首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chen L  Liu N  Wang S  Oh C  Carriero NJ  Zhao H 《BMC genetics》2005,6(Z1):S130
Alcoholism is a complex disease. As with other common diseases, genetic variants underlying alcoholism have been illusive, possibly due to the small effect from each individual susceptible variant, gene x environment and gene x gene interactions and complications in phenotype definition. We conducted association tests, the family-based association tests (FBAT) and the backward haplotype transmission association (BHTA), on the Collaborative Study of the Genetics of Alcoholism (COGA) data provided by Genetic Analysis Workshop (GAW) 14. Efron's local false discovery rate method was applied to control the proportion of false discoveries. For FBAT, we compared the results based on different types of genetic markers (single-nucleotide polymorphisms (SNPs) versus microsatellites) and different phenotype definitions (clinical diagnoses versus electrophysiological phenotypes). Significant association results were found only between SNPs and clinical diagnoses. In contrast, significant results were found only between microsatellites and electrophysiological phenotypes. In addition, we obtained the association results for SNPs and microsatellites using COGA diagnosis as phenotype based on BHTA. In this case, the results for SNPs and microsatellites are more consistent. Compared to FBAT, more significant markers are detected with BHTA.  相似文献   

2.
Li C  Li Y  Xu J  Lv J  Ma Y  Shao T  Gong B  Tan R  Xiao Y  Li X 《Gene》2011,489(2):119-129
Detection of the synergetic effects between variants, such as single-nucleotide polymorphisms (SNPs), is crucial for understanding the genetic characters of complex diseases. Here, we proposed a two-step approach to detect differentially inherited SNP modules (synergetic SNP units) from a SNP network. First, SNP-SNP interactions are identified based on prior biological knowledge, such as their adjacency on the chromosome or degree of relatedness between the functional relationships of their genes. These interactions form SNP networks. Second, disease-risk SNP modules (or sub-networks) are prioritised by their differentially inherited properties in IBD (Identity by Descent) profiles of affected and unaffected sibpairs. The search process is driven by the disease information and follows the structure of a SNP network. Simulation studies have indicated that this approach achieves high accuracy and a low false-positive rate in the identification of known disease-susceptible SNPs. Applying this method to an alcoholism dataset, we found that flexible patterns of susceptible SNP combinations do play a role in complex diseases, and some known genes were detected through these risk SNP modules. One example is GRM7, a known alcoholism gene successfully detected by a SNP module comprised of two SNPs, but neither of the two SNPs was significantly associated with the disease in single-locus analysis. These identified genes are also enriched in some pathways associated with alcoholism, including the calcium signalling pathway, axon guidance and neuroactive ligand-receptor interaction. The integration of network biology and genetic analysis provides putative functional bridges between genetic variants and candidate genes or pathways, thereby providing new insight into the aetiology of complex diseases.  相似文献   

3.
P300 amplitude is an electrophysiological quantitative trait that is correlated with both alcoholism and smoking status. Using the Collaborative Study on the Genetics of Alcoholism data, we performed model-free linkage analysis to investigate the relationship between alcoholism, P300 amplitude, and habitual smoking. We also analyzed the effect of parent-of-origin on alcoholism, and utilized both microsatellites (MS) markers and single-nucleotide polymorphisms (SNPs). We found significant evidence of linkage for alcoholism to chromosome 10; inclusion of P300 amplitude as a covariate provided additional evidence of linkage to chromosome 12. This same region on chromosome 12 showed some evidence for a parent-of-origin effect. We found evidence of linkage for the P300 phenotype to chromosome 7 in non-smokers, and to chromosome 17 in alcoholics. The effects of alcoholism and habitual smoking on P300 amplitude appear to have separate genetic determinants. Overall, there were few differences between MS and SNP genome scans. The use of covariates and parent-of-origin effects allowed detection of linkage not seen otherwise.  相似文献   

4.
Ye Y  Zhong X  Zhang H 《BMC genetics》2005,6(Z1):S135
Genetic mechanisms underlying alcoholism are complex. Understanding the etiology of alcohol dependence and its comorbid conditions such as smoking is important because of the significant health concerns. In this report, we describe a method based on classification trees and deterministic forests for association studies to perform a genome-wide joint association analysis of alcoholism and smoking. This approach is used to analyze the single-nucleotide polymorphism data from the Collaborative Study on the Genetics of Alcoholism in the Genetic Analysis Workshop 14. Our analysis reaffirmed the importance of sex difference in alcoholism. Our analysis also identified genes that were reported in other studies of alcoholism and identified new genes or single-nucleotide polymorphisms that can be useful candidates for future studies.  相似文献   

