首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
We isolated two nondefective bovine rotavirus mutants (A5-10 and A5-16 clones) which have nonsense mutations in the early portion of the open reading frame of the NSP1 gene. In the NSP1 gene (1,587 bases long) of A5-10, a nonsense codon is present at nucleotides 153 to 155 just upstream of the coding region (nucleotides 156 to 230) of a cysteine-rich Zn finger motif. A5-16 gene 5 (1,087 bases long) was found to have a large deletion of 500 bases corresponding to nucleotides 142 to 641 of a parent A5-10 NSP1 gene and to have a nonsense codon at nucleotides 183 to 185, which resulted from the deletion. Expression of gene 5-specific NSP1 could not be detected in MA-104 cells infected with the A5-10 or A5-16 clone or in an in vitro translation system using the plasmids with gene 5 cDNA from A5-10 or A5-16. Nevertheless, both A5-10 and A5-16 replicated well in cultured cells, although the plaque size of A5-16 was extremely small.  相似文献   

12.
13.
Our previous studies have argued persuasively that in murine sarcoma virus ts110 (MuSVts110) the gag and mos genes are fused out of frame due to a approximately 1.5-kilobase (kb) deletion of wild-type murine sarcoma virus 349 (MuSV-349) viral information. As a consequence of this deletion, infected cells grown at 39 degrees C appear morphologically normal, producing a 4-kb viral RNA and a truncated gag gene product, P58gag. At 33 degrees C, however, MuSVts110-infected cells appear transformed, producing two viral RNAs, about 4 and 3.5 kb in length, and two viral proteins, P58gag and P85gag-mos. Recent S1 nuclease analyses (Nash et al., J. Virol. 50:478-488, 1984) suggested strongly that at 33 degrees C about 430 bases surrounding the out-of-frame gag-mos junction and bounded by consensus splice donor and acceptor sites are excised from the 4-kb RNA to form the 3.5-kb RNA. As a result of this apparent splicing event, the gag and mos genes seemed to be fused in frame and allowed the translation of P85gag-mos. In the present study, DNA primers hybridizing to the MuSVts110 4- and 3.5-kb RNAs just downstream of the gag-mos junction points were used to sequence these junctions by the primer extension method. We observed that, relative to wild-type MuSV-349 5.2-kb RNA, the MuSVts110 4-kb RNA had suffered a 1,488-base deletion as a result of the fusion of wild-type gag gene nucleotide 2404 to wild-type mos gene nucleotide 3892. This gag-mos junction is out of frame, containing both TAG and TGA termination codons in the reading frame 42 and 50 bases downstream of the gag-mos junction, respectively. Thus, the MuSVts110 4-kb RNA can only be translated into a truncated gag precursor containing an additional C-terminal 14 amino acid residues derived from an alternate mos gene reading frame. Similar analyses of the MuSVts110 3.5-kb RNA showed a further loss of both gag and mos sequences over those deleted in the original 1,488-base deletion. In the MuSVts110 3.5-kb RNA, we found that gag nucleotide 2017 was fused to mos nucleotide 3936 (nucleotide 2449 in the MuSVts110 4-kb genome). This 431-base excised fragment is bounded exactly by in-frame consensus splice donor and acceptor sequences. As a consequence of this splice event, the TAG codon is excised and the restoration of the original mos gene reading frame allows the TGA codon to be bypassed.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
15.
16.
17.
18.
Complete nucleotide sequence of tobacco streak virus RNA 3   总被引:7,自引:1,他引:6       下载免费PDF全文
Double-stranded cDNA of in vitro polyadenylated tobacco streak virus (TSV) RNA 3 has been cloned and sequenced. The complete primary structure of 2,205 nucleotides reveals two open reading frames flanked by a leader sequence of 210 bases, an intercistronic region of 123 nucleotides and a 3'-extracistronic sequence of 288 nucleotides. The 5'-terminal open reading frame codes for a Mr 31,742 protein, which probably corresponds to the only in vitro translation product of TSV RNA 3. The 3'-terminal coding region predicts a Mr 26,346 protein, probably the viral coat protein, which is the translation product of the subgenomic messenger, RNA 4. Although the coat proteins of alfalfa mosaic virus (A1MV) and TSV are functionally equivalent in activating their own and each others genomes, no homology between the primary structures of those two proteins is detectable.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号