首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Rheumatoid arthritis is a chronic inflammatory autoimmune disorder, controlled by multiple genes as well as environmental factors. With animal models, like the pristane-induced arthritis (PIA) in rats, it is possible to reduce the environmental effects and the genetic heterogeneity to identify chromosomal regions harboring genes responsible for the arthritis development. The PIA model has proved to be useful for identifying gene regions controlling different phases of the disease based on intercrosses between the resistant E3 and the susceptible DA rat. We have now performed a high-powered backcross analysis that confirms previous intercross-based data but also identifies additional loci. Earlier identified PIA loci were reproduced with high significance; Pia1 (MHC region on chromosome 20), Pia4 (chromosome 12), and Pia7 (chromosome 4) are all major regulators of PIA severity and were also found to operate in concert. These three loci were verified in congenic strains using both disease- and arthritis-inflammatory-related subphenotypes as traits. We were also able to detect five new quantitative trait loci with dominant effects on PIA: Pia10, Pia12, Pia13, Pia14, and Pia15 on chromosomes 10, 6, 7, 8, and 18, respectively. These data highlight the usefulness of the statistical power obtained in a backcross of a complex disease like arthritis.  相似文献   

2.
OBJECTIVE: Atherosclerosis is a fibroproliferative disease which has been attributed to several factors including genetic and molecular alterations. Initial studies have shown genetic alterations at the microsatellite level in the DNA of atherosclerotic plaques. Extending our initial findings, we performed a microsatellite analysis on cerebral atherosclerotic plaques. METHODS: Twenty-seven cerebral atherosclerotic plaques were assessed for loss of heterozygosity (LOH) and microsatellite instability (MI) using 25 microsatellite markers located on chromosomes 2, 8, 9 and 17. DNA was extracted from the vessels as well as the respective blood from each patient and subjected to polymerase chain reaction. RESULTS: Our analyses revealed that specific loci on chromosomes 2, 8, 9 and 17 exhibited a significant incidence of LOH. Forty-six percent of the specimens showed loss of heterozygosity at 2p13-p21, 48% exhibited LOH at 8p12-q11.2, while allelic imbalance was detected in 47% of the cases. The LOH incidence was 39%, 31% and 27% at 17q21, 9q31-34 and 17p13, respectively. Genetic alterations were detected at a higher rate as compared to the corresponding alterations observed in plaques from other vessels. DISCUSSION: This is the first microsatellite analysis using atherosclerotic plaques obtained from cerebral vessels. Our results indicate an elevated mutational rate on specific chromosomal loci, suggesting a potential implication of these regions in atherogenesis.  相似文献   

3.
Quantitative trait loci (QTL) influencing body weight were mapped by linkage analysis in crosses between a high body weight selected line (DU6) and a control line (DUKs). The two mouse lines differ in body weight by 106% and in abdominal fat weight by 100% at 42 days. They were generated from the same base population and maintained as outbred colonies. Determination of line-specific allele frequencies at microsatellite markers spanning the genome indicated significant changes between the lines on 15 autosomes and the X chromosome. To confirm these effects, a QTL analysis was performed using structured F2 pedigrees derived from crosses of a single male from DU6 with a female from DUKs. QTL significant at the genome-wide level were mapped for body weight on chromosome 11; for abdominal fat weight on chromosomes 4, 11, and 13; for abdominal fat percentage on chromosomes 3 and 4; and for the weights of liver on chromosomes 4 and 11, of kidney on chromosomes 2 and 9, and of spleen on chromosome 11. The strong effect on body weight of the QTL on chromosome 11 was confirmed in three independent pedigrees. The effect was additive and independent of sex, accounting for 21-35% of the phenotypic variance of body weight within the corresponding F2 populations. The test for multiple QTL on chromosome 11 with combined data from all pedigrees indicated the segregation of two loci separated by 36 cM influencing body weight.  相似文献   