5.
Bayesian logistic regression using a perfect phylogeny   总被引:1,自引:0,他引:1  
Haplotype data capture the genetic variation among individuals in a population and among populations. An understanding of this variation and the ancestral history of haplotypes is important in genetic association studies of complex disease. We introduce a method for detecting associations between disease and haplotypes in a candidate gene region or candidate block with little or no recombination. A perfect phylogeny demonstrates the evolutionary relationship between single-nucleotide polymorphisms (SNPs) in the haplotype blocks. Our approach extends the logic regression technique of Ruczinski and others (2003) to a Bayesian framework, and constrains the model space to that of a perfect phylogeny. Environmental factors, as well as their interactions with SNPs, may be incorporated into the regression framework. We demonstrate our method on simulated data from a coalescent model, as well as data from a candidate gene study of sarcoidosis.  相似文献   

6.
The efficacy of linkage studies using microsatellites and single-nucleotide polymorphisms (SNPs) was evaluated. Analyzed data were supplied by the Collaborative Study on the Genetics of Alcoholism (COGA). Alcoholism was analyzed together with a simulated trait caused by a gene of known position, through a nonparametric linkage test (NPL). For the alcoholism trait, four densities of SNPs (1 SNP per 0.2 cM, 0.5 cM, 1 cM and 2 cM) showed higher peaks of NPL z scores and smaller significant p-values than the usual 10-cM density of microsatellites. However, the two highest densities of SNPs had unstable z score signals, and therefore were difficult to interpret. Analyzing a simulated trait with the same markers in the same pedigrees, we confirmed the higher power of all four densities of SNPs compared to the 10-cM microsatellites panel, although the existence of other confounding peaks was confirmed for maps that are denser than 1 SNP/cM. We further showed that estimating the gene position using SNPs is far less biased than using the usual panel of microsatellites (biases of 0-2 cM for SNPs vs. 8.9 cM for microsatellites). We conclude that using dense maps of SNPs in linkage analysis is more powerful and less biased than using the 10-cM maps of microsatellites. However, linkage signals can be unstable and difficult to interpret when several SNPs are genotyped per centimorgan. The power and accuracy of 1 SNP/cM or 1 SNP/2 cM may be sufficient in a genome-wide linkage scan while denser maps may be most useful in fine-gene mapping studies exploiting linkage disequilibrium.  相似文献   

7.
The Genetic Analysis Workshop 14 simulated dataset was designed 1) To test the ability to find genes related to a complex disease (such as alcoholism). Such a disease may be given a variety of definitions by different investigators, have associated endophenotypes that are common in the general population, and is likely to be not one disease but a heterogeneous collection of clinically similar, but genetically distinct, entities. 2) To observe the effect on genetic analysis and gene discovery of a complex set of gene x gene interactions. 3) To allow comparison of microsatellite vs. large-scale single-nucleotide polymorphism (SNP) data. 4) To allow testing of association to identify the disease gene and the effect of moderate marker x marker linkage disequilibrium. 5) To observe the effect of different ascertainment/disease definition schemes on the analysis. Data was distributed in two forms. Data distributed to participants contained about 1,000 SNPs and 400 microsatellite markers. Internet-obtainable data consisted of a finer 10,000 SNP map, which also contained data on controls. While disease characteristics and parameters were constant, four "studies" used varying ascertainment schemes based on differing beliefs about disease characteristics. One of the studies contained multiplex two- and three-generation pedigrees with at least four affected members. The simulated disease was a psychiatric condition with many associated behaviors (endophenotypes), almost all of which were genetic in origin. The underlying disease model contained four major genes and two modifier genes. The four major genes interacted with each other to produce three different phenotypes, which were themselves heterogeneous. The population parameters were calibrated so that the major genes could be discovered by linkage analysis in most datasets. The association evidence was more difficult to calibrate but was designed to find statistically significant association in 50% of datasets. We also simulated some marker x marker linkage disequilibrium around some of the genes and also in areas without disease genes. We tried two different methods to simulate the linkage disequilibrium.  相似文献   

8.

