首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Collaborative Study on the Genetics of Alcoholism (COGA) is a large-scale family study designed to identify genes that affect the risk for alcoholism and alcohol-related phenotypes. We performed genome-wide linkage analyses on the COGA data made available to participants in the Genetic Analysis Workshop 14 (GAW 14). The dataset comprised 1,350 participants from 143 families. The samples were analyzed on three technologies: microsatellites spaced at 10 cM, Affymetrix GeneChip Human Mapping 10 K Array (HMA10K) and Illumina SNP-based Linkage III Panel. We used ALDX1 and ALDX2, the COGA definitions of alcohol dependence, as well as electrophysiological measures TTTH1 and ECB21 to detect alcoholism susceptibility loci. Many chromosomal regions were found to be significant for each of the phenotypes at a p-value of 0.05. The most significant region for ALDX1 is on chromosome 7, with a maximum LOD score of 2.25 for Affymetrix SNPs, 1.97 for Illumina SNPs, and 1.72 for microsatellites. The same regions on chromosome 7 (96-106 cM) and 10 (149-176 cM) were found to be significant for both ALDX1 and ALDX2. A region on chromosome 7 (112-153 cM) and a region on chromosome 6 (169-185 cM) were identified as the most significant regions for TTTH1 and ECB21, respectively. We also performed linkage analysis on denser maps of markers by combining the SNPs datasets from Affymetrix and Illumina. Adding the microsatellite data to the combined SNP dataset improved the results only marginally. The results indicated that SNPs outperform microsatellites with the densest marker sets performing the best.  相似文献   

2.
Recently, alcohol-related traits have been shown to have a genetic component. Here, we study the association of specific genetic measures in one of the three sets of electrophysiological measures in families with alcoholism distributed as part of the Genetic Analysis Workshop 14 data, the NTTH (non-target case of Visual Oddball experiment for 4 electrode placements) phenotypes: ntth1, ntth2, ntth3, and ntth4. We focused on the analysis of the 786 Affymetrix markers on chromosome 4. Our desire was to find at least a partial answer to the question of whether ntth1, ntth2, ntth3, and ntth4 are separately or jointly genetically controlled, so we studied the principal components that explain most of the covariation of the four quantitative traits. The first principal component, which explains 70% of the covariation, showed association but not genetic linkage to two markers: tsc0272102 and tsc0560854. On the other hand, ntth1 appeared to be the trait driving the variation in the second principal component, which showed association and genetic linkage at markers in four regions: tsc0045058, tsc1213381, tsc0055068, and tsc0051777 at map distances 53.26, 85.42, 89.31, and 172.86, respectively. These results show that the partial answer to our starting question for this brief analysis is that the NTTH phenotypes are not jointly genetically controlled. The component ntth1 displays marked genetic linkage.  相似文献   

3.
Ulgen A  Li W 《BMC genetics》2005,6(Z1):S13
We compared linkage analysis results for an alcoholism trait, ALDX1 (DSM-III-R and Feigner criteria) using a nonparametric linkage analysis method, which takes into account allele sharing among several affected persons, for both microsatellite and single-nucleotide polymorphism (SNP) markers (Affymetrix and Illumina) in the Collaborative Study on the Genetics of Alcoholism (COGA) dataset provided to participants at the Genetic Analysis Workshop 14 (GAW14). The two sets of linkage results from the dense Affymetrix SNP markers and less densely spaced Illumina SNP markers are very similar. The linkage analysis results from microsatellite and SNP markers are generally similar, but the match is not perfect. Strong linkage peaks were found on chromosome 7 in three sets of linkage analyses using both SNP and microsatellite marker data. We also observed that for SNP markers, using the given genetic map and using the map by converting 1 megabase pair (1 Mb) to 1 centimorgan (cM), did not change the linkage results. We recommend the use of the 1 Mb-to-1 cM converted map in a first round of linkage analysis with SNP markers in which map integration is an issue.  相似文献   

