1 with SE 0.04 in microgravity). Microgravity conditions, therefore, clearly affect Lepidium root growth: In phase I the bending pattern is random in contrast to the normal straight growth under 1g. In phase II the growth rate is reduced, as compared to the growth rate under 1 g.  相似文献   

14.
Exposure of adult crayfish Pacifastacus leniusculus to Artificial Freshwater (AFW) media containing 1.5 m and 0.15 mmol x l(-1) total ammonia [Tamm; 0.1 x acute lethal concentration (24 h LC50) and 0.01 x 24 h LC50] and adjusted to pH 6.5, pH 8.2 and pH 10.5 resulted in significant increases in haemolymph ammonia over a 24-h period. Ammonia accumulated most rapidly at pH 10.5. These media were chosen to expose animals to a range of different un-ionised ammonia (UIA) [NH3] and ionised ammonia [NH4+] concentrations. From comparisons of measured transepithelial potential differences (PDte) with calculated Nernst potentials (PDNH4+) for the known haemolymph-to-medium gradients of [NH4+], it was deduced that, in pH 8.2 and pH 6.5 AFW, NH4+ was not in thermodynamic equilibrium across the integument (presumably gill epithelium). In pH 10.5 AFW with 1.5 mmol x l(-1) Tamm (predominantly NH3), the accumulation of ammonia in the haemolymph was in the NH4+ form due to haemolymph pH regulation by the crayfish in this alkaline external medium. Measured net fluxes of ammonia (Jamm(net)) were inwardly directed and maximal when [NH3] was the main component externally, but were also significant at pH 8.2 with high [NH4+] ([NH4+]:[NH3] approximately 20:1). Haemolymph Na+ depletion was significant and, over the 24-h exposure period, most rapid in high [NH3] medium but [Cl-] was unaffected. However, paradoxically, sodium uptake (measured JNa(in) on immediate transfer to high Tamm medium) was not significantly inhibited when [NH3] was the predominant ammonia species. In 1.5 mmol x l(-1) Tamm (mainly [NH4+), VNa(in) (the active component of JNa(in)) was significantly inhibited, particularly at low external [Na+]. This inhibition could not be demonstrated as one of competition at an Na+/NH4+ apical gill exchange site. The resultant net efflux of sodium from the animal showed that the ability of the animals to balance sodium losses at low external [Na+] was severely affected. Longer exposure to pH 10.5 AFW with high [NH3] (12 h) resulted in significantly increased JNa(out), while not significantly affecting JNa(in). Analysis of urinary Na+ losses showed that, while urinary flow rate and water reabsorption was most likely unaffected by ammonia exposure, final urine [Na+] was significantly elevated. The resulting urinary Na+ loss accounted for 63% of the increased JNa(out) in high [NH3] medium.  相似文献   

15.
The 1 : 1 reactions of three neutral Co(III) oxidants, Co(acac)3, Co(NH3)3(NO2)3 and Co(acac)2(NH3)(NO2), with reduced parsley (Petroselinum crispum) [2Fe--2S] ferredoxin (which carries a substantial negative charge), have been studied at 25 degrees C, pH 8.0 (Tris/HCl), I0.10 (NaCl). Whereas it has previously been demonstrated that with Co(NH3)6+ as oxidant the reaction if completely blocked by redox-inactive Cr(NH3)63+, the neutral oxidants are only partially blocked by this same complex. The effects of three Cr(III) complexes, Cr(NH3)63+%, Cr(en)33+ and (en)2Cr . mu(OH,O2CCH3) . CR(en)24+ have been investigated. Kinetic data for the response of 3+, neutral, as well as 1--oxidants to the presence of 3+ (and 4+) Cr(III) complexes can now be rationalized in terms of a single functional site on the protein for electron transfer. Electrostatics have a significant influence on association at this site.  相似文献   

16.
To understand the root, shoot, and Fe-nutritional factors that regulate root Fe-acquisition processes in dicotyledonous plants, Fe(III) reduction and net proton efflux were quantified in root systems of an Fe-hyperaccumulating mutant (dgl) and a parental (cv Dippes Gelbe Viktoria [DGV]) genotype of pea (Pisum sativum). Plants were grown with (+Fe treated) or without (-Fe treated) added Fe(III)-N,N'-ethylenebis[2-(2-hydroxyphenyl)-glycine] (2 [mu]M); root Fe(III) reduction was measured in solutions containing growth nutrients, 0.1 mM Fe(III)-ethylenediaminetetraacetic acid, and 0.1 mM Na2-bathophenanthrolinedisulfonic acid. Daily measurements of Fe(III) reduction (d 10-20) revealed initially low rates in +Fe-treated and -Fe-treated dgl, followed by a nearly 5-fold stimulation in rates by d 15 for both growth types. In DGV, root Fe(III) reductase activity increased only minimally by d 20 in +Fe-treated plants and about 3-fold in -Fe-treated plants, beginning on d 15. Net proton efflux was enhanced in roots of -Fe-treated DGV and both dgl growth types, relative to +Fe-treated DGV. In dgl, the enhanced proton efflux occurred prior to the increase in root Fe(III) reductase activity. Reductase studies using plants with reciprocal shoot:root grafts demonstrated that shoot expression of the dgl gene leads to the generation of a transmissible signal that enhances Fe(III) reductase activity in roots. The dgl gene product may alter or interfere with a normal component of a signal transduction mechanism regulating Fe homeostasis in plants.  相似文献   

