首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Cell-cycle progression is altered in some colcemid-resistant mutants of fission yeast. The duration of particular stages of the cell cycle is different but total doubling time is unchanged from that of wild type. Cell-plate formation is prolonged relative to wild type but concomitant DNA synthesis is not affected. Separation of daughter cells is inhibited in some strains, giving rise to unusual cell morphologies. Control of cell division is altered in two ways: Critical size for division is increased. The probability of division a function of size is decreased.  相似文献   

2.
The molecular networks regulating basic physiological processes in a cell can be converted into mathematical equations (eg differential equations) and solved by a computer. The division cycle of eukaryotic cells is an important example of such a control system, and fission yeast is an excellent test organism for the computational modelling approach. The mathematical model is tested by simulating wild-type cells and many known cell cycle mutants. This paper describes an example where this approach is useful in understanding multiple rounds of DNA synthesis (endoreplication) in fission yeast cells that lack the main (B-type) mitotic cyclin, Cdc13. It is proposed that the key physiological variable driving progression through the cell cycle during balanced growth and division is the mass/DNA ratio, rather than the mass/nucleus ratio.  相似文献   

3.
4.
5.
6.
7.
The SCF complex (Skp1-Cullin-1-F-box) and the APC/cyclosome (anaphase-promoting complex) are two ubiquitin ligases that play a crucial role in eukaryotic cell cycle control. In fission yeast F-box/WD-repeat proteins Pop1 and Pop2, components of SCF are required for cell-cycle-dependent degradation of the cyclin-dependent kinase (CDK) inhibitor Rum1 and the S-phase regulator Cdc18. Accumulation of these proteins in pop1 and pop2 mutants leads to re-replication and defects in sexual differentiation. Despite structural and functional similarities, Pop1 and Pop2 are not redundant homologues. Instead, these two proteins form heterodimers as well as homodimers, such that three distinct complexes, namely SCFPop1/Pop1, SCFPop1/Pop2 and SCFPop2/Pop2, appear to exist in the cell. The APC/cyclosome is responsible for inactivation of CDK/cyclins through the degradation of B-type cyclins. We have identified two novel components or regulators of this complex, called Apc10 and Ste9, which are evolutionarily highly conserved. Apc10 (and Ste9), together with Rum1, are required for the establishment of and progression through the G1 phase in fission yeast. We propose that dual downregulation of CDK, one via the APC/cyclosome and the other via the CDK inhibitor, is a universal mechanism that is used to arrest the cell cycle at G1.  相似文献   

8.
Boolean network model predicts cell cycle sequence of fission yeast   总被引:1,自引:0,他引:1  
A Boolean network model of the cell-cycle regulatory network of fission yeast (Schizosaccharomyces Pombe) is constructed solely on the basis of the known biochemical interaction topology. Simulating the model in the computer faithfully reproduces the known activity sequence of regulatory proteins along the cell cycle of the living cell. Contrary to existing differential equation models, no parameters enter the model except the structure of the regulatory circuitry. The dynamical properties of the model indicate that the biological dynamical sequence is robustly implemented in the regulatory network, with the biological stationary state G1 corresponding to the dominant attractor in state space, and with the biological regulatory sequence being a strongly attractive trajectory. Comparing the fission yeast cell-cycle model to a similar model of the corresponding network in S. cerevisiae, a remarkable difference in circuitry, as well as dynamics is observed. While the latter operates in a strongly damped mode, driven by external excitation, the S. pombe network represents an auto-excited system with external damping.  相似文献   

9.
The suitability of fission yeast as a model for understanding the eukaryotic cell cycle has been validated in five years of exciting developments. We review recent advances in understanding the nature of the controls that regulate progression through the cell cycle and the coordination of DNA replication and mitosis.  相似文献   

10.
11.
Summary A collection of Schizosaccharomyces pombe mutants has been obtained which restore activity to a nonsense suppressing tRNA sup3–5 whose suppressing function has been inactivated by second site mutations within the sup3–5 gene. These mutants were screened for those that were temperature sensitive in suppressing the opal nonsense allele ade6-704. Some of these map within or close to sup3 itself and others define two allosuppressor genes sal2 and sal3. The temperature sensitive mutants fail to efficiently suppress any other opal nonsense alleles although one mutant, sup3–5, r57, rr2, weakly does so at the low temperature. sal2 and sal3 mutants have a pleiotropic effect on the cell cycle causing a transient or complete blockage of mitosis. This blockage and the allosuppressor phenotypes are both eliminated by the presence of wee mutations in wee1 or cdc2. Mutants in sal2 are allelic with cdc25, a gene required for successful completion of mitosis. It is suggested that sal3 and cdc25 influence the mechanism that links the growth rate of the cell with the initiation of mitosis. Mutants in these genes may disturb tRNA biosynthesis or protein synthesis and this disruption may have an effect on both nonsense suppression and the growth rate control over mitosis.  相似文献   

12.
Longitudinal F-actin cables are thought to be important for transporting materials for polarized cell growth in fission yeast. We show that most F-actin in the cables is oriented such that the barbed end faces the nearest cell tip during interphase; however, this directionality is reversed during mitosis. These orientations of F-actin ensure proper transport of materials to growing sites during these cell-cycle stages.  相似文献   

13.
14.
A fission yeast B-type cyclin functioning early in the cell cycle.   总被引:24,自引:0,他引:24  
A Bueno  H Richardson  S I Reed  P Russell 《Cell》1991,66(1):149-159
We have cloned a fission yeast gene, cig1+, encoding a 48 kd product that is most similar to cyclin B proteins. The cig1+ protein has a "cyclin box" approximately 40% identical to B-type cyclins of other species, but lacks the "destruction box" required for proteolysis of mitotic cyclins. Deletion of cig1+ had no observable effect on cell viability or progression through G2 or M phase, but instead caused a marked lag in the progression from G1 to S phase. G1 constituted approximately 70% of the cell cycle in cig1 deletion strains, as compared with less than 10% in cig1+ strains. Constitutive cig1+ overexpression was lethal, causing cessation of growth and arrest in G1. Expression of cig1+ failed to rescue an S. cerevisiae strain lacking CLN Start cyclins. Thus, cig1+ identifies a new class of B-type cyclin acting in G1 or S phase that appears to be functionally distinct from all previously described cyclin proteins.  相似文献   

15.
16.
17.
DNA damage tolerance (DDT) mechanisms allow cells to synthesize a new DNA strand when the template is damaged. Many mutations resulting from DNA damage in eukaryotes are generated during DDT when cells use the mutagenic translesion polymerases, Rev1 and Polζ, rather than mechanisms with higher fidelity. The coordination among DDT mechanisms is not well understood. We used live-cell imaging to study the function of DDT mechanisms throughout the cell cycle of the fission yeast Schizosaccharomyces pombe. We report that checkpoint-dependent mitotic delay provides a cellular mechanism to ensure the completion of high fidelity DDT, largely by homology-directed repair (HDR). DDT by mutagenic polymerases is suppressed during the checkpoint delay by a mechanism dependent on Rad51 recombinase. When cells pass the G2/M checkpoint and can no longer delay mitosis, they completely lose the capacity for HDR and simultaneously exhibit a requirement for Rev1 and Polζ. Thus, DDT is coordinated with the checkpoint response so that the activity of mutagenic polymerases is confined to a vulnerable period of the cell cycle when checkpoint delay and HDR are not possible.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号