Background

Alcoholism is a complex disease. There have been many reports on significant comorbidity between alcoholism and schizophrenia. For the genetic study of complex diseases, association analysis has been recommended because of its higher power than that of the linkage analysis for detecting genes with modest effects on disease.

Results

To identify alcoholism susceptibility loci, we performed genome-wide single-nucleotide polymorphisms (SNP) association tests, which yielded 489 significant SNPs at the 1% significance level. The association tests showed that tsc0593964 (P-value 0.000013) on chromosome 7 was most significantly associated with alcoholism. From 489 SNPs, 74 genes were identified. Among these genes, GABRA1 is a member of the same gene family with GABRA2 that was recently reported as alcoholism susceptibility gene.

Conclusion

By comparing 74 genes to the published results of various linkage studies of schizophrenia, we identified 13 alcoholism associated genes that were located in the regions reported to be linked to schizophrenia. These 13 identified genes can be important candidate genes to study the genetic mechanism of co-occurrence of both diseases.
  相似文献   

9.
Statistical assessment of candidate gene effects can be viewed as a problem of variable selection and model comparison. Given a certain number of genes to be considered, many possible models may fit to the data well, each including a specific set of gene effects and possibly their interactions. The question arises as to which of these models is most plausible. Inference about candidate gene effects based on a specific model ignores uncertainty about model choice. Here, a Bayesian model averaging approach is proposed for evaluation of candidate gene effects. The method is implemented through simultaneous sampling of multiple models. By averaging over a set of competing models, the Bayesian model averaging approach incorporates model uncertainty into inferences about candidate gene effects. Features of the method are demonstrated using a simulated data set with ten candidate genes under consideration.  相似文献   

10.
We conducted genome-wide linkage scans using both microsatellite and single-nucleotide polymorphism (SNP) markers. Regions showing the strongest evidence of linkage to alcoholism susceptibility genes were identified. Haplotype analyses using a sliding-window approach for SNPs in these regions were performed. In addition, we performed a genome-wide association scan using SNP data. SNPs in these regions with evidence of association (P 相似文献   

11.
Wang S  Huang S  Liu N  Chen L  Oh C  Zhao H 《BMC genetics》2005,6(Z1):S28
There is currently a great interest in using single-nucleotide polymorphisms (SNPs) in genetic linkage and association studies because of the abundance of SNPs as well as the availability of high-throughput genotyping technologies. In this study, we compared the performance of whole-genome scans using SNPs with microsatellites on 143 pedigrees from the Collaborative Studies on Genetics of Alcoholism provided by Genetic Analysis Workshop 14. A total of 315 microsatellites and 10,081 SNPs from Affymetrix on 22 autosomal chromosomes were used in our analyses. We found that the results from the two scans had good overall concordance. One region on chromosome 2 and two regions on chromosome 7 showed significant linkage signals (i.e., NPL >or= 2) for alcoholism from both the SNP and microsatellite scans. The different results observed between the two scans may be explained by the difference observed in information content between the SNPs and the microsatellites.  相似文献   

12.
The density and distribution of single-nucleotide polymorphisms (SNPs) across the genome has important implications for linkage disequilibrium mapping and association studies, and the level of simple-sequence microsatellite polymorphisms has important implications for the use of oligonucleotide hybridization methods to genotype SNPs. To assess the density of these types of polymorphisms in P. falciparum, we sampled introns and noncoding DNA upstream and downstream of coding regions among a variety of geographically diverse parasites. Across 36,229 base pairs of noncoding sequence representing 41 genetic loci, a total of 307 polymorphisms including 248 polymorphic microsatellites and 39 SNPs were identified. We found a significant excess of microsatellite polymorphisms having a repeat unit length of one or two, compared to those with longer repeat lengths, as well as a nonrandom distribution of SNP polymorphisms. Almost half of the SNPs localized to only three of the 41 genetic loci sampled. Furthermore, we find significant differences in the frequency of polymorphisms across the two chromosomes (2 and 3) examined most extensively, with an excess of SNPs and a surplus of polymorphic microsatellites on chromosome 3 as compared to chromosome 2 (P=0.0001). Furthermore, at some individual genetic loci we also find a nonrandom distribution of polymorphisms between coding and flanking noncoding sequences, where completely monomorphic regions may flank highly polymorphic genes. These data, combined with our previous findings of nonrandom distribution of SNPs across chromosome 2, suggest that the Plasmodium falciparum genome may be a mosaic with regard to genetic diversity, containing chromosomal regions that are highly polymorphic interspersed with regions that are much less polymorphic.  相似文献   