4.
Both theoretical and applied studies have proven that the utility of single nucleotide polymorphism (SNP) markers in linkage analysis is more powerful and cost-effective than current microsatellite marker assays. Here we performed a whole-genome scan on 115 White, non-Hispanic families segregating for alcohol dependence, using one 10.3-cM microsatellite marker set and two SNP data sets (0.33-cM, 0.78-cM spacing). Two definitions of alcohol dependence (ALDX1 and ALDX2) were used. Our multipoint nonparametric linkage analysis found alcoholism was nominal linked to 12 genomic regions. The linkage peaks obtained by using the microsatellite marker set and the two SNP sets had a high degree of correspondence in general, but the microsatellite marker set was insufficient to detect some nominal linkage peaks. The presence of linkage disequilibrium between markers did not significantly affect the results. Across the entire genome, SNP datasets had a much higher average linkage information content (0.33 cM: 0.93, 0.78 cM: 0.91) than did microsatellite marker set (0.57). The linkage peaks obtained through two SNP datasets were very similar with some minor differences. We conclude that genome-wide linkage analysis by using approximately 5,000 SNP markers evenly distributed across the human genome is sufficient and might be more powerful than current 10-cM microsatellite marker assays.  相似文献   

5.
Genotype data from the Illumina Linkage III SNP panel (n = 4,720 SNPs) and the Affymetrix 10 k mapping array (n = 11,120 SNPs) were used to test the effects of linkage disequilibrium (LD) between SNPs in a linkage analysis in the Collaborative Study on the Genetics of Alcoholism pedigree collection (143 pedigrees; 1,614 individuals). The average r2 between adjacent markers across the genetic map was 0.099 +/- 0.003 in the Illumina III panel and 0.17 +/- 0.003 in the Affymetrix 10 k array. In order to determine the effect of LD between marker loci in a nonparametric multipoint linkage analysis, markers in strong LD with another marker (r2 > 0.40) were removed (n = 471 loci in the Illumina panel; n = 1,804 loci in the Affymetrix panel) and the linkage analysis results were compared to the results using the entire marker sets. In all analyses using the ALDX1 phenotype, 8 linkage regions on 5 chromosomes (2, 7, 10, 11, X) were detected (peak markers p < 0.01), and the Illumina panel detected an additional region on chromosome 6. Analysis of the same pedigree set and ALDX1 phenotype using short tandem repeat markers (STRs) resulted in 3 linkage regions on 3 chromosomes (peak markers p < 0.01). These results suggest that in this pedigree set, LD between loci with spacing similar to the SNP panels tested may not significantly affect the overall detection of linkage regions in a genome scan. Moreover, since the data quality and information content are greatly improved in the SNP panels over STR genotyping methods, new linkage regions may be identified due to higher information content and data quality in a dense SNP linkage panel.  相似文献   

6.
Parkinson disease (PD) is a late-onset neurodegenerative disorder. The mean age at onset is 61 years, but the disease can range from juvenile cases to cases in the 8th or 9th decade of life. The parkin gene on chromosome 6q and loci on chromosome 1p35-36 and 1p36 are responsible for some cases of autosomal recessive early-onset parkinsonism, but they do not appear to influence susceptibility or variability of age at onset for idiopathic PD. We have performed a genomewide linkage analysis using variance-component methodology to identify genes influencing age at onset of PD in a population of affected relatives (mainly affected sibling pairs) participating in the GenePD study. Four chromosomal loci showed suggestive evidence of linkage: chromosome 2p (maximum multipoint LOD [MaxLOD] = 2.08), chromosome 9q (MaxLOD = 2.00), chromosome 20 (MaxLOD = 1.82), and chromosome 21 (MaxLOD = 2.21). The 2p and 9q locations that we report here have previously been reported as loci influencing PD affection status. Association between PD age at onset and allele 174 of marker D2S1394, located on 2p13, was observed in the GenePD sample (P=.02). This 174 allele is common to the PD haplotype observed in two families that show linkage to PARK3 and have autosomal dominant PD, which suggests that this allele may be in linkage disequilibrium with a mutation influencing PD susceptibility or age at onset of PD.  相似文献   

7.

Background

Using the dataset provided for Genetic Analysis Workshop 14 by the Collaborative Study on the Genetics of Alcoholism, we performed genome-wide linkage analysis of age at onset of alcoholism to compare the utility of microsatellites and single-nucleotide polymorphisms (SNPs) in genetic linkage study.

Methods

A multipoint nonparametric variance component linkage analysis method was applied to the survival distribution function obtained from semiparametric proportional hazards model of the age at onset phenotype of alcoholism. Three separate linkage analyses were carried out using 315 microsatellites, 2,467 and 9,467 SNPs, spanning the 22 autosomal chromosomes.