4.
To examine the genetic basis of age-related macular degeneration (ARMD), a degenerative disease of the retinal pigment epithelium and neurosensory retina, we conducted a genomewide scan in 34 extended families (297 individuals, 349 sib pairs) ascertained through index cases with neovascular disease or geographic atrophy. Family and medical history was obtained from index cases and family members. Fundus photographs were taken of all participating family members, and these were graded for severity by use of a quantitative scale. Model-free linkage analysis was performed, and tests of heterogeneity and epistasis were conducted. We have evidence of a major locus on chromosome 15q (GATA50C03 multipoint P=1.98x10-7; empirical P< or =1.0x10-5; single-point P=3.6x10-7). This locus was present as a weak linkage signal in our previous genome scan for ARMD, in the Beaver Dam Eye Study sample (D15S659, multipoint P=.047), but is otherwise novel. In this genome scan, we observed a total of 13 regions on 11 chromosomes (1q31, 2p21, 4p16, 5q34, 9p24, 9q31, 10q26, 12q13, 12q23, 15q21, 16p12, 18p11, and 20q13), with a nominal multipoint significance level of P< or =.01 or LOD > or =1.18. Family-by-family analysis of the data, performed using model-free linkage methods, suggests that there is evidence of heterogeneity in these families. For example, a single family (family 460) individually shows linkage evidence at 8 loci, at the level of P<.0001. We conducted tests for heterogeneity, which suggest that ARMD susceptibility loci on chromosomes 9p24, 10q26, and 15q21 are not present in all families. We tested for mutations in linked families and examined SNPs in two candidate genes, hemicentin-1 and EFEMP1, in subsamples (145 and 189 sib pairs, respectively) of the data. Mutations were not observed in any of the 11 exons of EFEMP1 nor in exon 104 of hemicentin-1. The SNP analysis for hemicentin-1 on 1q31 suggests that variants within or in very close proximity to this gene cause ARMD pathogenesis. In summary, we have evidence for a major ARMD locus on 15q21, which, coupled with numerous other loci segregating in these families, suggests complex oligogenic patterns of inheritance for ARMD.  相似文献   

5.
Uveitis is a complex multifactorial autoimmune disease of the eye characterized by inflammation of the uvea and retina, degeneration of the retina, and blindness in genetically predisposed patients. Using the rat model of experimental autoimmune uveitis (EAU), we previously identified three quantitative trait loci (QTL) associated with EAU on rat chromosomes 4, 12, and 10 (Eau1, Eau2, and Eau3). The primary goal of the current study is to delineate additional non-MHC chromosomal regions that control susceptibility to EAU, and to identify any QTLs that overlap with the QTLs of other autoimmune diseases. Using a set of informative microsatellite markers and F(2) generations of resistant and susceptible MHC class II-matched rat strains (F344 and LEW), we have identified several new significant or suggestive QTLs on rat chromosomes 2, 3, 7, 10, and 19 that control susceptibility to EAU. A protective allele was identified in the susceptible LEW strain in the Eau5 locus at D7Wox18, and epistatic interactions between QTLs were found to influence the severity of disease. The newly identified regions (Eau4 through Eau9) colocalize with the genetic determinants of other autoimmune disease models, and to disease-regulating syntenic regions identified in autoimmune patients on human chromosomes 4q21-31, 5q31-33, 16q22-24, 17p11-q12, 20q11-13, and 22q12-13. Our results suggest that uveitis shares some of the pathogenic mechanisms associated with other autoimmune diseases, and lends support to the "common gene, common pathway" hypothesis for autoimmune disorders.  相似文献   