13.
Virulence and immunity are poorly understood in Mycobacterium tuberculosis. We sequenced the complete genome of the M. tuberculosis clinical strain CDC1551 and performed a whole-genome comparison with the laboratory strain H37Rv in order to identify polymorphic sequences with potential relevance to disease pathogenesis, immunity, and evolution. We found large-sequence and single-nucleotide polymorphisms in numerous genes. Polymorphic loci included a phospholipase C, a membrane lipoprotein, members of an adenylate cyclase gene family, and members of the PE/PPE gene family, some of which have been implicated in virulence or the host immune response. Several gene families, including the PE/PPE gene family, also had significantly higher synonymous and nonsynonymous substitution frequencies compared to the genome as a whole. We tested a large sample of M. tuberculosis clinical isolates for a subset of the large-sequence and single-nucleotide polymorphisms and found widespread genetic variability at many of these loci. We performed phylogenetic and epidemiological analysis to investigate the evolutionary relationships among isolates and the origins of specific polymorphic loci. A number of these polymorphisms appear to have occurred multiple times as independent events, suggesting that these changes may be under selective pressure. Together, these results demonstrate that polymorphisms among M. tuberculosis strains are more extensive than initially anticipated, and genetic variation may have an important role in disease pathogenesis and immunity.  相似文献   

14.

Background

Using the dataset provided for Genetic Analysis Workshop 14 by the Collaborative Study on the Genetics of Alcoholism, we performed genome-wide linkage analysis of age at onset of alcoholism to compare the utility of microsatellites and single-nucleotide polymorphisms (SNPs) in genetic linkage study.

Methods

A multipoint nonparametric variance component linkage analysis method was applied to the survival distribution function obtained from semiparametric proportional hazards model of the age at onset phenotype of alcoholism. Three separate linkage analyses were carried out using 315 microsatellites, 2,467 and 9,467 SNPs, spanning the 22 autosomal chromosomes.

Results

Heritability of age at onset was estimated to be approximately 12% (p < 0.001). We observed weak correlation, both in trend and strength, of genome-wide linkage signals between microsatellites and SNPs. Results from SNPs revealed more and stronger linkage signals across the genome compared with those from microsatellites. The only suggestive evidence of linkage from microsatellites was on chromosome 1 (LOD of 1.43). Differences in map densities between the two sets of SNPs used in this study did not appear to confer an advantage in terms of strength of linkage signals.

Conclusion

Our study provided support for better performance of dense SNP maps compared with the sparse mirosatellite maps currently available for linkage analysis of quantitative traits. This better performance could be attributable to precise definition and high map resolutions achievable with dense SNP maps, thus resulting in increased power to detect possible loci affecting given trait or disease.
  相似文献   

15.
The continued discovery of polymorphisms in the equine genome will be important for future studies using genomic screens and fine mapping for the identification of disease genes. Segments of 50 equine genes were examined for variability in 10 different horse breeds using a pool-and-sequence method. We identified 11 single nucleotide polymorphisms (SNPs) in 9380 bp of sequenced exon, and 25 SNPs, six microsatellites, and one insertion/deletion in 16961 bp of sequenced intron. Of all genes studied 52% contained at least one polymorphism, and polymorphisms were found at an overall rate of 1/613 bp. Several of the putative SNPs were tested and verified by restriction enzyme analysis using natural restriction sites or ones created by primer mutagenesis. The lowest allele frequency for a SNP detected in pooled samples was 10%. Three of the SNPs verified in the diverse horse pool were further tested in six breed-specific horse pools and were found to be reasonably variable within breeds. The pool-and-sequence method allows identification of polymorphisms in horse populations and will be a valuable tool for future disease gene and comparative mapping in horses.  相似文献   