Results

Heritability of age at onset was estimated to be approximately 12% (p < 0.001). We observed weak correlation, both in trend and strength, of genome-wide linkage signals between microsatellites and SNPs. Results from SNPs revealed more and stronger linkage signals across the genome compared with those from microsatellites. The only suggestive evidence of linkage from microsatellites was on chromosome 1 (LOD of 1.43). Differences in map densities between the two sets of SNPs used in this study did not appear to confer an advantage in terms of strength of linkage signals.

Conclusion

Our study provided support for better performance of dense SNP maps compared with the sparse mirosatellite maps currently available for linkage analysis of quantitative traits. This better performance could be attributable to precise definition and high map resolutions achievable with dense SNP maps, thus resulting in increased power to detect possible loci affecting given trait or disease.
  相似文献   

8.

Background

Alcoholism is a complex disease. There have been many reports on significant comorbidity between alcoholism and schizophrenia. For the genetic study of complex diseases, association analysis has been recommended because of its higher power than that of the linkage analysis for detecting genes with modest effects on disease.

Results

To identify alcoholism susceptibility loci, we performed genome-wide single-nucleotide polymorphisms (SNP) association tests, which yielded 489 significant SNPs at the 1% significance level. The association tests showed that tsc0593964 (P-value 0.000013) on chromosome 7 was most significantly associated with alcoholism. From 489 SNPs, 74 genes were identified. Among these genes, GABRA1 is a member of the same gene family with GABRA2 that was recently reported as alcoholism susceptibility gene.

Conclusion

By comparing 74 genes to the published results of various linkage studies of schizophrenia, we identified 13 alcoholism associated genes that were located in the regions reported to be linked to schizophrenia. These 13 identified genes can be important candidate genes to study the genetic mechanism of co-occurrence of both diseases.
  相似文献   

9.
Lin JP  Wu C 《BMC genetics》2005,6(Z1):S114
Genetic components significantly contribute to the susceptibilities of alcoholism and its endophenotypes, such as event-related potential measures and electroencephalogram. An endophenotype is a correlated trait which identifies individuals at risk. Correlated traits could be influenced by shared genes. This study is intended to identify chromosome regions that may harbor common genetic loci contributing to alcoholism, event related potential measures and electroencephalogram. All 143 Collaborative Study on the Genetics of Alcoholism families with 1,614 individuals provided by the Genetic Analysis Workshop 14 were used for the analysis with aldx1 as an alcoholism diagnosis. We carried out factor and principal component analyses on the 12 event-related potentials, then bivariate genome scans on aldx1 and electroencephalogram (ecb21), as well as alcoholism and the principal component scores of the event-related potential measures. A univariate genome scan was also carried out on each trait. Factor and principal component analysis on the event-related potential measures showed that the 4 ttths and 4 ntths belong to one cluster (cluster 1), while the 4 ttdts belonged to another (cluster 2). From each cluster, one principal component was extracted and saved as pc1 (for cluster 1) and pc2 (for cluster 2). The results of genome scans revealed only one chromosome region, chromosome 4 q at about 100 cM, identified by several univariate genome scans including aldx1, ecb21, and pc2, and the evidence of linkage increased significantly in the bivariate genome scans of aldx1 and ecb21 and aldx1 and pc2. Our study suggests that the same quantitative trait locus on the chromosome 4 q region, where ADH3 is located, may influence the risk of alcoholism, variations of electroencephalogram, and the 4 ttdts of the event-related potential measures.  相似文献   

10.
Seven families, selected for breast cancer segregation, have been analyzed for chromosome 17q12-q23 linkage to breast and ovarian cancer. In two of them, linkage is seen with most markers tested, increasing toward the most proximal region, but without informative recombinations above NM23. In the remaining families, no linkage is observed. Families with 17q linkage are not easily distinguished by clinical characteristics such as early onset (mean age at diagnosis < or = 45 years) or organs involved. In fact, the family with the highest lod scores (> or = 2.3) belongs to the "later onset" (> 45 years) category of families. Interestingly, prostatic cancer is the most frequent malignancy, after breast cancer, in the families that we studied (13 cases total, all metastasizing) and is especially prevalent in males presumed to carry the trait. Of 16 paternal carriers, 7 (44%) had developed prostatic cancer. Haplotype analysis in families with 17q linkage reveals two further prostatic cases as potential carriers. We propose that breast cancer genes may predispose to prostatic cancer in male carriers.  相似文献   