6.
Abnormal lipid levels are important risk factors for cardiovascular diseases. We conducted genome-wide variance component linkage analyses to search for loci influencing total cholesterol (TC), LDL, HDL and triglyceride in families residing in American Samoa and Samoa as well as in a combined sample from the two polities. We adjusted the traits for a number of environmental covariates, such as smoking, alcohol consumption, physical activity, and material lifestyle. We found suggestive univariate linkage with log of the odds (LOD) scores > 3 for LDL on 6p21-p12 (LOD 3.13) in Samoa and on 12q21-q23 (LOD 3.07) in American Samoa. Furthermore, in American Samoa on 12q21, we detected genome-wide linkage (LOD(eq) 3.38) to the bivariate trait TC-LDL. Telomeric of this region, on 12q24, we found suggestive bivariate linkage to TC-HDL (LOD(eq) 3.22) in the combined study sample. In addition, we detected suggestive univariate linkage (LOD 1.9-2.93) on chromosomes 4p-q, 6p, 7q, 9q, 11q, 12q 13q, 15q, 16p, 18q, 19p, 19q and Xq23 and suggestive bivariate linkage (LOD(eq) 2.05-2.62) on chromosomes 6p, 7q, 12p, 12q, and 19p-q. In conclusion, chromosome 6p and 12q may host promising susceptibility loci influencing lipid levels; however, the low degree of overlap between the three study samples strongly encourages further studies of the lipid-related traits.  相似文献   

7.
A genome‐wide association study of 2098 progeny‐tested Nordic Holstein bulls genotyped for 36 387 SNPs on 29 autosomes was conducted to confirm and fine‐map quantitative trait loci (QTL) for mastitis traits identified earlier using linkage analysis with sparse microsatellite markers in the same population. We used linear mixed model analysis where a polygenic genetic effect was fitted as a random effect and single SNPs were successively included as fixed effects in the model. We detected 143 SNP‐by‐trait significant associations (P < 0.0001) on 20 chromosomes affecting mastitis‐related traits. Among them, 21 SNP‐by‐trait combinations exceeded the genome‐wide significant threshold. For 12 chromosomes, both the present association study and the previous linkage study detected QTL, and of these, six were in the same chromosomal locations. Strong associations of SNPs with mastitis traits were observed on bovine autosomes 6, 13, 14 and 20. Possible candidate genes for these QTL were identified. Identification of SNPs in linkage disequilibrium with QTL will enable marker‐based selection for mastitis resistance. The candidate genes identified should be further studied to detect candidate polymorphisms underlying these QTL.  相似文献   

8.
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease characterized by both population and phenotypic heterogeneity. Our group previously identified linkage to SLE at 4p16 in European Americans (EA). In the present study we replicate this linkage effect in a new cohort of 76 EA families multiplex for SLE by model-free linkage analysis. Using densely spaced microsatellite markers in the linkage region, we have localized the potential SLE susceptibility gene(s) to be telomeric to the marker D4S2928 by haplotype construction. In addition, marker D4S394 showed marginal evidence of linkage disequilibrium with the putative disease locus by the transmission disequilibrium test and significant evidence of association using a family-based association approach as implemented in the program ASSOC. We also performed both two-point and multipoint model-based analyses to characterize the genetic model of the potential SLE susceptibility gene(s), and the lod scores both maximized under a recessive model with penetrances of 0.8. Finally, we performed a genome-wide scan of the total 153 EA pedigrees and evaluated the possibility of interaction between linkage signals at 4p16 and other regions in the genome. Fourteen regions on 11 chromosomes (1q24, 1q42, 2p11, 2q32, 3p14.2, 4p16, 5p15, 7p21, 8p22, 10q22, 12p11, 12q24, 14q12, 19q13) showed evidence of linkage, among which, signals at 2p11, 12q24 and 19q13 also showed evidence of interaction with that at 4p16. These results provide important additional information about the SLE linkage effect at 4p16 and offer a unique approach to uncovering susceptibility loci involved in complex human diseases.  相似文献   

9.
BACKGROUND: Neural tube defects (NTDs) are considered complex, with both genetic and environmental factors implicated. To date, no major causative genes have been identified in humans despite several investigations. The first genomewide screen in NTDs demonstrated evidence of linkage to chromosomes 7 and 10. This screen included 44 multiplex families and consisted of 402 microsatellite markers spaced approximately 10 cM apart. Further investigation of the genomic screen data identified a single large multiplex family, pedigree 8776, as primarily driving the linkage results on chromosome 7. METHODS: To investigate this family more thoroughly, a high-density single nucleotide polymorphism (SNP) screen was performed. Two-point and multipoint linkage analyses were performed using both parametric and nonparametric methods. RESULTS: For both the microsatellite and SNP markers, linkage analysis suggested the involvement of a locus or loci proximal to the telomeric regions of chromosomes 2q and 7p, with both regions generating a LOD* score of 3.0 using a nonparametric identity by descent relative sharing method. CONCLUSIONS: The regions with the strongest evidence for linkage map proximal to the telomeres on these two chromosomes. In addition to mutations and/or variants in a major gene, these loci may harbor a microdeletion and/or translocation; potentially, polygenic factors may also be involved. This single family may be promising for narrowing the search for NTD susceptibility genes.  相似文献   