17.
Juma  N. G.  Tabatabai  M. A. 《Plant and Soil》1988,107(1):39-47
Studies with sterile root materials showed that the optimum pH values of phosphatase activity in three varieties of each of corn (Zea mays L.) and soybean (Glycine max. L.) were 4 and 5, respectively. The activity on either side of the optimum pH fell sharply, and there was no activity at pH 9. Thus, these roots contain acid but no alkaline phosphatase activity. Acid phosphatase activity was not uniformly distributed in roots and root hairs. Studies with 20 metals showed that their effectiveness in inhibiting acid phosphatase activity of roots varied with the type of plant used. When the metals were compared at 250 μM (1.25 μmole. 5 mg−1 of homogenized roots), the inhibition of acid phosphatase of corn and soybean roots showed that Ag(I), Fe(III), Se(IV), V(IV), As(V) and Mo(VI) were the most effective inhibitors of this enzyme in corn roots, with percentage inhibition ≥30%. In addition to these metals, Sn(II), Hg(II), and W(VI) inhibited acid phosphatase in soybean roots by >30%. Other metals and one non-metallic element that inhibited acid phosphatase activity in corn and soybean roots were: Cu(I), Cu(II), Cd(II), Ni(II), Fe(II), Pb(II), Ba(II), Co(II), Mn(II), Zn(II), B(III), As(III), Cr(III), and Al(III); their degrees of effectiveness varied with type of roots used. Generally, the inhibitory effect of the metals was much less when their concentration was decreased by 10-fold. In addition to the effect of these elements, phosphate ion inhibited acid phosphatase activity of corn and soybean roots. Related anions such as NO 2 , NO 3 , Cl, and SO 4 2− were not inhibitory.  相似文献   

18.
The chick chorioallantoic membrane (CAM) is a widely used model for the study of angiogenesis, tumour growth, as well as drug efficacy. In spite of this, little is known about the developmental alteration from its appearance to the time of hatching. In the current study the CAM has been studied by classical stereology and allometry. Expression levels of selected angiogenesis-related molecules were estimated by RT-PCR and cell dynamics assessed by proliferation and apoptosis assays. Absolute CAM volume increased from a low of 0.47 ± 0.11 cm3 at embryonic day 8 (E8) to a high of 2.05 ± 0.27 cm3 at E18, and then decreased to 1.6 ± 0.47 cm3 at E20. On allometric analysis, three growth phases were identifiable. Between E8-13 (phase I), the CAM grew fastest; moderately in phase II (E13-18) but was regressing in phase III (E18-20). The chorion, the mesenchyme and the allantoic layers grew fastest in phase I, but moderately in phase II. The mesenchyme grew slowly in phase III while the chorion and allantois were regressing. Chorionic cell volume increased fastest in phase I and was regressing in phase III. Chorionic capillaries grew steadily in phase I and II but regressed in phase III. Both the chorion and the allantois grew by intrinsic cell proliferation as well as recruitment of cells from the mesenchyme. Cell proliferation was prominent in the allantois and chorion early during development, declined after E17 and apoptosis started mainly in the chorion from E14. VEGFR2 expression peaked at E11 and declined steadily towards E20, VEGF peaked at E13 and E20 while HIF 1α had a peak at E11 and E20. Studies targeting CAM growth and angiogenesis need to take these growth phases into consideration  相似文献   

19.
Photo-induced pH changes of the external medium in a regionimmediately adjacent to the surface of individual isolated Peperomiametallica chloroplasts have been measured using antimony pH-micro-electrodcs.The pH changes induced by continuous illumination were composedof two phases: an initial alkalization (phase I) and a subsequentacidification (phase II) of the medium. Both phases were severelysuppressed by DCMU and protonophorous uncouplers but they showeddifferent sensitivity towards DCCD1 NH4CI and some other agents.Phase I was selectively inhibited by DCCD and was partiallyrestored upon addition of ATP to DCCD-poisoned chloroplasts.Phase II was inhibited by 1.0 mol m–3NH4CI. It appearsfrom these data that phases I and II of light-induced pH changesare determined by different processes. It is suggested thatthe pH increase (phase I) is due to a photosynthetic CO2 fixationand the pH decrease (phase II) is caused by a light-dependentextrusion of protons from intact chloroplasts. Key words: Transport of protons, intact chloroplasts, Peperomia metallica  相似文献   

20.
Nodulin-35, a protein specific to soybean root nodules, was purified under non-denaturing conditions (DEAE-cellulose followed by Sephacryl S-200 chromatography) to homogeneity. The holoprotein showed uricase (EC 1.7.3.3) activity. Analytical ultracentrifugation under non-denaturing conditions revealed a molecule of 124 kd, S°20W = 8.1; however, under denaturing conditions a value of 33 kd, S°20W = 1.9, was obtained. This indicated that nodulin-35 is the 33-kd subunit of a specific soybean root nodule uricase (uricase II) and that the enzyme contains four similar subunits. The native molecule contains ˜1.0 mol Cu2+ per mol, has an isoelectric point of ˜9.0 and a pH optimum for uricase activity at 9.5. Uricase activity found in young uninfected soybean roots is due to another form of enzyme (uricase I) which is of ˜190 kd, has maximum activity at pH 8.0 and does not contain any subunit corresponding in size to nodulin-35. Uricase I, also present in young infected roots, declines at a time when nodulin-35 appears. Monospecific antibodies prepared against uricase II (nodulin-35) showed no cross-reactivity. Uricase II was localized in the uninfected cells of the nodule tissue. These results are consistent with the concept that a nodule-specific ureide metabolism takes place in peroxisomes of uninfected cells, and suggest the participation of uricase II in this pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号