首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
O-acetylserine sulfhydrylase (OASS) is the pyridoxal 5′-phosphate dependent enzyme that catalyses the formation of L-cysteine in bacteria and plants. Its inactivation is pursued as a strategy for the identification of novel antibiotics that, targeting dispensable proteins, holds a great promise for circumventing resistance development. In the present study, we have investigated the reactivity of Salmonella enterica serovar Typhimurium OASS-A and OASS-B isozymes with fluoroalanine derivatives. Monofluoroalanine reacts with OASS-A and OASS-B forming either a stable or a metastable α-aminoacrylate Schiff’s base, respectively, as proved by spectral changes. This finding indicates that monofluoroalanine is a substrate analogue, as previously found for other beta-halogenalanine derivatives. Trifluoroalanine caused different and time-dependent absorbance and fluorescence spectral changes for the two isozymes and is associated with irreversible inhibition. The time course of enzyme inactivation was found to be characterised by a biphasic behaviour. Partially distinct inactivation mechanisms for OASS-A and OASS-B are proposed.  相似文献   

2.
The pyridoxal 5′-phosphate (PLP)-dependent enzyme O-acetylserine sulfhydrylase (OASS) catalyzes the synthesis of cysteine in bacteria and plants. In bacteria two isoenzymes are present, OASS-A and OASS-B, with distinct structural, functional, and regulatory properties. In order to gain a deeper insight into OASS-B dynamic and functional properties, single and double mutants of the three tryptophan residues, Trp28, Trp159, and Trp212, were prepared and their fluorescence emission properties were characterized in the absence and presence of substrate and ligands by steady-state and time-resolved spectrofluorimetry. Residue Trp28 was found to be mainly responsible for Trp fluorescence emission, whereas Trp212, located in a highly flexible region near the active site, is mainly responsible for an energy-transfer to PLP leading to an emission at 500 nm. Not surprisingly, mutation of Trp212 affects OASS-B activity. Trp159 slightly contributes to both direct emission and energy transfer to PLP. Time-resolved fluorescence measurements confirmed these findings, observing a third longer tryptophan lifetime for apo-OASS-B, in addition to the two lifetimes that are present in the holo-enzyme and mutants. A comparison with the emissions previously determined for OASS-A indicates that OASS-B active site is likely to be more polar and flexible, in agreement with a broader substrate specificity and higher catalytic efficiency.  相似文献   

3.
O-Acetylserine sulfhydrylase-B (OASS-B, EC 2.5.1.47) is one of the two isozymes produced by Escherichia coli that catalyze the synthesis of L-cysteine from O-acetyl-L-serine and sulfide. The cysM gene encoding OASS-B was cloned and the enzyme was overexpressed in E. coli using pUC19 with a lacUV5 promoter. The enzyme was purified to homogeneity, as evidenced by SDS-PAGE. Approximately 300 mg of purified OASS-B was obtained from 1600 mL of culture broth with a purification yield of 60% or higher. The purified OASS-B was characterized and its properties compared with OASS-A. OASS-B did not form a complex with E. coli serine acetyltransferase (SAT, EC 2.3.1.30) and showed a wide range of substrate specificity in nonproteinaceous amino acid synthesis.  相似文献   

4.
O-Acetylserine sulfhydrylase (OASS) is a pyridoxal 5′-phosphate (PLP)-dependent enzyme that catalyzes the conversion of O-acetylserine and bisulfide to l-cysteine and acetate in bacteria and higher plants. Enteric bacteria have two isozymes of OASS, A and B, produced under aerobic and anaerobic growth conditions, respectively, with different substrate specificities. The 31P chemical shift of the internal and external Schiff bases of PLP in OASS-B are further downfield compared to OASS-A, suggesting a tighter binding of the cofactor in the B-isozyme. The chemical shift of the internal Schiff base (ISB) of OASS-B is 6.2 ppm, the highest value reported for the ISB of a PLP-dependent enzyme. Considering the similarity in the binding sites of the PLP cofactor for both isozymes, torsional strain of the C5-C5′ bond (O4′-C5′-C5-C4) of the Schiff base is proposed to contribute to the further downfield shift. The chemical shift of the lanthionine external Schiff base (ESB) of OASS-B is 6.0 ppm, upfield from that of unliganded OASS-B, while that of serine ESB is 6.3 ppm. Changes in chemical shift suggest the torsional strain of PLP changes as the reaction proceeds.The apoenzyme of OASS-B was prepared using hydroxylamine as the resolving reagent. Apoenzyme was reconstituted to holoenzyme by addition of PLP. Reconstitution is pseudo-first order and exhibits a final maximum recovery of 81.4%. The apoenzyme shows no visible absorbance, while the reconstituted enzyme has a UV-visible spectrum that is nearly identical to that of the holoenzyme. Steady-state fluorescence spectra gave tryptophan emission of the apoenzyme that is 3.3-fold higher than the emission of either the native or reconstituted enzyme, suggesting that PLP is a potent quencher of tryptophan emission.  相似文献   