10.
Current linkage analysis methods for quantitative traits do not usually incorporate imprinting effects. Here, we carried out genome-wide linkage analysis for loci influencing adult height in the Framingham Heart Study subjects using variance components while allowing for imprinting effects. We used a sex-averaged map for the 22 autosomes, while chromosomes 6, 14, 18, and 19 were also analyzed using sex-specific maps. We compared results from these four analyses: 1) non-imprinted with sex-averaged maps, 2) imprinted with sex-averaged maps, 3) non-imprinted with sex-specific maps, and 4) imprinted with sex-specific maps. We found four regions on three chromosomes (14q32, 18p11-q21, 18q21-22, and 19q13) with LOD scores above 2.0, with a maximum LOD score of 3.12, allowing for imprinting and sex-specific maps, at D18S1364 on 18q21. While we obtained significant evidence of imprinting effects in both the 18p11-q21 and 19q13 regions when using sex-averaged maps, there were no significant differences between the imprinted and non-imprinted LOD scores when we used sex-specific maps. Our results illustrate the importance of allowing for gender-specific effects in linkage analyses, whether these are in the form of gender-specific recombination frequencies, or in the form of imprinting effects.  相似文献   

11.
Quantitative trait loci affecting fatness in the chicken   总被引:13,自引:0,他引:13  
An F2 chicken population of 442 individuals from 30 families, obtained by crossing a broiler line with a layer line, was used for detecting and mapping Quantitative Trait Loci (QTL) affecting abdominal fat weight, skin fat weight and fat distribution. Within-family regression analyses using 102 microsatellite markers in 27 linkage groups were carried out with genome-wide significance thresholds. The QTL for abdominal fat weight were found on chromosomes 3, 7, 15 and 28; abdominal fat weight adjusted for carcass weight on chromosomes 1, 5, 7 and 28; skin and subcutaneous fat on chromosomes 3, 7 and 13; skin fat weight adjusted for carcass weight on chromosomes 3 and 28; and skin fat weight adjusted for abdominal fat weight on chromosomes 5, 7 and 15. Interactions of the QTL with sex or family were unimportant and, for each trait, there was no evidence for imprinting or of multiple QTL on any chromosome. Significant dominance effects were obtained for all but one of the significant locations for QTL affecting the weight of abdominal fat, none for skin fat and one of the three QTL affecting fat distribution. The magnitude of each QTL ranged from 3.0 to 5.2% of the residual phenotypic variation or 0.2-0.8 phenotypic standard deviations. The largest additive QTL (on chromosome 7) accounted for more than 20% of the mean weight of abdominal fat. Significant positive and negative QTL were identified from both lines.  相似文献   

12.
Wang Z  Fan H  Yang HH  Hu Y  Buetow KH  Lee MP 《Genomics》2004,83(3):395-401
We performed a comparative genomic sequence analysis between human and mouse for 24 imprinted genes on human chromosomes 1, 6, 7, 11, 13, 14, 15, 18, 19, and 20. The MEME program was used to search for motifs within conserved sequences among the imprinted genes and we then used the MAST program to analyze for the presence or absence of motifs in the imprinted genes and 128 nonimprinted genes. Our analysis identified 15 motifs that were significantly enriched in the imprinted genes. We generated a logistic regression model by combining multiple motifs as input variables and the 24 imprinted genes and the 128 nonimprinted genes as a training set. The accuracy, sensitivity, and specificity of our model were 98, 92, and 99%, respectively. The model was further validated by an open test on 12 additional imprinted genes. The motifs identified in this study are novel imprinting signatures, which should improve our understanding of genomic imprinting and the role of genomic imprinting in human diseases.  相似文献   