11.
Studies have shown that genetic and environmental factors and their interactions affect several alcoholism phenotypes. Genotype x alcoholism (GxA) interaction refers to the environmental (alcoholic and non-alcoholic) influences on the autosomal genes contributing to variation in an alcoholism-related quantitative phenotype. The purpose of this study was to examine the effects of GxA interaction on the detection of linkage for alcoholism-related phenotypes. We used phenotypic and genotypic data from the Collaborative Study on the Genetics of Alcoholism relating to 1,388 subjects as part of Genetic Analysis Workshop 14 problem 1. We analyzed the MXDRNK phenotype to detect GxA interaction using SOLAR. Upon detecting significant interaction, we conducted variance-component linkage analyses using microsatellite marker data. For maximum number of drinks per a 24 hour period, the highest LODs were observed on chromosomes 1, 4, and 13 without GxA interaction. Interaction analysis yielded four regions on chromosomes 1, 4, 13, and 15. On chromosome 4, a maximum LOD of 1.5 at the same location as the initial analysis was obtained after incorporating GxA interaction effects. However, after correcting for extra parameters, the LOD score was reduced to a corrected LOD of 1.1, which is similar to the LOD observed in the non-interaction analysis. Thus, we see little differences in LOD scores, while some linkage regions showed large differences in the magnitudes of estimated quantitative trait loci heritabilities between the alcoholic and non-alcoholic groups. These potential hints of differences in genetic effect may influence future analyses of variants under these linkage peaks.  相似文献   

12.
Association studies of quantitative traits have often relied on methods in which a normal distribution of the trait is assumed. However, quantitative phenotypes from complex human diseases are often censored, highly skewed, or contaminated with outlying values. We recently developed a rank-based association method that takes into account censoring and makes no distributional assumptions about the trait. In this study, we applied our new method to age-at-onset data on ALDX1 and ALDX2. Both traits are highly skewed (skewness > 1.9) and often censored. We performed a whole genome association study of age at onset of the ALDX1 trait using Illumina single-nucleotide polymorphisms. Only slightly more than 5% of markers were significant. However, we identified two regions on chromosomes 14 and 15, which each have at least four significant markers clustering together. These two regions may harbor genes that regulate age at onset of ALDX1 and ALDX2. Future fine mapping of these two regions with densely spaced markers is warranted.  相似文献   

13.
Alzheimer disease (AD) is the most common cause of dementia. We conducted a genome screen of 103 patients with late-onset AD who were ascertained as part of the Genetic Research in Isolated Populations (GRIP) program that is conducted in a recently isolated population from the southwestern area of The Netherlands. All patients and their 170 closely related relatives were genotyped using 402 microsatellite markers. Extensive genealogy information was collected, which resulted in an extremely large and complex pedigree of 4,645 members. The pedigree was split into 35 subpedigrees, to reduce the computational burden of linkage analysis. Simulations aiming to evaluate the effect of pedigree splitting on false-positive probabilities showed that a LOD score of 3.64 corresponds to 5% genomewide type I error. Multipoint analysis revealed four significant and one suggestive linkage peaks. The strongest evidence of linkage was found for chromosome 1q21 (heterogeneity LOD [HLOD]=5.20 at marker D1S498). Approximately 30 cM upstream of this locus, we found another peak at 1q25 (HLOD=4.0 at marker D1S218). These two loci are in a previously established linkage region. We also confirmed the AD locus at 10q22-24 (HLOD=4.15 at marker D10S185). There was significant evidence of linkage of AD to chromosome 3q22-24 (HLOD=4.44 at marker D3S1569). For chromosome 11q24-25, there was suggestive evidence of linkage (HLOD=3.29 at marker D11S1320). We next tested for association between cognitive function and 4,173 single-nucleotide polymorphisms in the linked regions in an independent sample consisting of 197 individuals from the GRIP region. After adjusting for multiple testing, we were able to detect significant associations for cognitive function in four of five AD-linked regions, including the new region on chromosome 3q22-24 and regions 1q25, 10q22-24, and 11q25. With use of cognitive function as an endophenotype of AD, our study indicates the that the RGSL2, RALGPS2, and C1orf49 genes are the potential disease-causing genes at 1q25. Our analysis of chromosome 10q22-24 points to the HTR7, MPHOSPH1, and CYP2C cluster. This is the first genomewide screen that showed significant linkage to chromosome 3q23 markers. For this region, our analysis identified the NMNAT3 and CLSTN2 genes. Our findings confirm linkage to chromosome 11q25. We were unable to confirm SORL1; instead, our analysis points to the OPCML and HNT genes.  相似文献   