5.
Abstract

Cysteine is a building block for many biomolecules that are crucial for living organisms. O-Acetylserine sulfhydrylase (OASS), present in bacteria and plants but absent in mammals, catalyzes the last step of cysteine biosynthesis. This enzyme has been deeply investigated because, beside the biosynthesis of cysteine, it exerts a series of “moonlighting” activities in bacteria. We have previously reported a series of molecules capable of inhibiting Salmonella typhimurium (S. typhymurium) OASS isoforms at nanomolar concentrations, using a combination of computational and spectroscopic approaches. The cyclopropane-1,2-dicarboxylic acids presented herein provide further insights into the binding mode of small molecules to OASS enzymes. Saturation transfer difference NMR (STD-NMR) was used to characterize the molecule/enzyme interactions for both OASS-A and B. Most of the compounds induce a several fold increase in fluorescence emission of the pyridoxal 5′-phosphate (PLP) coenzyme upon binding to either OASS-A or OASS-B, making these compounds excellent tools for the development of competition-binding experiments.  相似文献   

6.
O-acetylserine sulfhydrylase (OASS) catalyzes the synthesis of l-cysteine in the last step of the reductive sulfate assimilation pathway in microorganisms. Its activity is inhibited by the interaction with serine acetyltransferase (SAT), the preceding enzyme in the metabolic pathway. Inhibition is exerted by the insertion of SAT C-terminal peptide into the OASS active site. This action is effective only on the A isozyme, the prevalent form in enteric bacteria under aerobic conditions, but not on the B-isozyme, the form expressed under anaerobic conditions. We have investigated the active site determinants that modulate the interaction specificity by comparing the binding affinity of thirteen pentapeptides, derived from the C-terminal sequences of SAT of the closely related species Haemophilus influenzae and Salmonella typhimurium, towards the corresponding OASS-A, and towards S. typhimurium OASS-B. We have found that subtle changes in protein active sites have profound effects on protein–peptide recognition. Furthermore, affinity is strongly dependent on the pentapeptide sequence, signaling the relevance of P3–P4–P5 for the strength of binding, and P1–P2 mainly for specificity. The presence of an aromatic residue at P3 results in high affinity peptides with Kdiss in the micromolar and submicromolar range, regardless of the species. An acidic residue, like aspartate at P4, further strengthens the interaction and results in the higher affinity ligand of S. typhimurium OASS-A described to date. Since OASS knocked-out bacteria exhibit a significantly decreased fitness, this investigation provides key information for the development of selective OASS inhibitors, potentially useful as novel antibiotic agents.  相似文献   

7.
Some properties and kinetics of the free and bound serine acetyltransferases (SATs) and O-acetylserine sulfhydrylase-As (OASS-As) from Escherichia coli were investigated. In some cases, SATdeltaC20, deleting 20 amino acid residues from the C-terminus of the wild-type SAT (Biosci. Biotechnol. Biochem., 63, 168-179 (1999)) was tested for comparison. The optimum pH and stability against some reagents for the free and bound wild-type SATs were similar except for the resistance to cold inactivation. The kinetics for the wild-type SAT and SATdeltaC20 followed a Ping-Pong Bi Bi mechanism with a mixed-type inhibition by L-cysteine. The kinetics and kinetic constants for the wild-type SAT were not changed by the complex formation with OASS-A. The optimum pH for OASS-A was shifted towards an alkaline pH by the complex formation. Thermal stability and stability against some reagents for the free and bound OASS-As were almost the same. On the other hand, the maximum velocity for OASS-A was lowered and dissociation constants for the substrates and products were increased by forming the complex with the wild-type SAT, although the kinetics for the free and bound enzymes followed the same Ping-Pong Bi Bi mechanism. From comparisons of computed courses of L-cysteine formation from L-serine using SAT (wild-type SAT and SATdeltaC20) and OASS-A with the experimental results and changes in the stability of the wild-type SAT by the complex formation, we discuss the role and significance of a complex formation for the cysteine synthetase.  相似文献   