13.
This study aimed to identify regions of the genome affecting resistance to gastrointestinal nematodes in a Creole goat population naturally exposed to a mixed nematode infection (Haemonchus contortus, Trichostrongylus colubriformis and Oesophagostomum columbianum) by grazing on irrigated pasture. A genome‐wide quantitative trait loci (QTL) scan was performed on 383 offspring from 12 half‐sib families. A total of 101 microsatellite markers were genotyped. Traits analysed were faecal egg count (FEC), packed cell volume (PCV), eosinophil count and bodyweight (BW) at 7 and 11 months of age. Levels of activity of immunoglobulin A (IgA) and activity of immunoglobulin E (IgE) anti‐Haemonchus contortus L3 crude extracts and adult excretion/secretion products (ESPs) were also analysed. Using interval mapping, this study identified 13 QTL for parasite resistance. Two QTL linked with FEC were found on chromosomes 22 and 26. Three QTL were detected on chromosomes 7, 8 and 14 for eosinophil counts. Three QTL linked with PCV were identified on chromosomes 5, 9 and 21. A QTL for BW at 7 months of age was found on chromosome 6. Lastly, two QTL detected on chromosomes 3 and 10 were associated with IgE anti‐L3, and IgE anti‐ESP was linked with two QTL on chromosomes 1 and 26. This study is the first to have identified regions of the genome linked with nematode resistance in a goat population using a genome scan. These results provide useful tools for the understanding of parasite resistance in small ruminants.  相似文献   

14.
应用微卫星标记鉴别水稻籼粳亚种   总被引:55,自引:2,他引:55  
应用70个微卫星标记分析了3个籼稻测验种和3个粳稻测验种的多态性,发现其中36个标记可以区分籼粳测验种。再以18个籼粳品种进一步筛选,找到了分布于12条染色体的21个籼粳特异性微卫星标记。在这21个标记中,20个在籼粳亚种间带型相异,其中7个在亚种内带型一致,13个在亚种内带型不一致;1个标记在12个籼稻品种和1个粳稻品种检测到相同的带型,其余11个粳稻品种具有另一种带型。微卫星标记和RFLP标记检测籼粳亚种不仅具有一致性,而且还有互补性。 Abstract:Six indica and japonica testers were assayed using 70 microsatellite markers.Thirty-six markers distinguishing indicas from japonicas were detected.By further-screening among 18 indica and japonica varieties,21 markers distributed on 12 rice chromosomes were found to be indica-japonica differentiated.No indica varieties shared same patterns with any japonica varieties at 20 marker loci,of which identical patterns were observed within subspecies at 7 loci while within-subspecies variations were observed at 13 loci.At the remaining locus,12 indica and 1 japonica varieties had the same allele,while other 11 japonica varieties had another allele.It also showed that SSLP was not only consistent,but also complementary,to RFLP for the subspecies identification.  相似文献   

15.
Clinical-chemical traits are essential when examining the health status of individuals. The aim of this study was to identify quantitative trait loci (QTL) and the associated positional candidate genes affecting clinical-chemical traits in a reciprocal F(2) intercross between Landrace and Korean native pigs. Following an overnight fast, 25 serum phenotypes related to clinical-chemical traits (e.g., hepatic function parameters, renal function parameters, electrolyte, lipids) were measured in >970 F(2) progeny. All experimental samples were subjected to genotyping analysis using 165 microsatellite markers located across the genome. We identified eleven genome-wide significant QTL in six chromosomal regions (SSC 2, 7, 8, 13, 14, and 15) and 59 suggestive QTL in 17 chromosomal regions (SSC 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, and 18). We also observed significant effects of reciprocal crosses on some of the traits, which would seem to result from maternal effect, QTL on sex chromosomes, imprinted genes, or genetic difference in mitochondrial DNA. The role of genomic imprinting in clinical-chemical traits also was investigated. Genome-wide analysis revealed a significant evidence for an imprinted QTL in SSC4 affecting serum amylase levels. Additionally, a series of bivariate linkage analysis provided strong evidence that QTL in SSC 2, 13, 15, and 18 have a pleiotropic effect on clinical-chemical traits. In conclusion, our study detected both novel and previously reported QTL influencing clinical-chemical traits in pigs. The identified QTL together with the positional candidate genes identified here could play an important role in elucidating the genetic structure of clinical-chemical phenotype variation in humans and swine.  相似文献   