14.
Robust sib-pair linkage analysis can be used as a screening tool in the search for the potential involvement of single-loci, multiple-loci, and pleiotropic effects of single loci underlying phenotypic variation. Four large families were each ascertained through one adult white male with essential hypertension. The robust sib-pair method was used to screen these families for evidence of linkage between 39 quantitative traits related to hypertension and 25 genetic marker loci. All traits were analyzed on the untransformed, square-root and log-transformed scales. Among other findings, there is a suggestion of linkage between the 6-phosphogluconate dehydrogenase locus on chromosome 1p36 and mean fifth-phase diastolic blood pressure. There may also be linkage between the following markers and traits: the adenylate kinase-1 marker and/or the Lewis blood group marker and the traits height, weight, and biacromial breadth; the glyoxylase I marker and the traits upper-arm circumference and suprailiac skinfold thickness; the ABO blood group and adenylate kinase-1 markers on chromosome 9q34 and the third component of complement marker on chromosome 19p13 and dopamine-beta-hydroxylase; and the P1 blood group and the traits weight and 1-h postload serum glucose level.  相似文献   

15.
Polycystic kidney disease is an inherited heterogeneous disorder that affects approximately 11000 Europeans. It is characterized mainly by the formation of cysts in the kidney that lead to end-stage renal failure with late age of onset. Three loci have been identified, PKD1 on the short arm of chromosome 16, which has recently been isolated and characterized, PKD2 on the long arm of chromosome 4, and a third locus of unknown location, that is apparently much rarer. In families that transmit the PKD2 gene there is a significantly later age of onset of symptoms, compared with families that transmit the PKD1 gene, and in general they present with milder progression of symptomatology. For the first time we attempted molecular genetic analysis in seven Cypriot families using highly polymorphic markers around the PKD1 and PKD2 genes. Our data showed that there is genetic and phenotypic heterogeneity among these families. For four of the families we obtained strong evidence for linkage to the PKD1 locus. In two of these families linkage to PKD1 was strengthened by excluding linkage to PKD2 with the use of marker D4S423. In three other families we showed linkage to the PKD2 locus. In the largest of these families one recombinant placed marker D4S1534 distal to D4S231, thereby rendering it the closest proximal marker known to us to date. The application of molecular methods allowed us to make presymptomatic diagnosis for a number of at-risk individuals.  相似文献   

16.
Several genome-wide association and candidate gene studies have linked chromosome 15q24-q25.1 (a region including the CHRNA5-CHRNA3-CHRNB4 gene cluster) with alcohol dependence, nicotine dependence and smoking-related illnesses such as lung cancer and chronic obstructive pulmonary disease. To further examine the impact of these genes on the development of substance use disorders, we tested whether variants within and flanking the CHRNA5-CHRNA3-CHRNB4 gene cluster affect the transition to daily smoking (individuals who smoked cigarettes 4 or more days per week) in a cross sectional sample of adolescents and young adults from the COGA (Collaborative Study of the Genetics of Alcoholism) families. Subjects were recruited from families affected with alcoholism (either as a first or second degree relative) and the comparison families. Participants completed the SSAGA interview, a comprehensive assessment of alcohol and other substance use and related behaviors. Using the Quantitative trait disequilibrium test (QTDT) significant association was detected between age at onset of daily smoking and variants located upstream of CHRNB4. Multivariate analysis using a Cox proportional hazards model further revealed that these variants significantly predict the age at onset of habitual smoking among daily smokers. These variants were not in high linkage disequilibrium (0.28相似文献   