8.
Some properties of serine acetyltransferases (SATs) from Escherichia coli, deleting 10-25 amino acid residues from the C-terminus (SATdeltaC10-deltaC25) were investigated. The specific activity depended only slightly on the length of the C-terminal region deleted. Although the sensitivity of SATdeltaC10 to inhibition by L-cysteine was similar to that for the wild-type SAT, it became less with further increases in the length of the amino acid residues deleted. SATdeltaC10 was inactivated on cooling to 0 degrees C and dissociated into dimers or trimers in the same manner as the wild-type SAT, but Met-256-le mutant SAT as well as SATdeltaC14, SATdeltaC20, and SATdeltaC25 were stable. Since SATdeltaC10, SATdeltaC14, and SATdeltaC25 did not form a complex with O-acetylserine sulfhydrylase-A (OASS-A) in a way similar to SATdeltaC20, it was indicated that 10 amino acid residues or fewer from the C-terminus of the wild-type SAT are responsible for the complex formation with OASS-A. The C-terminal peptide of the 10 amino acid residues interacted competitively with OASS-A with respect to OAS although its affinity was much lower than that for the wild-type SAT.  相似文献   

9.
10.
N-Acetylglucosamine is a major component of complex carbohydrates. The mammalian salvage pathway of N-acetylglucosamine recruitment from glycoconjugate degradation or nutritional sources starts with phosphorylation by N-acetylglucosamine kinase. In this study we describe the identification of two active site cysteines of the sugar kinase by site-directed mutagenesis and computer-based structure prediction. Murine N-acetylglucosamine kinase contains six cysteine residues, all of which were mutated to serine residues. The strongest reduction of enzyme activity was found for the mutant C131S, followed by C143S. Determination of the kinetic properties of the cysteine mutants showed that the decreased enzyme activities were due to a strongly decreased affinity to either N-acetylglucosamine for C131S, or ATP for C143S. A secondary structure prediction of N-acetylglucosamine kinase showed a high homology to glucokinase. A model of the three-dimensional structure of N-acetylglucosamine kinase based on the known structure of glucokinase was therefore generated. This model confirmed that both cysteines are located in the active site of N-acetylglucosamine kinase with a potential role in the binding of the transferred gamma-phosphate group of ATP within the catalytic mechanism.  相似文献   

11.
An important goal of structural genomics is to complete the structural analysis of all the enzymes in metabolic pathways and to understand the structural similarities and differences. A preliminary glimpse of this type of analysis was achieved before structural genomics efforts with the glycolytic pathway and efforts are underway for many other pathways, including that of catecholamine metabolism. Structural enzymology necessitates a complete structural characterization, even for highly homologous proteins (greater than 80% sequence homology), as every active site has distinct structural features and it is these active site differences that distinguish one enzyme from another. Short cuts with homology modeling cannot be taken with our current knowledge base. Each enzyme structure in a pathway needs to be determined, including structures containing bound substrates, cofactors, products and transition state analogs, in order to obtain a complete structural and functional understanding of pathway-related enzymes.  相似文献   

12.
The transketolase (TKT) enzyme in Mycobacterium tuberculosis represents a novel drug target for tuberculosis treatment and has low homology with the orthologous human enzyme. Here, we report on the structural and kinetic characterization of the transketolase from M. tuberculosis (TBTKT), a homodimer whose monomers each comprise 700 amino acids. We show that TBTKT catalyses the oxidation of donor sugars xylulose-5-phosphate and fructose-6-phosphate as well as the reduction of the acceptor sugar ribose-5-phosphate. An invariant residue of the TKT consensus sequence required for thiamine cofactor binding is mutated in TBTKT; yet its catalytic activities are unaffected, and the 2.5 Å resolution structure of full-length TBTKT provides an explanation for this. Key structural differences between the human and mycobacterial TKT enzymes that impact both substrate and cofactor recognition and binding were uncovered. These changes explain the kinetic differences between TBTKT and its human counterpart, and their differential inhibition by small molecules. The availability of a detailed structural model of TBTKT will enable differences between human and M. tuberculosis TKT structures to be exploited to design selective inhibitors with potential antitubercular activity.  相似文献   