16.
We present a detailed genome-wide comparative study of motif mismatches of microsatellites among 20 insect species representing five taxonomic orders. The results show that varying proportions (∼15–46%) of microsatellites identified in these species are imperfect in motif structure, and that they also vary in chromosomal distribution within genomes. It was observed that the genomic abundance of imperfect repeats is significantly associated with the length and number of motif mismatches of microsatellites. Furthermore, microsatellites with a higher number of mismatches tend to have lower abundance in the genome, suggesting that sequence heterogeneity of repeat motifs is a key determinant of genomic abundance of microsatellites. This relationship seems to be a general feature of microsatellites even in unrelated species such as yeast, roundworm, mouse and human. We provide a mechanistic explanation of the evolutionary link between motif heterogeneity and genomic abundance of microsatellites by examining the patterns of motif mismatches and allele sequences of single-nucleotide polymorphisms identified within microsatellite loci. Using Drosophila Reference Genetic Panel data, we further show that pattern of allelic variation modulates motif heterogeneity of microsatellites, and provide estimates of allele age of specific imperfect microsatellites found within protein-coding genes.  相似文献   

17.
An integrated haplotype map of the human major histocompatibility complex   总被引:26,自引:0,他引:26  
Numerous studies have clearly indicated a role for the major histocompatibility complex (MHC) in susceptibility to autoimmune diseases. Such studies have focused on the genetic variation of a small number of classical human-leukocyte-antigen (HLA) genes in the region. Although these genes represent good candidates, given their immunological roles, linkage disequilibrium (LD) surrounding these genes has made it difficult to rule out neighboring genes, many with immune function, as influencing disease susceptibility. It is likely that a comprehensive analysis of the patterns of LD and variation, by using a high-density map of single-nucleotide polymorphisms (SNPs), would enable a greater understanding of the nature of the observed associations, as well as lead to the identification of causal variation. We present herein an initial analysis of this region, using 201 SNPs, nine classical HLA loci, two TAP genes, and 18 microsatellites. This analysis suggests that LD and variation in the MHC, aside from the classical HLA loci, are essentially no different from those in the rest of the genome. Furthermore, these data show that multi-SNP haplotypes will likely be a valuable means for refining association signals in this region.  相似文献   

18.
Multiple displacement amplification (MDA) using Phi29 has proved to be an efficient, high-fidelity method for whole genome amplification in many organisms. This project was designed to evaluate this approach for use with the malaria parasite Plasmodium falciparum. In particular, we were concerned that the AT richness and presence of contaminating human DNA could limit efficiency of MDA in this system. We amplified 60 DNA samples using phi29 and scored 14 microsatellites, 9 single-nucleotide polymorphisms (SNPs), and gene copy number at GTP-cyclohydrolase I both before and after MDA. We observed 100% concordance in 829 microsatellite genotypes and in 499 SNP genotypes. Furthermore, copy number estimates for the GTP-cyclohydrolase I gene were correlated (r(2) = 0.67) in pre- and postamplification samples. These data confirm that MDA permits scoring of a range of different types of polymorphisms in P. falciparum malaria and can be used to extend the life of valuable DNA stocks.  相似文献   

19.
Analysis of evolution of paralogous genes in a genome is central to our understanding of genome evolution. Comparison of closely related bacterial genomes, which has provided clues as to how genome sequences evolve under natural conditions, would help in such an analysis. With species Staphylococcus aureus, whole-genome sequences have been decoded for seven strains. We compared their DNA sequences to detect large genome polymorphisms and to deduce mechanisms of genome rearrangements that have formed each of them. We first compared strains N315 and Mu50, which make one of the most closely related strain pairs, at the single-nucleotide resolution to catalogue all the middle-sized (more than 10 bp) to large genome polymorphisms such as indels and substitutions. These polymorphisms include two paralogous gene sets, one in a tandem paralogue gene cluster for toxins in a genomic island and the other in a ribosomal RNA operon. We also focused on two other tandem paralogue gene clusters and type I restriction-modification (RM) genes on the genomic islands. Then we reconstructed rearrangement events responsible for these polymorphisms, in the paralogous genes and the others, with reference to the other five genomes. For the tandem paralogue gene clusters, we were able to infer sequences for homologous recombination generating the change in the repeat number. These sequences were conserved among the repeated paralogous units likely because of their functional importance. The sequence specificity (S) subunit of type I RM systems showed recombination, likely at the homology of a conserved region, between the two variable regions for sequence specificity. We also noticed novel alleles in the ribosomal RNA operons and suggested a role for illegitimate recombination in their formation. These results revealed importance of recombination involving long conserved sequence in the evolution of paralogous genes in the genome.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号