17.
Complex disease mapping usually involves a combination of linkage and association techniques. Linkage analysis can scan the entire genome in a few hundred tests. Association tests may involve an even greater number of tests. However, association tests can localize the susceptibility genes more accurately. Using a recently developed combined linkage and association strategy, we analyzed a subset of the Collaborative Study on the Genetics of Alcoholism (COGA) data for the Genetic Analysis Workshop 14 (GAW14). In this analysis, we first employed linkage analysis based on frailty models that take into account age of onset information to establish which regions along the chromosome are likely to harbor disease susceptibility genes for alcohol dependence. Second, we used an association analysis by exploiting linkage disequilibrium to narrow down the peak regions. We also compare the methods with mean identity-by-descent tests and transmission/disequilibrium tests that do not use age of onset information.  相似文献   

18.
Since little is known about chromosomal locations harboring type 2 diabetes-susceptibility genes, we conducted a genomewide scan for such genes in a Mexican American population. We used data from 27 low-income extended Mexican American pedigrees consisting of 440 individuals for whom genotypic data are available for 379 markers. We used a variance-components technique to conduct multipoint linkage analyses for two phenotypes: type 2 diabetes (a discrete trait) and age at onset of diabetes (a truncated quantitative trait). For the multipoint analyses, a subset of 295 markers was selected on the basis of optimal spacing and informativeness. We found significant evidence that a susceptibility locus near the marker D10S587 on chromosome 10q influences age at onset of diabetes (LOD score 3.75) and is also linked with type 2 diabetes itself (LOD score 2.88). This susceptibility locus explains 63.8%+/-9.9% (P=. 000016) of the total phenotypic variation in age at onset of diabetes and 65.7%+/-10.9% (P=.000135) of the total variation in liability to type 2 diabetes. Weaker evidence was found for linkage of diabetes and of age at onset to regions on chromosomes 3p, 4q, and 9p. In conclusion, our strongest evidence for linkage to both age at onset of diabetes and type 2 diabetes itself in the Mexican American population was for a region on chromosome 10q.  相似文献   

19.
Khush GS  Singh RJ  Sur SC  Librojo AL 《Genetics》1984,107(1):141-163
Twelve primary trisomics of Oryza sativa L. were isolated from the progenies of spontaneous triploids and were transferred by backcrossing to the genetic background of IR36, a widely grown high yielding rice variety. Eleven trisomics can be identified morphologically from one another and from diploids. However, triplo 11 is difficult to distinguish from diploid sibs.—The extra chromosome of each trisomic was identified cytologically at pachytene stage of meiosis, and the chromosomes were numbered according to their length at this stage. The major distinguishing features of each pachytene chromosome were redescribed.—The female transmission rates varied from 15.5% for triplo 1, the longest chromosome, to 43.9% for triplo 12, the shortest chromosome. Seven of the 12 primary trisomics transmitted the extra chromosome through the male. The low level of chromosomal imbalance tolerated by rice and other evidence are interpreted to indicate that this species is a basic diploid.—Genetic segregation for 22 marker genes in the trisomic progenies was studied. Of a possible 264 combinations, involving 22 genes and 12 trisomics, 120 were examined. Marker genes for each of the 12 chromosomes were identified. The results helped establish associations between linkage groups and cytologically identifiable chromosomes of rice for the first time. Relationships between various systems of numbering chromosomes, trisomics, linkage groups and marker genes are described, and a revised linkage map of rice is presented.  相似文献   

20.
MOTIVATION: Sex-specific marker maps have become increasingly available. We have implemented the usage of sex-specific recombination frequencies in the GENEHUNTER-MODSCORE program that performs multipoint linkage analysis. Furthermore, we have devised a consistent method to choose the combinations of male and female genetic positions at which linkage scores should be calculated. Marker coordinates can be read automatically from publicly available genetic maps. RESULTS: In a MOD-score analysis of the COGA dataset provided for Genetic Analysis Workshop 14, the highest linkage peak on chromosome 1 further increases when using sex-specific maps, while some smaller peaks are decreased. Simulations confirm that the MOD score can be biased when a sex-averaged instead of the correct sex-specific map is employed. This shows that an adequate modeling of the female:male ratio of genetic distances is important, especially for complex traits. AVAILABILITY: The new version of GENEHUNTER-MODSCORE can be downloaded from the following website: http://www.staff.uni-marburg.de/~strauchk/software.html  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号