13.
Human cytochrome P450 2C9 (CYP2C9) is one of the major drug metabolising enzymes which exhibits a broad substrate specificity. The B-C loop is located in the active-site but has been difficult to model, owing to its diverse and flexible structure. To elucidate the function of the B-C loop we used homology modelling based on the Cyp102 structure in combination with functional studies of mutants using diclofenac as a model substrate for CYP2C9. The study shows the importance of the conserved arginine in position 97 and the arginine in position 108 for the catalytic function. The R97A mutant had a 13-fold higher K(m) value while the V(max) was in the same order as the wild type. The R108 mutant had a 100-fold lower activity with diclofenac compared to the wild-type enzyme. The other six mutants (S95A, F100A, L102A, E104A, R105A, and N107A) had kinetic parameters similar to the CYP2C9 wild-type. Our homology model based on the CYP102 structure as template indicates that R97, L102, and R105 are directed into the active site, whereas R108 is not. The change in catalytic function when arginine 97 was replaced with alanine and the orientation of this amino acid in our homology model indicates its importance for substrate interaction.  相似文献   

14.
Mycobacterium tuberculosis shikimate dehydrogenase (MtbSD) catalyzes the fourth reaction in the shikimate pathway, the NADPH-dependent reduction of 3-dehydroshikimate. To gather information on the kinetic mechanism, initial velocity patterns, product inhibition, and primary deuterium kinetic isotope effect studies were performed and the results suggested a steady-state ordered bi-bi kinetic mechanism. The magnitudes of both primary and solvent kinetic isotope effects indicated that the hydride transferred from NADPH and protons transferred from the solvent in the catalytic cycle are not significantly rate limiting in the overall reaction. Proton inventory analysis indicates that one proton gives rise to solvent isotope effects. Multiple isotope effect studies indicate that both hydride and proton transfers are concerted. The pH profiles revealed that acid/base chemistry takes place in catalysis and substrate binding. The MtbSD 3D model was obtained in silico by homology modeling. Kinetic and chemical mechanisms for MtbSD are proposed on the basis of experimental data.  相似文献   

15.
The current therapy for leishmaniasis is not sufficient and it has two severe drawbacks, host-toxicity and drug resistance. The substantial knowledge of parasite biology is not yet translating into novel drugs for leishmaniasis. Based on this observation, a 3D structural model of Leishmania mitogen-activated protein kinase (MAPK) homologue has been developed, for the first time, by homology modeling and molecular dynamics simulation techniques. The model provided clear insight in its structure features, i.e. ATP binding pocket, phosphorylation lip, and common docking site. Sequence-structure homology recognition identified Leishmania CRK3 (LCRK3) as a distant member of the MAPK superfamily. Multiple sequence alignment and 3D structure model provided the putative ATP binding pocket of Leishmania with respect to human ERK2 and LCRK3. This analysis was helpful in identifying the binding sites and molecular function of the Leishmania specific MAPK homologue. Molecular docking study was performed on this 3D structural model, using different classes of competitive ATP inhibitors of LCRK3, to check whether they exhibit affinity and could be identified as Leishmania MAPK specific inhibitors. It is well known that MAP kinases are extracellular signal regulated kinases ERK1 and ERK2, which are components of the Ras-MAPK signal transduction pathway which is complexed with HDAC4 protein, and their inhibition is of significant therapeutic interest in cancer biology. In order to understand the mechanism of action, docking of indirubin class of molecules to the active site of histone deacetylase 4 (HDAC4) protein is performed, and the binding affinity of the protein-ligand interaction was computed. The new structural insights obtained from this study are all consistent with the available experimental data, suggesting that the homology model of the Leishmania MAPK and its ligand interaction modes are reasonable. Further the comparative molecular electrostatic potential and cavity depth analysis of Leishmania MAPK and human ERK2 suggested several important differences in its ATP binding pocket. Such differences could be exploited in the future for designing Leishmania specific MAPK inhibitors.  相似文献   

16.
The structure of YaaE from Bacillus subtilis was determined at 2.5-A resolution. YaaE is a member of the triad glutamine aminotransferase family and functions in a recently identified alternate pathway for the biosynthesis of vitamin B(6). Proposed active residues include conserved Cys-79, His-170, and Glu-172. YaaE shows similarity to HisH, a glutaminase involved in histidine biosynthesis. YaaD associates with YaaE. A homology model of this protein was constructed. YaaD is predicted to be a (beta/alpha)(8) barrel on the basis of sequence comparisons. The predicted active site includes highly conserved residues 211-216 and 233-235. Finally, a homology model of a putative YaaD-YaaE complex was prepared using the structure of HisH-F as a model. This model predicts that the ammonia molecule generated by YaaE is channeled through the center of the YaaD barrel to the putative YaaD active site.  相似文献   