16.
Good eggshell quality is important for both table egg quality and chicken reproductive performance. Weak eggshells cause economic losses in all production steps. Poor eggshell quality also poses increased risk for Salmonella infections. Eggshell quality has been a difficult trait to improve by traditional breeding, as it can be measured only for females and it is difficult and expensive to measure. Breeding for improved shell quality may therefore benefit from the use of marker-assisted selection. In an effort to find markers linked to eggshell quality, we have used an F(2) population of 668 females to map quantitative trait loci (QTL) affecting eggshell traits (eggshell deformation, breaking force, weight). By using 160 microsatellite markers on 27 chromosomes, we found 11 genome-wide and 15 suggestive QTL for shell traits measured at different times during production. Loci affecting the deformation were found on chromosomes 1, 2, 6, 10, 14 and Z. Loci affecting the breaking force were detected on chromosomes 2, 3, 10, 12 and Z. Loci affecting the shell weight were detected on chromosomes 6, 12, 24 and Z. Each QTL explains between 1.5% and 4.6% of the phenotypic variance, adding up to 10-15% of total phenotypic variance explained for the different traits. No epistatic effects were observed between loci affecting eggshell traits. Because the effects for quality are mainly additive, these results provide a basis for further characterization of the loci to identify closely linked markers to be used in marker-assisted selection.  相似文献   

17.
Genes determining the bovine erythrocyte antigens were mapped by linkage analysis. In total 9591 genotypes of 20 grandsire families with 1074 sires from a grand-daughter design were elucidated for the genes determining the erythrocyte antigens EAA, EAB, EAC, EAF, EAJ, EAL, EAM, EAN', EAR', EAS, EAT', and EAZ according to standard paternity testing procedures in the blood typing laboratories. Linkage analyses were performed with 248 microsatellite markers, eight SSCP markers and four polymorphic proteins and enzymes covering the 29 autosomes and the pseudoautosomal region of the sex chromosomes. The number of informative meioses for the blood group systems ranged from 76 to 947. Blood group systems EAM and EAT' were non-informative. Most of the erythrocyte antigen loci showed significant linkage to a single chromosome and were mapped unequivocally. The genes determining erythrocyte antigen EAA, EAB, EAC, EAL, and EAS were mapped to chromosomes 15, 12, 18, 3, and 21, respectively. Lod-score values ranged from 11.43 to 107.83. Moreover, the EAF system could be mapped to chromosome 17. However, the EAN' system previously known as part of the EAF system could be mapped to chromosome 5. In addition, the blood group systems EAJ, the new EAN', EAR', and EAZ, showed significant linkage to microsatellite markers on various chromosomes and also to other blood groups. The appearance of a single blood group system might be therefore either dependent on the existence of other blood group systems or because of an interaction between different loci on various chromosomes as is known in humans and in pigs.  相似文献   

18.
We carried out systematic studies of the contribution of uniparental disomy for eight human chromosomes, 2, 9, 11, 15, 16, 19, 20, and 21, to the etiology of embryolethality. Most of these chromosomes have regions with orthologous imprinted genes syntenic with those on mouse chromosomes, the disturbed expression of which is related to embryolethality in mice. Screening of uniparental disomy in spontaneous abortuses of 5–16 weeks of pregnancy was performed by evaluation of the pattern of inheritance of alleles of polymorphic microsatellite loci located in the studied chromosomes. A total of 100 human embryos with cytogenetically determined normal karyotype were studied, in which arrest at the early stages of intrauterine development was determined by ultrasound examination of pregnant women. During this study, 13 embryos were discarded due to revealed karyotype anomalies or nonpaternity. No cases of uniparental disomy were found among the 87 studied abortuses for any of chromosomes studied. The analysis of the results of this study and four other studies concerning the search for uniparental disomy in dead embryos and fetuses did not reveal its elevated frequency in spontaneous abortuses as compared to the theoretically expected value based on evaluation of the probable combination of meiotic errors in human gametes. The data we obtained suggest that, first, uniparental disomies for human chromosomes that have regions with orthologous imprinted genes syntenic with mouse chromosomes do not contribute noticeably to the death of human embryos at the early developmental stages and, second, the mechanisms underlying embryolethality as a result of disturbed expression of imprinted loci differ markedly in evolutionarily remote mammals.  相似文献   

19.
Body weight and abdominal fat traits in meat-type chickens are complex and economically important factors. Our objective was to identify quantitative trait loci (QTL) responsible for body weight and abdominal fat traits in broiler chickens. The Northeast Agricultural University Resource Population (NEAURP) is a cross between broiler sires and Baier layer dams. We measured body weight and abdominal fat traits in the F(2) population. A total of 362 F(2) individuals derived from four F(1) families and their parents and F(0) birds were genotyped using 29 fluorescent microsatellite markers located on chromosomes 3, 5 and 7. Linkage maps for the three chromosomes were constructed and interval mapping was performed to identify putative QTLs. Nine QTL for body weight were identified at the 5% genome-wide level, while 15 QTL were identified at the 5% chromosome-wide level. Phenotypic variance explained by these QTL varied from 2.95 to 6.03%. In particular, a QTL region spanning 31 cM, associated with body weight at 1 to 12 weeks of age and carcass weight at 12 weeks of age, was first identified on chromosome 5. Three QTLs for the abdominal fat traits were identified at the 5% chromosome-wide level. These QTLs explained 3.42 to 3.59% of the phenotypic variance. This information will help direct prospective fine mapping studies and can facilitate the identification of underlying genes and causal mutations for body weight and abdominal fat traits.  相似文献   

20.
There is an immediate need for a high-density genetic map of cotton anchored with fiber genes to facilitate marker-assisted selection (MAS) for improved fiber traits. With this goal in mind, genetic mapping with a new set of microsatellite markers [comprising both simple (SSR) and complex (CSR) sequence repeat markers] was performed on 183 recombinant inbred lines (RILs) developed from the progeny of the interspecific cross Gossypium hirsutum L. cv. TM1 × Gossypium barbadense L. Pima 3-79. Microsatellite markers were developed using 1557 ESTs-containing SSRs (≥10 bp) and 5794 EST-containing CSRs (≥12 bp) obtained from ~14,000 consensus sequences derived from fiber ESTs generated from the cultivated diploid species Gossypium arboreum L. cv AKA8401. From a total of 1232 EST-derived SSR (MUSS) and CSR (MUCS) primer-pairs, 1019 (83%) successfully amplified PCR products from a survey panel of six Gossypium species; 202 (19.8%) were polymorphic between the G. hirsutum L. and G. barbadense L. parents of the interspecific mapping population. Among these polymorphic markers, only 86 (42.6%) showed significant sequence homology to annotated genes with known function. The chromosomal locations of 36 microsatellites were associated with 14 chromosomes and/or 13 chromosome arms of the cotton genome by hypoaneuploid deficiency analysis, enabling us to assign genetic linkage groups (LG) to specific chromosomes. The resulting genetic map consists of 193 loci, including 121 new fiber loci not previously mapped. These fiber loci were mapped to 19 chromosomes and 11 LG spanning 1277 cM, providing approximately 27% genome coverage. Preliminary quantitative trait loci analysis suggested that chromosomes 2, 3, 15, and 18 may harbor genes for traits related to fiber quality. These new PCR-based microsatellite markers derived from cotton fiber ESTs will facilitate the development of a high-resolution integrated genetic map of cotton for structural and functional study of fiber genes and MAS of genes that enhance fiber quality. Electronic Supplementary Material Supplementary material is available for this article at Names are necessary to report factually on available data, however, the USDA neither guarantees nor warrants the standard of products or service, and the use of the name by the USDA implies no approval of the products or service to the exclusion of others that may also be suitable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号