17.
Sleeping sickness and Chagas disease are among the most severe diseases in Africa as well as Latin America. These two diseases are caused by Trypanosoma spp. Recently, an enzyme of a glycolytic pathway, NAD-dependent glycerol-3-phosphate dehydrogenase, of Leishmania mexicana was crystallized and its structure determined by x-ray crystallography. This structure has offered an excellent template for modeling of the homologous enzymes from another Trypanosoma species. Here, a homology model of the T. brucei enzyme based on the x-ray structure of LmGPDH has been generated. This model was used as the starting point for molecular dynamics simulation in a water box. The analysis of the molecular dynamics trajectory indicates that the functionally important motifs have both a very stable secondary structure and tertiary arrangement.  相似文献   

18.
Carbonic anhydrases (CAs) are zinc-containing metalloenzymes that catalyze the interconversion of carbon dioxide and bicarbonate. The alpha-class CAs are found predominantly in vertebrates, but they are also expressed in insects like mosquitoes. Recently, an alpha-CA from the midgut of Aedes aegypti larvae (AaCA1) was identified, cloned, and subsequently shown to share high sequence homologous to human CA I (HCA I). This paper presents the bacterial expression, purification, and kinetic characterization of the soluble CA domain of AaCA1. The data show AaCA1 is a highly active CA that displays inhibition by methazolamide and ethoxzolamide with nM affinity. Additionally, a homology model of AaCA1, based on the crystal structure of HCA I, is presented and the overall structure, active site, and surface charge properties are compared to those of HCA I and II. Measurements of catalysis show that AaCA1 is more like HCA II in terms of proton transfer, but more similar to HCA I in terms of conversion of carbon dioxide to bicarbonate, and these differences are rationalized in terms of structure. These results also indicate that amino acid differences in the active site of AaCA1 compared to human CAs could be used to design specific CA inhibitors for the management of mosquito populations.  相似文献   

19.
The comparison of our homology built model of human angiogenin with the recently determined x-ray structure of the same is reported. The basic details of the structure in terms of alpha -helices and beta sheets were found to be common. The main differences between the model and the x-ray data lie in a C-terminal rearrangement in the x-ray structure that causes the C-terminus to end in a 310 helix which puts the residue GLN-117 (ALA-122 in bovine pancreatic ribonuclease A, RNaseA) into the active site. The homology model was updated by producing a new sequence alignment using the information from the x-ray data which improved the r.m.s. by 0.5Å. This new alignment is also reported here. A check for systematic bias was carried out using the RNaseA structures from which the x-ray and homology models were derived. A detailed comparison of torsion angles and hydrogen bonding between all the structures have been compared and the model displays several hydrogen bonds that are not present in the parent RNaseA structures but are present in the x-ray structure of angiogenin.Electronic Supplementary Material available.  相似文献   

20.
Numerous quantitative stability/flexibility relationships, within Escherichia coli thioredoxin (Trx) and its fragments are determined using a minimal distance constraint model (DCM). A one-dimensional free energy landscape as a function of global flexibility reveals Trx to fold in a low-barrier two-state process, with a voluminous transition state. Near the folding transition temperature, the native free energy basin is markedly skewed to allow partial unfolded forms. Under native conditions the skewed shape is lost, and the protein forms a compact structure with some flexibility. Predictions on ten Trx fragments are generally consistent with experimental observations that they are disordered, and that complementary fragments reconstitute. A hierarchical unfolding pathway is uncovered using an exhaustive computational procedure of breaking interfacial cross-linking hydrogen bonds that span over a series of fragment dissociations. The unfolding pathway leads to a stable core structure (residues 22-90), predicted to act as a kinetic trap. Direct connection between degree of rigidity within molecular structure and non-additivity of free energy is demonstrated using a thermodynamic cycle involving fragments and their hierarchical unfolding pathway. Additionally, the model provides insight about molecular cooperativity within Trx in its native state, and about intermediate states populating the folding/unfolding pathways. Native state cooperativity correlation plots highlight several flexibly correlated regions, giving insight into the catalytic mechanism that facilitates access to the active site disulfide bond. Residual native cooperativity correlations are present in the core substructure, suggesting that Trx can function when it is partly unfolded. This natively disordered kinetic trap, interpreted as a molten globule, has a wide temperature range of metastability, and it is identified as the "slow intermediate state" observed in kinetic experiments. These computational results are found to be in overall agreement with a large array of experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号